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Abstract. Given a complex, separable Hilbert space H, we consider dif-
ferential expressions of the type τ = −(d2/dx2)IH + V (x), with x ∈ (x0,∞)
for some x0 ∈ R, or x ∈ R (assuming the limit-point property of τ at ±∞).
Here V denotes a bounded operator-valued potential V (·) ∈ B(H) such that
V (·) is weakly measurable, the operator norm ‖V (·)‖B(H) is locally integrable,
and V (x) = V (x)∗ a.e. on x ∈ [x0,∞) or x ∈ R. We focus on two major
cases. First, on m-function theory for self-adjoint half-line L2-realizations H+,α

in L2((x0,∞); dx;H) (with x0 a regular endpoint for τ, associated with the self-
adjoint boundary condition sin(α)u′(x0) + cos(α)u(x0) = 0, indexed by the self-
adjoint operator α = α∗ ∈ B(H)), and second, on m-function theory for self-
adjoint full-line L2-realizations H of τ in L2(R; dx;H).
In a nutshell, a Donoghue-type m-function MDo

A,Ni
(·) associated with self-adjoint

extensions A of a closed, symmetric operator Ȧ in Hwith deficiency spaces Nz =
ker

(
Ȧ

∗ − zIH
)

and corresponding orthogonal projections PNz onto Nz is given by

MDo
A,Ni

(z) = PNi (zA + IH )(A − zIH )−1PNi

∣
∣
Ni

= zINi + (z2 + 1)PNi (A − zIH )−1PNi

∣
∣
Ni
, z ∈ C\R.

In the concrete case of half-line and full-line Schrödinger operators, the role
of Ȧ is played by a suitably defined minimal Schrödinger operator H+,min in
L2((x0,∞); dx;H) and Hmin in L2(R; dx;H), both of which will be proven to be
completely non-self-adjoint. The latter property is used to prove that if H+,α in
L2((x0,∞); dx;H), respectively, H in L2(R; dx;H), are self-adjoint extensions
of H+,min, respectively, Hmin, then the corresponding operator-valued measures
in the Herglotz–Nevanlinna representations of the Donoghue-type m-functions
MDo

H+,α,N+,i
(·) and MDo

H,Ni
(·) encode the entire spectral information of H+,α, respec-

tively, H .
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1 Introduction

The principal topic of this paper centers around basic spectral theory for self-
adjoint Schrödinger operators with bounded operator-valued potentials on a half-
line as well as on the full real line, focusing on Donoghue-type m-function theory,
eigenfunction expansions, and a version of the spectral theorem. More precisely,
given a complex, separable Hilbert space H, we consider differential expressions
τ of the type

(1.1) τ = −(d2/dx2)IH + V (x),

with x ∈ (x0,∞) or x ∈ R (x0 ∈ R a reference point), and V a bounded operator-
valued potential V (·) ∈ B(H) such that V (·) is weakly measurable, the operator
norm ‖V (·)‖B(H) is locally integrable, and V (x) = V (x)∗ a.e. on x ∈ [x0,∞) or
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x ∈ R. The self-adjoint operators in question are then half-line L2-realizations of
τ in L2((x0,∞); dx;H), with x0 assumed to be a regular endpoint for τ, and hence
with appropriate boundary conditions at x0 (cf. (1.24)) on one hand, and full-line
L2-realizations of τ in L2(R; dx;H) on the other.

The case of Schrödinger operators with operator-valued potentials under var-
ious continuity or smoothness hypotheses on V (·), and under various self-adjoint
boundary conditions on bounded and unbounded open intervals, received consid-
erable attention in the past. In the special case where dim(H) < ∞, that is, in
the case of Schrödinger operators with matrix-valued potentials, the literature is
so voluminous that we cannot possibly describe individual references and hence
we primarily refer to the monographs [2], [96], and the references cited therein.
We note that the finite-dimensional case, dim(H) < ∞, as discussed in [18], is
of considerable interest as it represents an important ingredient in some proofs of
Lieb–Thirring inequalities (cf. [71]). For the particular case of Schrödinger-type
operators corresponding to the differential expression τ = −(d2/dx2)IH +A+V (x)
on a bounded interval (a, b) ⊂ R with either A = 0 or A a self-adjoint operator
satisfying A ≥ cIH for some c > 0, we refer to the list of references in [52].
For earlier results on various aspects of boundary value problems, spectral theory,
and scattering theory in the half-line case (a, b) = (0,∞), we refer, for instance,
to [3], [4], [33], [54]–[56], [57, Chs. 3,4], [58], [60], [64], [80], [82], [95], [99],
[101] (the case of the real line is discussed in [103]). Our treatment of spectral
theory for half-line and full-line Schrödinger operators in L2((x0,∞); dx;H) and
in L2(R; dx;H), respectively, in [50], [52] represents the most general one to date.

Next, we briefly turn to Donoghue-type m-functions which abstractly can be
introduced as follows (cf. [47], [48]). Given a self-adjoint extension A of a densely
defined, closed, symmetric operator Ȧ in K (a complex, separable Hilbert space)
and the deficiency subspace Ni of Ȧ in K, with

(1.2) Ni = ker
(
Ȧ

∗ − iIK
)
, dim (Ni ) = k ∈ N ∪ {∞},

the Donoghue-type m-operator MDo
A,Ni

(z) ∈ B(Ni ) associated with the pair (A,Ni)
is given by

MDo
A,Ni

(z) = PNi (zA + IK)(A − zIK)−1PNi

∣∣
Ni

= zINi + (z2 + 1)PNi (A − zIK)−1PNi

∣∣
Ni
, z ∈ C\R,(1.3)

with INi the identity operator in Ni , and PNi the orthogonal projection in K onto
Ni . Then MDo

A,Ni
(·) is a B(Ni )-valued Nevanlinna–Herglotz function that admits the

representation

(1.4) MDo
A,Ni

(z) =
∫
R

d�Do
A,Ni

(λ)
[

1
λ− z

− λ

λ2 + 1

]
, z ∈ C\R,
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where the B(Ni )-valued measure�Do
A,Ni

(·) satisfies (5.9)–(5.11).

In the concrete case of regular half-line Schrödinger operators in L2((x0,∞); dx)
with a scalar potential, Donoghue [45] introduced the analogue of (1.3) and used it
to settle certain inverse spectral problems. From a historical perspective, operators
of the type MDo

A,N(·) appear to go back to Krein [65] (see also [67]) and Saakjan
[98]; apparently, Donoghue was unaware of M. Krein’s work in this context, and
similarly, M. Krein and his school appeared to have been unaware of Donoghue’s
contribution to this subject. For hints to the extensive literature on this topic since
these early developments we refer to the paragraph following inequality (5.14).

As has been shown in detail in [47], [48], [49], Donoghue-type m-functions
naturally lead to Krein-type resolvent formulas as well as linear fractional trans-
formations relating two different self-adjoint extensions of Ȧ. However, in this
paper we are particularly interested in the question under which conditions on Ȧ,
the spectral information on its self-adjoint extension A, contained in its family of
spectral projections {EA(λ)}λ∈R, is already encoded in the B(Ni )-valued measure
�Do

A,Ni
(·). As shown in Corollary 5.8, this is the case if and only if Ȧ is completely

non-self-adjoint in K and we will apply this to half-line and full-line Schrödinger
operators with B(H)-valued potentials.

In the general case of B(H)-valued potentials on the right half-line (x0,∞),
assuming Hypothesis 6.1 (i), we introduce minimal and maximal, operators H+,min

and H+,max in L2((x0,∞); dx;H) associated to τ, and self-adjoint extensions H+,α

of H+,min (cf. (3.2), (3.4), (3.9)) and given the generating property of the deficiency
spaces N+,z = ker(H+,min − zI ), z ∈ C\R, proven in Theorem 6.2, conclude that
H+,min is completely non-self-adjoint (i.e., it has no nontrivial invariant subspace
in L2((x0,∞); dx;H) on which it is self-adjoint).

According to (1.3), the right half-line Donoghue-type m-function correspond-
ing to H+,α and N+,i is given by

MDo
H+,α,N+,i

(z, x0) = PN+,i (zH+,α + I )(H+,α − zI )−1PN+,i

∣∣
N+,i

=
∫
R

d�Do
H+,α,N+,i

(λ, x0)
[

1
λ− z

− λ

λ2 + 1

]
, z ∈ C\R,

(1.5)

where�Do
H+,α,N+,i

( · , x0) satisfies the analogues of (5.9)–(5.11).

Combining Corollary 5.8 with the complete non-self-adjointness of H+,min

proves that the entire spectral information for H+,α, contained in the correspond-
ing family of spectral projections {EH+,α(λ)}λ∈R in L2((x0,∞); dx;H), is already
encoded in the B(N+,i )-valued measure �Do

H+,α,N+,i
( · , x0) (including multiplicity

properties of the spectrum of H+,α).
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An explicit computation of MDo
H+,α,N+,i

(z, x0) then yields

MDo
H+,α,N±,i (z, x0) = ± ∑

j,k∈J

(
e j ,m

Do
+,α(z, x0)ek

)
H

× (ψ+,α(i, · , x0)[Im(m+,α(i, x0))]
−1/2ek, · )L2((x0,∞);dx;H))

×ψ+,α(i, · , x0)[Im(m+,α(i, x0))]
−1/2e j

∣∣
N+,i
, z ∈ C\R,(1.6)

where {e j } j∈J is an orthonormal basis in H (J ⊆ N an appropriate index set) and
the B(H)-valued Nevanlinna–Herglotz functions mDo

+,α( · , x0) are given by

mDo
+,α(z, x0) = [Im(m+,α(i, x0))]

−1/2[m+,α(z, x0) − Re(m+,α(i, x0))]

× [Im(m+,α(i, x0))]
−1/2(1.7)

= d+,α +
∫
R

dωDo
+,α(λ, x0)

[
1

λ− z
− λ

λ2 + 1

]
, z ∈ C\R.(1.8)

Here d+,α = Re(mDo
+,α(i, x0)) ∈ B(H), and

(1.9) ωDo
+,α( · , x0) = [Im(m+,α(i, x0))]

−1/2ρ+,α( · , x0)[Im(m+,α(i, x0))]
−1/2

satisfies the analogues of (A.10), (A.11). In addition, ψ+,α( · , x, x0) is the right
half-line Weyl–Titchmarsh solution (3.10), and m+,α( · , x0) represents the standard
B(H)-valued right half-line Weyl–Titchmarsh m-function in (3.10) with B(H)-
valued measure ρ+,α( · , x0) in its Nevanlinna–Herglotz representation (3.17)–(3.19).

This result shows that the entire spectral information for H+,α is also contained
in the B(H)-valued measure ωDo

+,α( · , x0) (again, including multiplicity properties
of the spectrum of H+,α). Naturally, the same facts apply to the left half-line
(−∞, x0).

Turning to the full-line case assuming Hypotheis 4.1, and denoting by H the
self-adjoint realization of τ in L2(R; dx;H), we now decompose

(1.10) L2(R; dx;H) = L2((−∞, x0); dx;H) ⊕ L2((x0,∞); dx;H),

and introduce the orthogonal projections P±,x0 of L2(R; dx;H) onto the left/right
subspaces L2((x0,±∞); dx;H). Thus, we introduce the 2 × 2 block operator rep-
resentation,

(1.11) (H − zI )−1 =

(
P−,x0 (H − zI )−1P−,x0 P−,x0 (H − zI )−1P+,x0

P+,x0 (H − zI )−1P−,x0 P+,x0 (H − zI )−1P+,x0

)
,

and introduce with respect to the decomposition (1.10), the minimal operator Hmin
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in L2(R; dx;H) via

Hmin := H−,min ⊕ H+,min, H ∗
min = H ∗

−,min ⊕ H ∗
+,min,(1.12)

Nz = ker
(
H ∗

min − zI
)

= ker
(
H ∗

−,min − zI
) ⊕ ker

(
H ∗

+,min − zI
)

= N−,z ⊕ N+,z, z ∈ C\R,(1.13)

(see the additional comments concerning our choice of minimal operator in Sec-
tion 6, following (6.36)).

According to (1.3), the full-line Donoghue-type m-function is given by

MDo
H,Ni

(z) = PNi (zH + I )(H − zI )−1PNi

∣∣
Ni
,

=
∫
R

d�Do
H,Ni

(λ)
[

1
λ− z

− λ

λ2 + 1

]
, z ∈ C\R,(1.14)

where�Do
H,Ni

(·) satisfies the analogues of (5.9)–(5.11) (resp., (A.9)–(A.11)).

Combining Corollary 5.8 with the complete non-self-adjointness of Hmin proves
that the entire spectral information for H , contained in the corresponding family of
spectral projections {EH (λ)}λ∈R in L2(R; dx;H), is already encoded in the B(Ni )-
valued measure�Do

H,Ni
(·) (including multiplicity properties of the spectrum of H ).

With respect to the decomposition (1.10), one can represent MDo
H,Ni

(·) as the
2 × 2 block operator,

MDo
H,Ni

(·) =
(
MDo

H,Ni ,	,	′(·)
)
0≤	,	′≤1(1.15)

= z
(

PN−,i 0
0 PN+,i

)
+ (z2 + 1)

(
PN−,i (H−zI)−1PN−,i PN−,i (H−zI)−1PN+,i

PN+,i (H−zI)−1PN−,i PN+,i (H−zI)−1PN+,i

)
,

employing PN±,iP±,x0 = PN±,i . Utilizing the fact that

{

̂−,α, j (z, · , x0) = P−,x0ψ−,α(z, · , x0)[−(Im(z)−1m−,α(z, x0)]

−1/2e j ,


̂+,α, j (z, · , x0) = P+,x0ψ+,α(z, · , x0)[(Im(z)−1m+,α(z, x0)]
−1/2e j

}
j∈J

(1.16)

is an orthonormal basis for Nz = ker
(
H ∗

min − zI
)
, z ∈ C\R, with {e j } j∈J an
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orthonormal basis for H, one eventually computes explicitly,

MDo
H,Ni ,0,0(z) =

∑
j,k∈J

(e j ,M
Do
α,0,0(z, x0)ek)H

× (

̂−,α,k(i, · , x0), · )L2(R;dx;H)
̂−,α, j (i, · , x0),(1.17)

MDo
H,Ni ,0,1(z) =

∑
j,k∈J

(e j ,M
Do
α,0,1(z, x0)ek)H

× (

̂+,α,k(i, · , x0), · )L2(R;dx;H)
̂−,α, j (i, · , x0),(1.18)

MDo
H,Ni ,1,0(z) =

∑
j,k∈J

(e j ,M
Do
α,1,0(z, x0)ek)H

× (

̂−,α,k(i, · , x0), · )L2(R;dx;H)
̂+,α, j (i, · , x0),(1.19)

MDo
H,Ni ,1,1(z) =

∑
j,k∈J

(e j ,M
Do
α,1,1(z, x0)ek)H

× (

̂+,α,k(i, · , x0), · )L2(R;dx;H)
̂+,α, j (i, · , x0),(1.20)

z ∈ C\R,

with MDo
α ( · , x0) given by

MDo
α (z, x0) = T ∗

αMα(z, x0)Tα + Eα

= Dα +
∫
R

d�Do
α (λ, x0)

[
1

λ− z
− λ

λ2 + 1

]
, z ∈ C\R.(1.21)

Here Dα = Re(MDo
α (i, x0)) ∈ B

(
H2

)
, and

(1.22) �Do
α ( · , x0) = T ∗

α�α( · , x0)Tα

satisfies the analogues of (A.10), (A.11). In addition, the 2 × 2 block operators
Tα ∈ B

(
H2

) (
with T −1

α ∈ B
(
H2

))
and Eα ∈ B

(
H2

)
are defined in (6.57) and

(6.58), and Mα( · , x0) is the standard B
(
H2

)
-valued Weyl–Titchmarsh 2 × 2 block

operator Weyl–Titchmarsh function (4.17)–(4.21) with�α( · x0) the B
(
H2

)
-valued

measure in its Nevanlinna–Herglotz representation (4.22)–(4.24).

This result shows that the entire spectral information for H is also contained in
the B

(
H2

)
-valued measure�Do

α ( · , x0) (again, including multiplicity properties of
the spectrum of H ).

Remark 1.1. As the first equality in (1.21) shows, MDo
α (z, x0) recovers the

traditional Weyl–Titchmarsh operator Mα(z, x0) apart from the boundedly invert-
ible 2×2 block operators Tα. The latter is built from the half-line Weyl–Titchmarsh
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operators m±,α(z, x0) in a familiar, yet somewhat intriguing, manner (cf. (4.17)–
(4.21)),

Mα(z, x0)

=
(

W (z)−1 2−1W (z)−1[m−,α(z,x0)+m+,α(z,x0)]
2−1[m−,α(z,x0)+m+,α(z,x0)]W (z)−1 m±,α(z,x0)W (z)−1m∓,α(z,x0)

)
,

z ∈ C\σ(H ),

(1.23)

abbreviating W (z) = [m−,α(z, x0) − m+,α(z, x0)], z ∈ C\σ(H ). In contrast to
this construction, combining the Donoghue m-function MDo

H,Ni
(·) with the left/right

half-line decomposition (1.10), via equation (1.15), directly leads to (1.17)–(1.20),
and hence to (1.21), and thus to the B

(
H2

)
-valued measure �Do

α ( · , x0) in the
Nevanlinna–Herglotz representation of MDo

α ( · , x0), encoding the entire spectral
information of H contained in it’s family of spectral projections EH (·).

Of course,�Do
α ( · , x0) is directly related to theB

(
H2

)
-valued Weyl–Titchmarsh

measure�α( · , x0) in the Nevanlinna–Herglotz representation of Mα( · , x0) via re-
lation (1.22), but our point is that the simple left/right half-line decomposition
(1.10) combined with the Donoghue-type m function (1.14) naturally leads to
�Do
α ( · , x0), without employing (1.23). This offers interesting possibilities in the

PDE context where Rn, n ∈ N, n ≥ 2, can now be decomposed in various man-
ners, for instance, into the interior and exterior of a given (bounded or unbounded)
domain D ⊂ Rn, a left/right (upper/lower) half-space, etc. In this context we
should add that this paper concludes the first part of our program, the treatment of
half-line and full-line Schrödinger operators with bounded operator-valued poten-
tials. Part two will aim at certain classes of unbounded operator-valued potentials
V , applicable to multi-dimensional Schrödinger operators in L2(Rn; dnx), n ∈ N,
n ≥ 2, generated by differential expressions of the type −� + V (·). In fact, it
was precisely the connection between multi-dimensional Schrödinger operators
and one-dimensional Schrödinger operators with unbounded operator-valued po-
tentials which originally motivated our interest in this program. We will return to
this circle of ideas elsewhere.

At this point we turn to the content of each section: Section 2 recalls our basic
results in [50] on the initial value problem associated with Schrödinger operators
with bounded operator-valued potentials. We use this section to introduce some of
the basic notation employed subsequently and note that our conditions on V (·) (cf.
Hypothesis 2.6) are the most general to date with respect to the local behavior of
the potential V (·). Following our detailed treatment in [50], Section 3 introduces
maximal and minimal operators associated with the differential expression τ =
−(d2/dx2)IH + V (·) on the interval (a, b) ⊂ R (eventually aiming at the case of
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a half-line (a,∞)), and assuming that the left endpoint a is regular for τ and that
τ is in the limit-point case at the endpoint b we discuss the family of self-adjoint
extensions Hα in L2((a, b); dx;H) corresponding to boundary conditions of the
type

(1.24) sin(α)u′(a) + cos(α)u(a) = 0,

indexed by the self-adjoint operator α = α∗ ∈ B(H). In addition, we recall ele-
ments of Weyl–Titchmarsh theory, the introduction of the operator-valued Weyl–
Titchmarsh function mα(·) ∈ B(H) and the Green’s function Gα(z, · , · ) ∈ B(H)
of Hα. In particular, we prove bounded invertibility of Im(mα(·)) in B(H) in Theo-
rem 3.3. In Section 4 we recall the analogous results for full-line Schrödinger
operators H in L2(R; dx;H), employing a 2 × 2 block operator representation of
the associated Weyl–Titchmarsh Mα( · , x0)-matrix and its B

(
H2

)
-valued spectral

measure d�α( · , x0), decomposing R into a left and right half-line with respect to
the reference point x0 ∈ R, (−∞, x0] ∪ [x0,∞). Various basic facts on deficiency
subspaces, abstract Donoghue-type m-functions and the bounded invertibility of
their imaginary parts, and the notion of completely non-self-adjoint symmetric
operators are provided in Section 5. This section also discusses the possibility
of a reduction of the spectral family EA(·) of the self-adjoint operator A in H

to the measure A(·) = PNEA(·)PN

∣∣
N

in N (with PN the orthogonal projection
onto a closed linear subspace N of H) to the effect that A is unitarily equiva-
lent to the operator of multiplication by the independent variable λ in the space
L2(R; dA(λ);N), yielding a diagonalization of A (see Theorem 5.6). Our final
and principal Section 6, establishes complete non-self-adjointness of the minimal
operators H±,min in L2((x0,±∞); dx;H) (cf. Theorem 6.2), and analyzes in detail
the half-line Donoghue-type m-functions MDo

H±,α,N±,i ( · , x0) in N±,i . In addition,
it introduces the derived quantities mDo±,α( · , x0) in H and subsequently, turns to
the full-line Donoghue-type operators MDo

H,Ni
(·) in Ni and MDo

α ( · , x0) in H2. It is
then proved that the entire spectral information for H± and H (including multi-
plicity issues) are encoded in MDo

H±,α,N±,i ( · , x0) (equivalently, in mDo±,α( · , x0)) and
in MDo

H,Ni
(·) (equivalently, in MDo

α ( · , x0)), respectively. Appendix A collects basic
facts on operator-valued Nevanlinna–Herglotz functions. We introduced the back-
ground material in Sections 2–4 to make this paper reasonably self-contained.

Finally, we briefly comment on the notation used in this paper: Throughout, H
denotes a separable, complex Hilbert space with inner product and norm denoted
by ( · , · )H (linear in the second argument) and ‖ · ‖H, respectively. The identity
operator in H is written as IH. We denote by B(H) (resp., B∞(H)) the Banach
space of linear bounded (resp., compact) operators in H. The domain, range,
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kernel (null space), resolvent set, and spectrum of a linear operator will be denoted
by dom(·), ran(·), ker(·), ρ(·), and σ(·), respectively. The closure of a closable
operator S in H is denoted by S. By B(R) we denote the collection of Borel
subsets of R.

2 Basics on the initial value problem for Schrödinger
operators with operator-valued potentials

In this section we recall the basic results on initial value problems for second-
order differential equations of the form −y′′ +Qy = f on an arbitrary open interval
(a, b) ⊆ R with a bounded operator-valued coefficient Q, that is, when Q(x) is a
bounded operator on a separable, complex Hilbert space H for a.e. x ∈ (a, b). We
are concerned with two types of situations: in the first one f (x) is an element of
the Hilbert space H for a.e. x ∈ (a, b), and the solution sought is to take values in
H. In the second situation, f (x) is a bounded operator on H for a.e. x ∈ (a, b), as
is the proposed solution y.

All results recalled in this section were proved in detail in [50].
We start with some necessary preliminaries: Let (a, b) ⊆ R be a finite or infi-

nite interval and X a Banach space. Unless explicitly stated otherwise (such as in
the context of operator-valued measures in Nevanlinna–Herglotz representations,
cf. Appendix A), integration of X-valued functions on (a, b) will always be un-
derstood in the sense of Bochner (cf., e.g., [10, pp. 6–21], [43, pp. 44–50], [61,
pp. 71–86], [79, Ch. III], [104, Sect. V.5] for details). In particular, if p ≥ 1, the
symbol Lp((a, b); dx;X) denotes the set of equivalence classes of strongly measur-
able X-valued functions which differ at most on sets of Lebesgue measure zero,
such that ‖ f (·)‖p

X ∈ L1((a, b); dx). The corresponding norm in Lp((a, b); dx;X)
is given by ‖ f ‖Lp((a,b);dx;X) =

( ∫
(a,b) dx ‖ f (x)‖p

X

)1/p, rendering Lp((a, b); dx;X) a
Banach space. If H is a separable Hilbert space, then so is L2((a, b); dx;H) (see,
e.g., [12, Subsects. 4.3.1, 4.3.2], [21, Sect. 7.1]). One recalls that by a result of
Pettis [91], if X is separable, weak measurability of X-valued functions implies
their strong measurability.

Sobolev spaces Wn,p((a, b); dx;X) for n ∈ N and p ≥ 1 are defined as follows:
W 1,p((a, b); dx;X) is the set of all f ∈ Lp((a, b); dx;X) such that there exists a
g ∈ Lp((a, b); dx;X) and an x0 ∈ (a, b) such that

(2.1) f (x) = f (x0) +
∫ x

x0

dx′ g(x′) for a.e. x ∈ (a, b).

In this case g is the strong derivative of f , g = f ′. Similarly, Wn,p((a, b); dx;X) is
the set of all f ∈ Lp((a, b); dx;X) so that the first n strong derivatives of f are in
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Lp((a, b); dx;X). For simplicity of notation we also introduce W 0,p((a, b); dx;X) =
Lp((a, b); dx;X). Finally, Wn,p

loc ((a, b); dx;X) is the set of X-valued functions de-
fined on (a, b) for which the restrictions to any compact interval [α, β] ⊂ (a, b)
are in Wn,p((α, β); dx;X). In particular, this applies to the case n = 0 and thus
defines Lp

loc((a, b); dx;X). If a is finite we may allow [α, β] to be a subset of [a, b)
and denote the resulting space by Wn,p

loc ([a, b); dx;X) (and again this applies to the
case n = 0).

Following a frequent practice (cf., e.g., the discussion in [8, Sect. III.1.2]), we
will call elements of W 1,1([c, d ]; dx;X), [c, d ] ⊂ (a, b) (resp., W 1,1

loc ((a, b); dx;X)),
strongly absolutely continuousX-valued functions on [c, d ] (resp., strongly locally
absolutely continuous X-valued functions on (a, b)), but caution the reader that
unless X possesses the Radon–Nikodym (RN) property, this notion differs from
the classical definition of X-valued absolutely continuous functions (we refer the
interested reader to [43, Sect. VII.6] for an extensive list of conditions equivalent
to X having the RN property). Here we just mention that reflexivity of X implies
the RN property.

In the special case where X = C, we omit X and just write Lp
(loc)((a, b); dx), as

usual.
We emphasize that a strongly continuous operator-valued function F (x),

x ∈ (a, b), always means continuity of F (·)h in H for all h ∈ H (i.e., pointwise
continuity of F (·) in H). The same pointwise conventions will apply to the no-
tions of strongly differentiable and strongly measurable operator-valued functions
throughout this manuscript. In particular, and unless explicitly stated otherwise,
for operator-valued functions Y , the symbol Y ′ will be understood in the strong
sense; similarly, y′ will denote the strong derivative for vector-valued functions y.

Definition 2.1. Let (a, b) ⊆ R be a finite or infinite interval, and suppose
that Q : (a, b) → B(H) is a weakly measurable operator-valued function with
‖Q(·)‖B(H) ∈ L1

loc((a, b); dx), and that f ∈ L1
loc((a, b); dx;H). Then the H-valued

function y : (a, b) → H is called a (strong) solution of

(2.2) −y′′ + Qy = f

if y ∈ W 2,1
loc ((a, b); dx;H) and (2.2) holds a.e. on (a, b).

One verifies that Q : (a, b) → B(H) satisfies the conditions in Definition 2.1 if
and only if Q∗ does (a fact that will play a role later on, cf. the paragraph following
(2.9)).

Theorem 2.2. Let (a, b) ⊆ R be a finite or infinite interval and suppose
that V : (a, b) → B(H) a weakly measurable operator-valued function with
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‖V (·)‖B(H) ∈ L1
loc((a, b); dx). Suppose that x0 ∈ (a, b), z ∈ C, h0, h1 ∈ H, and

f ∈ L1
loc((a, b); dx;H). Then there is a unique H-valued solution y(z, · , x0) ∈

W 2,1
loc ((a, b); dx;H) of the initial value problem

(2.3)

⎧⎨⎩−y′′ + (V − z)y = f on (a, b)\E,
y(x0) = h0, y′(x0) = h1,

where the exceptional set E is of Lebesgue measure zero and depends only on the
representatives chosen for V and f but is independent of z.

Moreover, the following properties hold:
(i) for fixed x0, x ∈ (a, b) and z ∈ C, y(z, x, x0) depends jointly continuously on

h0, h1 ∈ H, and f ∈ L1
loc((a, b); dx;H) in the sense that∥∥y(z, x, x0; h0, h1, f

) − y
(
z, x, x0; h̃0, h̃1, f̃

)∥∥
H

≤ C(z,V )
[∥∥h0 − h̃0

∥∥
H

+
∥∥h1 − h̃1

∥∥
H

+
∥∥ f − f̃

∥∥
L1([x0,x];dx;H)

]
,

(2.4)

where C(z,V ) > 0 is a constant, and the dependence of y on the initial data h0, h1

and the inhomogeneity f is displayed in (2.4);
(ii) for fixed x0 ∈ (a, b) and z ∈ C, y(z, x, x0) is strongly continuously differen-

tiable with respect to x on (a, b);
(iii) for fixed x0 ∈ (a, b) and z ∈ C, y′(z, x, x0) is strongly differentiable with

respect to x on (a, b)\E;

(iv) for fixed x0, x ∈ (a, b), y(z, x, x0) and y′(z, x, x0) are entire with respect
to z.

For classical references on initial value problems we refer, for instance, to [31,
Chs. III, VII] and [44, Ch. 10], but we emphasize again that our approach mini-
mizes the smoothness hypotheses on V and f .

Definition 2.3. Let (a, b) ⊆ R be a finite or infinite interval and assume that
F, Q : (a, b) → B(H) are two weakly measurable operator-valued functions such
that ‖F (·)‖B(H), ‖Q(·)‖B(H) ∈ L1

loc((a, b); dx). Then the B(H)-valued function
Y : (a, b) → B(H) is called a solution of

(2.5) −Y ′′ + QY = F

if Y (·)h ∈ W 2,1
loc ((a, b); dx;H) for every h ∈ H and −Y ′′h+QYh = Fh holds a.e. on

(a, b).

Corollary 2.4. Let (a, b) ⊆ R be a finite or infinite interval, x0 ∈ (a, b),
z ∈ C, Y0, Y1 ∈ B(H), and suppose F, V : (a, b) → B(H) are two weakly mea-
surable operator-valued functions with ‖V (·)‖B(H), ‖F (·)‖B(H) ∈ L1

loc((a, b); dx).
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Then there is a unique B(H)-valued solution Y (z, · , x0) : (a, b) → B(H) of the

initial value problem

(2.6)

⎧⎨⎩−Y ′′ + (V − z)Y = F on (a, b)\E,
Y (x0) = Y0, Y ′(x0) = Y1.

where the exceptional set E is of Lebesgue measure zero and depends only on
the representatives chosen for V and F but is independent of z. Moreover, the

following properties hold:
(i) for fixed x0 ∈ (a, b) and z ∈ C, Y (z, x, x0) is continuously differentiable with

respect to x on (a, b) in the B(H)-norm;
(ii) for fixed x0 ∈ (a, b) and z ∈ C, Y ′(z, x, x0) is strongly differentiable with

respect to x on (a, b)\E;

(iii) for fixed x0, x ∈ (a, b), Y (z, x, x0) and Y ′(z, x, x0) are entire in z in the B(H)-
norm.

Various versions of Theorem 2.2 and Corollary 2.4 exist in the literature under
varying assumptions on V and f,F (cf. the discussion in [50] which uses the most
general hypotheses to date).

Definition 2.5. Pick c ∈ (a, b). The endpoint a (resp., b) of the interval (a, b)
is called regular for the operator-valued differential expression −(d2/dx2) + Q(·)
if it is finite and if Q is weakly measurable and ‖Q(·)‖B(H) ∈ L1([a, c]; dx) (resp.,
‖Q(·)‖B(H) ∈ L1([c, b]; dx)) for some c ∈ (a, b). Similarly, −(d2/dx2) + Q(·) is
called regular at a (resp., regular at b) if a (resp., b) is a regular endpoint for
−(d2/dx2) + Q(·).

We note that if a (resp., b) is regular for −(d2/dx2) + Q(x), one may allow for
x0 to be equal to a (resp., b) in the existence and uniqueness Theorem 2.2.

If f1, f2 are strongly continuously differentiableH-valued functions, we define
the Wronskian of f1 and f2 by

(2.7) W∗( f1, f2)(x) = ( f1(x), f ′
2(x))H − ( f ′

1(x), f2(x))H, x ∈ (a, b).

If f2 is an H-valued solution of −y′′ + Qy = 0 and f1 is an H-valued solution of
−y′′ + Q∗y = 0, their Wronskian W∗( f1, f2)(x) is x-independent, that is,

(2.8)
d
dx

W∗( f1, f2)(x) = 0 for a.e. x ∈ (a, b)

(in fact, by (2.21), the right-hand side of (2.8) actually vanishes for all x ∈ (a, b)).
We decided to use the symbol W∗( · , · ) in (2.7) to indicate its conjugate linear

behavior with respect to its first entry.
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Similarly, if F1,F2 are strongly continuously differentiable B(H)-valued func-
tions, their Wronskian is defined by

(2.9) W (F1,F2)(x) = F1(x)F
′
2(x) − F ′

1(x)F2(x), x ∈ (a, b).

Again, if F2 is a B(H)-valued solution of −Y ′′ + QY = 0 and F1 is a B(H)-valued
solution of −Y ′′ +YQ = 0 (the latter is equivalent to −(Y ∗)′′ +Q∗Y ∗ = 0 and hence
can be handled in complete analogy via Theorem 2.2 and Corollary 2.4, replacing
Q by Q∗) their Wronskian will be x-independent,

(2.10)
d
dx

W (F1,F2)(x) = 0 for a.e. x ∈ (a, b).

Our main interest lies in the case where V (·) = V (·)∗ ∈ B(H) is self-adjoint.
Thus, we now introduce the following basic assumption:

Hypothesis 2.6. Let (a, b) ⊆ R, suppose that V : (a, b) → B(H) is a weakly
measurable operator-valued function with ‖V (·)‖B(H) ∈ L1

loc((a, b); dx), and as-
sume that V (x) = V (x)∗ for a.e. x ∈ (a, b).

Moreover, for the remainder of this paper we assume

(2.11) α = α∗ ∈ B(H).

Assuming Hypothesis 2.6 and (2.11), we introduce the standard fundamental
systems of operator-valued solutions of τy = zy as follows: Since α is a bounded
self-adjoint operator, one may define the self-adjoint operators A = sin(α) and
B = cos(α) via the spectral theorem. Given such an operator α and a point
x0 ∈ (a, b) or a regular endpoint for τ, we now define θα(z, · , x0), φα(z, · , x0)
as those B(H)-valued solutions of τY = zY (in the sense of Definition 2.3) which
satisfy the initial conditions
(2.12)
θα(z, x0, x0) = φ′

α(z, x0, x0) = cos(α), −φα(z, x0, x0) = θ ′
α(z, x0, x0) = sin(α).

By Corollary 2.4 (iii), for any fixed x, x0 ∈ (a, b), the functions θα(z, x, x0),
φα(z, x, x0), θα(z, x, x0)∗, and φα(z, x, x0)∗, as well as their strong x-derivatives are
entire with respect to z in the B(H)-norm.

Since θα(z̄, · , x0)∗ and φα(z̄, · , x0)∗ satisfy the adjoint equation −Y ′′ + YV =
zY and the same initial conditions as θα and φα, respectively, one can show the
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following identities (cf. [50]):

θ ′
α(z̄, x, x0)

∗θα(z, x, x0) − θα(z̄, x, x0)
∗θ ′
α(z, x, x0) = 0,(2.13)

φ′
α(z̄, x, x0)

∗φα(z, x, x0) − φα(z̄, x, x0)
∗φ′

α(z, x, x0) = 0,(2.14)

φ′
α(z̄, x, x0)

∗θα(z, x, x0) − φα(z̄, x, x0)
∗θ ′
α(z, x, x0) = IH,(2.15)

θα(z̄, x, x0)
∗φ′
α(z, x, x0) − θ ′

α(z̄, x, x0)
∗φα(z, x, x0) = IH,(2.16)

as well as,

φα(z, x, x0)θα(z̄, x, x0)
∗ − θα(z, x, x0)φα(z̄, x, x0)

∗ = 0,(2.17)

φ′
α(z, x, x0)θ

′
α(z̄, x, x0)

∗ − θ ′
α(z, x, x0)φ

′
α(z̄, x, x0)

∗ = 0,(2.18)

φ′
α(z, x, x0)θα(z̄, x, x0)

∗ − θ ′
α(z, x, x0)φα(z̄, x, x0)

∗ = IH,(2.19)

θα(z, x, x0)φ
′
α(z̄, x, x0)

∗ − φα(z, x, x0)θ
′
α(z̄, x, x0)

∗ = IH.(2.20)

Finally, we recall two versions of Green’s formula (resp., Lagrange’s identity).

Lemma 2.7. Let (a, b) ⊆ R be a finite or infinite interval, and suppose
[x1, x2] ⊂ (a, b).

(i) Assume that f, g ∈ W 2,1
loc ((a, b); dx;H). Then

(2.21)
∫ x2

x1

dx [((τ f )(x), g(x))H − ( f (x), (τg)(x))H]

= W∗( f, g)(x2) − W∗( f, g)(x1).

(ii) Assume that F, G : (a, b) → B(H) are absolutely continuous operator-
valued functions such that F ′, G′ are again differentiable and F ′′, G′′ are weakly

measurable. Suppose also that ‖F ′′‖H, ‖G′′‖H ∈ L1
loc((a, b); dx). Then

(2.22)
∫ x2

x1

dx [(τF ∗)(x)∗G(x) − F (x)(τG)(x)] = W (F,G)(x2) − W (F,G)(x1).

3 Half-line Weyl–Titchmarsh and spectral theory for
Schrödinger operators with operator-valued potentials

In this section we recall the basics of Weyl–Titchmarsh and spectral theory for
self-adjoint half-line Schrödinger operators Hα in L2((a, b); dx;H) associated with
the operator-valued differential expression τ = −(d2/dx2)IH + V (·), assuming
regularity of the left endpoint a and the limit-point case at the right endpoint b

(see Definition 3.1). These results were proved in [50] and [52] and we refer to
these sources for details and an extensive bibliography on this topic.
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As before, H denotes a separable Hilbert space and (a, b) denotes a finite or
infinite interval. One recalls that L2((a, b); dx;H) is separable (since H is) and that

(3.1) ( f, g)L2((a,b);dx;H) =
∫ b

a
dx ( f (x), g(x))H, f, g ∈ L2((a, b); dx;H).

Assuming Hypothesis 2.6 throughout this section, we discuss self-adjoint op-
erators in L2((a, b); dx;H) associated with the operator-valued differential expres-
sion τ = −(d2/dx2)IH + V (·) as suitable restrictions of the maximal operator Hmax

in L2((a, b); dx;H) defined by

Hmax f = τ f,

f ∈ dom(Hmax) =
{
g ∈ L2((a, b); dx;H)

∣∣ g ∈ W 2,1
loc ((a, b); dx;H);(3.2)

τg ∈ L2((a, b); dx;H)
}
.

We also introduce the operator Ḣmin in L2((a, b); dx;H)

(3.3) dom(Ḣmin) = {g ∈ dom(Hmax) | supp(g) is compact in (a, b)},
and the minimal operator Hmin in L2((a, b); dx;H) associated with τ,

(3.4) Hmin = Ḣmin.

One obtains,

(3.5) Hmax = (Ḣmin)
∗, H ∗

max = Ḣmin = Hmin.

Moreover, Green’s formula holds, that is, if u and v are in dom(Hmax), then

(3.6) (Hmaxu, v)L2((a,b);dx;H) − (u,Hmaxv)L2((a,b);dx;H) = W∗(u, v)(b)−W∗(u, v)(a).

Definition 3.1. Assume Hypothesis 2.6. Then the endpoint a (resp., b) is said
to be of limit-point-type for τ if W∗(u, v)(a) = 0 (resp., W∗(u, v)(b) = 0) for all
u, v ∈ dom(Hmax).

Next, we introduce the subspaces

(3.7) Dz = {u ∈ dom(Hmax) |Hmaxu = zu}, z ∈ C.

For z ∈ C\R, Dz represent the deficiency subspaces of Hmin. Von Neumann’s
theory of extensions of symmetric operators implies that

(3.8) dom(Hmax) = dom(Hmin) �Di �D−i ,

where � indicates the direct (but not necessarily orthogonal direct) sum in the
underlying Hilbert space L2((a, b); dx;H).

For the remainder of this section we now make the following asumptions:
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Hypothesis 3.2. In addition to Hypothesis 2.6 suppose that a is a regular
endpoint for τ and b is of limit-point-type for τ.

Given Hypothesis 3.2, it has been shown in [50] that all self-adjoint restrictions,
Hα, of Hmax, equivalently, all self-adjoint extensions of Hmin, are parametrized by
α = α∗ ∈ B(H), with domains given by

(3.9) dom(Hα) = {u ∈ dom(Hmax) | sin(α)u′(a) + cos(α)u(a) = 0}.

Next, we recall that (normalized) B(H)-valued and square integrable solutions
of τY = zY , denoted by ψα(z, · , a), z ∈ C\σ(Hα), and traditionally called Weyl–
Titchmarsh solutions of τY = zY , and the B(H)-valued Weyl–Titchmarsh func-
tions mα(z, a), have been constructed in [50] to the effect that

(3.10) ψα(z, x, a) = θα(z, x, a) + φα(z, x, a)mα(z, a), z ∈ C\σ(Hα), x ∈ [a, b).

Then ψα( · , x, a) is analytic in z on C\R for fixed x ∈ [a, b), and

(3.11)
∫ b

a
dx ‖ψα(z, x, a)h‖2

H < ∞, h ∈ H, z ∈ C\σ(Hα),

in particular,

(3.12) ψα(z, · , a)h ∈ L2((a, b); dx;H), h ∈ H, z ∈ C\σ(Hα),

and

(3.13) ker(Hmax − zIL2((a,b);dx;H)) = {ψα(z, · , a)h | h ∈ H}. z ∈ C\R.

In addition, mα(z, a) is a B(H)-valued Nevanlinna–Herglotz function (cf. Defini-
tion A.1), and

(3.14) mα(z, a) = mα(z, a)∗, z ∈ C\σ(Hα).

Given u ∈ Dz, the operator m0(z, a) assigns Neumann boundary data u′(a) to the
Dirichlet boundary data u(a), that is, m0(z, a) is the (z-dependent) Dirichlet-to-
Neumann map.

With the help of Weyl–Titchmarsh solutions one can now describe the resolvent
of Hα as follows,

(
(Hα − zIL2((a,b);dx;H))

−1u
)
(x) =

∫ b

a
dx′ Gα(z, x, x

′)u(x′),

u ∈ L2((a, b); dx;H), z ∈ ρ(Hα), x ∈ [a, b),

(3.15)
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with the B(H)-valued Green’s function Gα(z, · , · ) given by

(3.16) Gα(z, x, x
′) =

⎧⎨⎩φα(z, x, a)ψα(z, x′, a)∗, a ≤ x ≤ x′ < b,

ψα(z, x, a)φα(z, x′, a)∗, a ≤ x′ ≤ x < b,
z ∈ C\R.

Next, we replace the interval (a, b) by the right half-line (x0,∞) and indicate
this change with the additional subscript + in H+,min, H+,max, H+,α, ψ+,α(z, · , x0),
m+,α( · , x0), dρ+,α( · , x0), G+,α(z, · , · ), etc., to distinguish these quantities from the
analogous objects on the left half-line (−∞, x0) (later indicated with the subscript
−), which are needed in our subsequent full-line Section 4.

Our aim is to relate the family of spectral projections, {EH+,α(λ)}λ∈R, of the self-
adjoint operator H+,α and the B(H)-valued spectral function ρ+,α(λ, x0),
λ ∈ R, which generates the operator-valuedmeasure dρ+,α( · , x0) in the Nevanlinna–
Herglotz representation (3.17) of m+,α( · , x0):

(3.17) m+,α(z, x0) = c+,α +
∫
R

dρ+,α(λ, x0)
[ 1
λ− z

− λ

λ2 + 1

]
, z ∈ C\σ(H+,α),

where

(3.18) c+,α = Re(m+,α(i, x0)) ∈ B(H),

and dρ+,α( · , x0) is a B(H)-valued measure satisfying

(3.19)
∫
R

d (e, ρ+,α(λ, x0)e)H (λ2 + 1)−1 <∞, e ∈ H.

In addition, the Stieltjes inversion formula for the nonnegative B(H)-valued mea-
sure dρ+,α( · , x0) reads
(3.20)

ρ+,α((λ1, λ2], x0) =
1
π

lim
δ↓0

lim
ε↓0

∫ λ2+δ

λ1+δ
dλ Im(m+,α(λ+iε, x0)), λ1, λ2 ∈ R, λ1 < λ2

(cf. Appendix A for details on Nevanlinna–Herglotz functions). We also note that
m+,α( · , x0) and m+,β( · , x0) are related by the following linear fractional transfor-
mation,

(3.21) m+,β( · , x0) = (C + Dm+,α( · , x0))(A + Bm+α( · , x0))
−1,

where

(3.22)

(
A B
C D

)
=

(
cos(β) sin(β)

− sin(β) cos(β)

)(
cos(α) − sin(α)
sin(α) cos(α)

)
.

An important consequence of (3.21) and the fact that the m-functions take val-
ues in B(H) is the following invertibility result.
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Theorem 3.3. Assume Hypothesis 3.2, then [Im(m+,α(z, x0))]−1 ∈ B(H) for

all z ∈ C\R and α = α∗ ∈ B(H).

Proof. Let z ∈ C\R be fixed. We first show that [Im(m+,0(z, x0))]−1 ∈ B(H).
By (3.21),

m+,β(z, x0) = [cos(β)m+,0(z, x0) − sin(β)][sin(β)m+,0(z, x0) + cos(β)]−1,(3.23)

hence using sin2(β) + cos2(β) = IH and commutativity of sin(β) and cos(β), one
gets

cos(β) − sin(β)m+,β(z, x0) = [sin(β)m+,0(z, x0) + cos(β)]−1.(3.24)

Taking β = β(z) = arccot(−Re(m+,0(z, x0))) ∈ B(H) yields

cos(β) − sin(β)m+,β(z, x0) = [sin(β)i Im(m+,0(z, x0))]
−1,(3.25)

and since the left-hand side is in B(H), also [Im(m+,0(z, x0))]−1 ∈ B(H).
Next, we show that for any α = α∗ ∈ B(H), [Im(m+,α(z, x0))]−1 ∈ B(H).

Replacing β by α in (3.23) and noting that both sin(α) and cos(α) are self-adjoint,
one obtains

m+,α(z, x0) = [cos(α)m+,0(z, x0) − sin(α)][sin(α)m+,0(z, x0) + cos(α)]−1,

m+,α(z, x0)
∗ = [m+,0(z, x0)

∗ sin(α) + cos(α)]−1[m+,0(z, x0)
∗ cos(α) − sin(α)],

(3.26)

and consequently

2i Im(m+,α(z, x0)) = m+,α(z, x0) − m+,α(z, x0)
∗

= [m+,0(z, x0)
∗ sin(α) + cos(α)]−1[2i Im(m+,0(z, x0))]

× [sin(α)m+,0(z, x0) + cos(α)]−1.(3.27)

Since [Im(m+,0(z, x0))]−1 ∈ B(H), it follows that [Im(m+,α(z, x0))]−1 ∈ B(H). �
In the following, C∞

0 ((c, d );H), −∞ ≤ c < d ≤ ∞, denotes the usual space
of infinitely differentiable H-valued functions of compact support contained in
(c, d ).

Theorem 3.4. Assume Hypothesis 3.2 and let f, g ∈ C∞
0 ((x0,∞);H),

F ∈ C(R), and λ1, λ2 ∈ R, λ1 < λ2. Then,(
f,F (H+,α)EH+,α((λ1, λ2])g

)
L2((x0,∞);dx;H)

=
(
f̂+,α,MFMχ(λ1,λ2] ĝ+,α

)
L2(R;dρ+,α( · ,x0);H),

(3.28)
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where we introduced the notation

(3.29) û+,α(λ) =
∫ ∞

x0

dxφα(λ, x, x0)
∗u(x), λ ∈ R, u ∈ C∞

0 ((x0,∞);H),

and MG denotes the maximally defined operator of multiplication by the function

G ∈ C(R) in the Hilbert space L2(R; dρ+,α;H),(
MGû

)
(λ) = G(λ)û(λ) for ρ+,α-a.e. λ ∈ R,

û ∈ dom(MG) =
{
v̂ ∈ L2(R; dρ+,α( · , x0);H)∣∣Gv̂ ∈ L2(R; dρ+,α( · , x0);H)

}
.

(3.30)

Here ρ+,α( · , x0) generates the operator-valued measure in the Nevanlinna–
Herglotz representation of the B(H)-valued Weyl–Titchmarsh function

m+,α( · , x0) ∈ B(H) (cf. (3.17)).

For a discussion of the model Hilbert space L2(R; d;K) for operator-valued
measures we refer to [47], [51] and [52, App. B].

In the context of operator-valued potential coefficients of half-line Schrödinger
operators we also refer to M. L. Gorbachuk [54], Saitō [99], and Trooshin [101].

The proof of Theorem 3.4 in [52] relies on a version of Stone’s formula in the
weak sense (cf., e.g., [46, pp. 1203]):

Lemma 3.5. Let T be a self-adjoint operator in a complex separable Hilbert

space H (with scalar product denoted by ( · , · )H, linear in the second factor)
and denote by {ET (λ)}λ∈R the family of self-adjoint right-continuous spectral pro-

jections associated with T , that is, ET (λ) = χ(−∞,λ](T ), λ ∈ R. Moreover, let
f, g ∈ H, λ1, λ2 ∈ R, λ1 < λ2, and F ∈ C(R). Then,

( f,F (T )ET ((λ1, λ2])g)H

= lim
δ↓0

lim
ε↓0

1
2πi

∫ λ2+δ

λ1+δ
dλF (λ)

[(
f, (T − (λ + iε)IH)−1g

)
H

− (
f, (T − (λ− iε)IH)−1g

)
H

]
.(3.31)

One can remove the compact support restrictions on f and g in Theorem 3.4 in
the usual way by introducing the map

(3.32) Ũ+,α :

⎧⎨⎩C∞
0 ((x0,∞);H) → L2(R; dρ+,α( · , x0);H)

u �→ û+,α(·) =
∫ ∞
x0

dxφα( · , x, x0)∗u(x).

Taking f = g, F = 1, λ1 ↓ −∞, and λ2 ↑ ∞ in (3.28) then shows that Ũ+,α is a
densely defined isometry in L2((x0,∞); dx;H), which extends by continuity to an
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isometry on L2((x0,∞); dx;H). The latter is denoted by U+,α and given by

(3.33) U+,α :

⎧⎨⎩L2((x0,∞); dx;H) → L2(R; dρ+,α( · , x0);H)

u �→ û+,α(·) = s-limb↑∞
∫ b
x0

dxφα( · , x, x0)∗u(x),

where s-lim refers to the L2(R; dρ+,α( · , x0);H)-limit. In addition, one can show
that the map U+,α in (3.33) is onto and hence that U+,α is unitary (i.e., U+,α and
U−1

+,α are isometric isomorphisms between the Hilbert spaces L2((x0,∞); dx;H)
and L2(R; dρ+,α( · , x0);H)) with

(3.34) U−1
+,α :

⎧⎨⎩L2(R; dρ+,α;H) → L2((x0,∞); dx;H)

û �→ s-limμ1↓−∞,μ2↑∞
∫ μ2

μ1
φα(λ, · , x0) dρ+,α(λ, x0) û(λ).

Here s-lim refers to the L2((x0,∞); dx;H)-limit.

We recall that the essential range of F with respect to a scalar measure μ is
defined by

(3.35) ess.ranμ(F ) = {z ∈ C | for all ε > 0,μ({λ ∈ R | |F (λ) − z| < ε}) > 0},

and that ess.ranρ+,α(F ) for F ∈ C(R) is then defined to be ess.ranν+,α(F ) for any
control measure dν+,α of the operator-valued measure dρ+,α. Given a complete
orthonormal system {en}n∈I in H (I ⊆ N an appropriate index set), a convenient
control measure for dρ+,α is given by

(3.36) μ+,α(B) =
∑
n∈I

2−n(en, ρ+,α(B, x0)en)H, B ∈ B(R).

These considerations lead to a variant of the spectral theorem for H+,α:

Theorem 3.6. Assume Hypothesis 3.2 and suppose F ∈ C(R). Then,

(3.37) U+,αF (H+,α)U
−1
+,α = MFIH

in L2(R; dρ+,α( · , x0);H) (cf. (3.30)). Moreover,

σ(F (H+,α)) = ess.ranρ+,α(F ),(3.38)

σ(H+,α) = supp(dρ+,α( · , x0)),(3.39)

and the multiplicity of the spectrum of H+,α is at most equal to dim(H).
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4 Weyl–Titchmarsh and spectral theory of Schrödinger
operators with operator-valued potentials on the real
line

In this section we briefly recall the basic spectral theory for full-line Schrödinger
operators H in L2(R; dx;H), employing a 2 × 2 block operator representation
of the associated Weyl–Titchmarsh matrix and its B

(
H2

)
-valued spectral mea-

sure, decomposing R into a left and right half-line with reference point x0 ∈ R,
(−∞, x0] ∪ [x0,∞).

We make the following basic assumption throughout this section.

Hypothesis 4.1. (i) Assume that

(4.1) V ∈ L1
loc(R; dx;H), V (x) = V (x)∗ for a.e. x ∈ R

(ii) Introducing the differential expression τ given by

(4.2) τ = − d2

dx2 IH + V (x), x ∈ R,

we assume τ to be in the limit-point case at +∞ and at −∞.

Associated with the differential expression τ one introduces the self-adjoint
Schrödinger operator H in L2(R; dx;H) by

Hf = τ f,
(4.3)

f ∈ dom(H ) =
{
g ∈ L2(R; dx;H)

∣∣ g, g′ ∈ W 2,1
loc (R; dx;H); τg ∈ L2(R; dx;H)

}
.

As in the half-line context we introduce the B(H)-valued fundamental system
of solutions φα(z, · , x0) and θα(z, · , x0), z ∈ C, of

(4.4) (τψ)(z, x) = zψ(z, x), x ∈ R,

with respect to a fixed reference point x0 ∈ R, satisfying the initial conditions at
the point x = x0,

φα(z, x0, x0) = −θ ′
α(z, x0, x0) = − sin(α),

φ′
α(z, x0, x0) = θα(z, x0, x0) = cos(α), α = α∗ ∈ B(H).

(4.5)

Again we note that by Corollary 2.4 (iii), for any fixed x, x0 ∈ R, the functions
θα(z, x, x0), φα(z, x, x0), θα(z, x, x0)∗, and φα(z, x, x0)∗ as well as their strong x-
derivatives are entire with respect to z in the B(H)-norm. Moreover, by (2.16),

(4.6) W (θα(z, · , x0)
∗, φα(z, · , x0))(x) = IH, z ∈ C.
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Particularly important solutions of (4.4) are the Weyl–Titchmarsh solutions

ψ±,α(z, · , x0), z ∈ C\R, uniquely characterized by

ψ±,α(z, · , x0)h ∈ L2((x0,±∞); dx;H), h ∈ H,

sin(α)ψ′
±,α(z, x0, x0) + cos(α)ψ±,α(z, x0, x0) = IH, z ∈ C\σ(H±,α).

(4.7)

The crucial condition in (4.7) is again the L2-property which uniquely determines
ψ±,α(z, · , x0) up to constant multiples by the limit-point hypothesis of τ at ±∞.
In particular, for α = α∗, β = β∗ ∈ B(H),

ψ±,α(z, · , x0) = ψ±,β(z, · , x0)C±(z, α, β, x0)(4.8)

for some coefficients C±(z, α, β, x0) ∈ B(H). The normalization in (4.7) shows
that ψ±,α(z, · , x0) are of the type

(4.9) ψ±,α(z, x, x0) = θα(z, x, x0) + φα(z, x, x0)m±,α(z, x0),

z ∈ C\σ(H±,α), x ∈ R, for some coefficients m±,α(z, x0) ∈ B(H), the Weyl–
Titchmarsh m-functions associated with τ, α, and x0. In addition, we note that
(with z, z1, z2 ∈ C\σ(H±,α))

(4.10) W (ψ±,α(z1, x0, x0)
∗, ψ±,α(z2, x0, x0)) = m±,α(z2, x0) − m±,α(z1, x0),

(4.11)
d
dx

W (ψ±,α(z1, x, x0)
∗, ψ±,α(z2, x, x0))

= (z1 − z2)ψ±,α(z1, x, x0)
∗ψ±,α(z2, x, x0),

(4.12) (z2 − z1)
∫ ±∞

x0

dxψ±,α(z1, x, x0)
∗ψ±,α(z2, x, x0)

= m±,α(z2, x0) − m±,α(z1, x0),

(4.13) m±,α(z, x0) = m±,α(z, x0)
∗,

(4.14) Im[m±,α(z, x0)] = Im(z)
∫ ±∞

x0

dxψ±,α(z, x, x0)
∗ψ±,α(z, x, x0).

In particular, ±m±,α( · , x0) are operator-valued Nevanlinna–Herglotz functions.
In the following we abbreviate the Wronskian ofψ+,α(z, x, x0)∗ andψ−,α(z, x, x0)

by W (z) (thus, W (z) = m−,α(z, x0) − m+,α(z, x0), z ∈ C\σ(H )). The Green’s func-
tion G(z, x, x′) of the Schrödinger operator H then reads

G(z, x, x′) = ψ∓,α(z, x, x0)W (z)−1ψ±,α(z, x′, x0)
∗, x � x′, z ∈ C\σ(H ).(4.15)
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Thus,

((H − zIL2(R;dx;H))
−1 f )(x) =

∫
R

dx′ G(z, x, x′) f (x′), z ∈ C\σ(H ),

x ∈ R, f ∈ L2(R; dx;H).
(4.16)

Next, we introduce the 2×2 block operator-valuedWeyl–Titchmarsh m-function,
Mα(z, x0) ∈ B

(
H2

)
,

Mα(z, x0) =
(
Mα, j, j ′(z, x0)

)
j, j ′ =0,1, z ∈ C\σ(H ),(4.17)

Mα,0,0(z, x0) = W (z)−1,(4.18)

Mα,0,1(z, x0) = 2−1W (z)−1[m−,α(z, x0) + m+,α(z, x0)
]
,(4.19)

Mα,1,0(z, x0) = 2−1[m−,α(z, x0) + m+,α(z, x0)
]
W (z)−1,(4.20)

Mα,1,1(z, x0) = m+,α(z, x0)W (z)−1m−,α(z, x0)

= m−,α(z, x0)W (z)−1m+,α(z, x0).(4.21)

Mα(z, x0) is a B
(
H2

)
-valued Nevanlinna–Herglotz function with representation

(4.22) Mα(z, x0) = Cα(x0) +
∫
R

d�α(λ, x0)
[

1
λ− z

− λ

λ2 + 1

]
, z ∈ C\σ(H ),

where

(4.23) Cα(x0) = Re(Mα(i, x0)) ∈ B
(
H2),

and d�α( · , x0) is a B
(
H2

)
-valued measure satisfying

(4.24)
∫
R

(
e, d�α(λ, x0)e

)
H2 (λ2 + 1)−1 <∞, e ∈ H2.

In addition, the Stieltjes inversion formula for the nonnegativeB
(
H2

)
-valued mea-

sure d�α( · , x0) reads
(4.25)

�α((λ1, λ2], x0) =
1
π

lim
δ↓0

lim
ε↓0

∫ λ2+δ

λ1+δ
dλ Im(Mα(λ + iε, x0)), λ1, λ2 ∈ R, λ1 < λ2.

In particular, d�α( · , x0) is a 2 × 2 block operator-valued measure with B(H)-
valued entries d�α,	,	′( · , x0), 	, 	′ = 0, 1.

Relating the family of spectral projections, {EH (λ)}λ∈R, of the self-adjoint op-
erator H and the 2 × 2 operator-valued increasing spectral function �α(λ, x0),
λ ∈ R, which generates the B

(
H2

)
-valued measure d�α( · , x0) in the Nevanlinna–

Herglotz representation (4.22) of Mα(z, x0), one obtains the following result:
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Theorem 4.2. Let α = α∗ ∈ B(H), f, g ∈ C∞
0 (R;H), F ∈ C(R), x0 ∈ R, and

λ1, λ2 ∈ R, λ1 < λ2. Then,

(4.26)
(
f,F (H )EH ((λ1, λ2])g

)
L2(R;dx;H)

=
(
f̂α( · , x0),MFMχ(λ1,λ2] ĝα( · , x0)

)
L2(R;d�α( · ,x0);H2)

where we introduced the notation

ûα,0(λ, x0) =
∫
R

dx θα(λ, x, x0)
∗u(x),

ûα,1(λ, x0) =
∫
R

dxφα(λ, x, x0)
∗u(x),

ûα(λ, x0) =
(
ûα,0(λ, x0), ûα,1(λ, x0)

)�
, λ ∈ R, u ∈ C∞

0 (R;H),

(4.27)

and MG denotes the maximally defined operator of multiplication by the function

G ∈ C(R) in the Hilbert space L2
(
R; d�α( · , x0);H2

)
,

(
MGû

)
(λ) = G(λ)û(λ) =

(
G(λ)û0(λ),G(λ)û1(λ)

)�
for �α( · , x0)-a.e. λ ∈ R,

û ∈ dom(MG) =
{
v̂ ∈ L2(R; d�α( · , x0);H

2) ∣∣Gv̂ ∈ L2(R; d�α
( · , x0);H

2)}.
(4.28)

As in the half-line case, one can remove the compact support restrictions on f

and g in the usual way by considering the map

Ũα(x0) :

⎧⎨⎩C∞
0 (R) → L2

(
R; d�α( · , x0);H2

)
u �→ ûα( · , x0) =

(
ûα,0(λ, x0), ûα,1(λ, x0)

)�
,

ûα,0(λ, x0) =
∫
R

dx θα(λ, x, x0)
∗u(x),

ûα,1(λ, x0) =
∫
R

dxφα(λ, x, x0)
∗u(x).

(4.29)

Taking f = g, F = 1, λ1 ↓ −∞, and λ2 ↑ ∞ in (4.26) then shows that Ũα(x0)
is a densely defined isometry in L2(R; dx;H), which extends by continuity to an
isometry on L2(R; dx;H). The latter is denoted by Uα(x0) and given by

Uα(x0) :

⎧⎨⎩L2(R; dx;H) → L2
(
R; d�α( · , x0);H2

)
u �→ ûα( · , x0) =

(
ûα,0( · , x0), ûα,1( · , x0)

)�
,

(4.30)

ûα( · , x0) =

(
ûα,0( · , x0)
ûα,1( · , x0)

)
= s-lim

a↓−∞,b↑∞

(∫ b
a dx θα( · , x, x0)∗u(x)∫ b
a dxφα( · , x, x0)∗u(x)

)
,

where s-lim refers to the L2
(
R; d�α( · , x0);H2

)
-limit.
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In addition, one can show that the map Uα(x0) in (4.30) is onto and hence that
Uα(x0) is unitary with

Uα(x0)
−1 :

⎧⎨⎩L2
(
R; d�α( · , x0);H2

) → L2(R; dx;H)

û �→ uα,
(4.31)

uα(·) = s-lim
μ1↓−∞,μ2↑∞

∫ μ2

μ1

(θα(λ, · , x0), φα(λ, · , x0)) d�α(λ, x0) û(λ).

Here s-lim refers to the L2(R; dx;H)-limit.
Again, these considerations lead to a variant of the spectral theorem for H :

Theorem 4.3. Let F ∈ C(R) and x0 ∈ R. Then,

(4.32) Uα(x0)F (H )Uα(x0)
−1 = MF

in L2
(
R; d�α( · , x0);H2

)
(cf. (4.28)). Moreover,

σ(F (H )) = ess.ran�α(F ),(4.33)

σ(H ) = supp(d�α( · , x0)),(4.34)

and the multiplicity of the spectrum of H is at most equal to 2 dim(H).

5 Some facts on deficiency subspaces and abstract
Donoghue-type m-functions

Throughout this preparatory section we make the following assumptions.

Hypothesis 5.1. LetK be a separable, complex Hilbert space, and Ȧ a densely
defined, closed, symmetric operator in K, with equal deficiency indices (k, k),
k ∈ N ∪ {∞}.

Self-adjoint extensions of Ȧ in K will be denoted by A (or by Aα, with α an
appropriate operator parameter ).

Given Hypothesis 5.1, we will study properties of deficiency spaces of Ȧ, and
introduce operator-valuedDonoghue-typem-functions corresponding to A, closely
following the treatment in [47]. These results will be applied to Schrödinger oper-
ators in the following section.

In the special case k = 1, detailed investigation of this type were undertaken
by Donoghue [45]. The case k ∈ N was discussed in depth in [49] (we also refer
to [59] for another comprehensive treatment of this subject). Here we treat the
general situation k ∈ N ∪ {∞}, utilizing results in [47], [48].
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The deficiency subspaces Nz0 of Ȧ, z0 ∈ C\R, are given by

(5.1) Nz0 = ker
(
(Ȧ)

∗ − z0IK
)
, dim (Nz0 ) = k,

and for any self-adjoint extension A of Ȧ in K, one has (see also [66, pp. 80–81])

(5.2) (A − z0IK)(A − zIK)−1Nz0 = Nz, z, z0 ∈ C\R.

We also note the following result on deficiency spaces.

Lemma 5.2. Assume Hypothesis 5.1. Suppose z0 ∈ C\R, h ∈ K, and that A
is a self-adjoint extension of Ȧ. Assume that

(5.3) for all z ∈ C\R, h ⊥ {
(A − zIK)−1 ker

(
(Ȧ)

∗ − z0IK
)}
.

Then,

(5.4) for all z ∈ C\R, h ⊥ ker
(
(Ȧ)

∗ − zIK
)
.

Proof. Let fz0 ∈ ker
(
(Ȧ)

∗ − z0IK
)
, then s-limz→i∞(−z)(A − zIK)−1 fz0 = fz0

and hence h ⊥ fz0 , that is, h ⊥ ker
(
(Ȧ)

∗ − z0IK
)
. The latter fact together with (5.3)

imply (5.4) due to (5.2). �
Next, given a self-adjoint extension A of Ȧ in K and a closed, linear subspace

N of K, N ⊆ K, the Donoghue-type m-operator MDo
A,N(z) ∈ B(N) associated with

the pair (A,N) is defined by

MDo
A,N(z) = PN(zA + IK)(A − zIK)−1PN

∣∣
N

= zIN + (z2 + 1)PN(A − zIK)−1PN

∣∣
N
, z ∈ C\R,(5.5)

with IN the identity operator in N and PN the orthogonal projection in K onto
N. In our principal Section 6, we will exclusively focus on the particular case
N = Ni = dim

(
(Ȧ)

∗ − iIK
)
.

We turn to the Nevanlinna–Herglotz property of MDo
A,N(·) next:

Theorem 5.3. Assume Hypothesis 5.1. Let A be a self-adjoint extension of

Ȧ with associated orthogonal family of spectral projections {EA(λ)}λ∈R, and N a
closed subspace of K. Then the Donoghue-type m-operator MDo

A,N(z) is analytic

for z ∈ C\R and

[Im(z)]−1 Im
(
MDo

A,N(z)
) ≥ 2

[(|z|2 + 1
)
+
[(|z|2 − 1

)2 + 4(Re(z))2
]1/2]−1

IN,

z ∈ C\R.(5.6)
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In particular,

(5.7)
[
Im

(
MDo

A,N(z)
)]−1 ∈ B(N), z ∈ C\R,

and MDo
A,N(·) is a B(N)-valued Nevanlinna–Herglotz function that admits the fol-

lowing representation valid in the strong operator topology of N,

(5.8) MDo
A,N(z) =

∫
R

d�Do
A,N(λ)

[
1

λ− z
− λ

λ2 + 1

]
, z ∈ C\R,

where (see also (A.9)–(A.11))

�Do
A,N(λ) = (λ2 + 1)(PNEA(λ)PN

∣∣
N

),(5.9) ∫
R

d�Do
A,N(λ) (1 + λ2)−1 = IN,(5.10) ∫

R

d (ξ,�Do
A,N(λ)ξ )N = ∞ for all ξ ∈ N\{0}.(5.11)

We just note that inequality (5.6) follows from

[Im(z)]−1 Im(MDo
A,N(z)) = PN(IK + A2)1/2

(
(A − Re(z)IK)2 + (Im(z))2IK

)−1

× (IK + A2)1/2PN

∣∣
N
, z ∈ C\R,(5.12)

the spectral theorem applied to

(IK + A2)1/2
(
(A − Re(z)IK)2 + (Im(z))2IK

)−1(IK + A2)1/2,

together with

inf
λ∈R

(
λ2 + 1

(λ− Re(z))2 + (Im(z))2

)
= inf
λ∈R

(∣∣∣∣λ− i
λ− z

∣∣∣∣2)
=

2(|z|2 + 1
)
+
[(|z|2 − 1

)2 + 4(Re(z))2
]1/2 , z ∈ C\R.(5.13)

Since [(|z|2 + 1
)
+
[(|z|2 − 1

)2 + 4(Re(z))2
]1/2]/2

≤
[(|z|2 + 1

)
+
(|z|2 − 1

)
+ 2|Re(z)|

]/
2

= max(1, |z|2) + |Re(z)|, z ∈ C\R,(5.14)

the lower bound (5.6) improves the one for [Im(z)]−1 Im
(
MDo

A,N(z)
)

recorded in
[47] and [48] if Re(z) �= 01.

1We note that [47] and [48] contain a typographical error in this context in the sense that Im(z) must
be replaced by [Im(z)]−1 in (4.16) of [47] and (40) of [48].
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Operators of the type MDo
A,N(·) and some of its variants have attracted consider-

able attention in the literature. They appear to go back to Krein [65] (see also [67]),
Saakjan [98], and independently, Donoghue [45]. There appears to have been no
connection between Donoghue and M. Krein’s school in this context. The inter-
ested reader can find a variety of additional results, for instance, in [7], [9], [13],
[14]–[16], [24]–[29], [35]–[41], [47]–[49], [60], [68], [69], [70], [72], [73], [76],
[77], [78], [81], [90], [93], [94], [97], and the references therein. We also add that
a model operator approach for the pair (Ȧ,A) on the basis of the operator-valued
measure�A,Ni has been developed in detail in [47].

In addition, we mention the following well-known fact (cf., e.g., [47, Lem-
ma 4.5], [66, pp. 80–81]):

Lemma 5.4. Assume Hypothesis 5.1. Then K decomposes into the direct
orthogonal sum

K = K0 ⊕ K⊥
0 , ker

(
(Ȧ)

∗ − zIK
) ⊂ K0, z ∈ C\R,(5.15)

K⊥
0 =

⋂
z∈C\R

ker
(
(Ȧ)

∗ − zIK
)⊥ =

⋂
z∈C\R

ran
(
Ȧ − zIK

)
,(5.16)

where K0 and K⊥
0 are invariant subspaces for all self-adjoint extensions A of Ȧ in

K, that is,

(5.17) (A − zIK)−1K0 ⊆ K0, (A − zIK)−1K⊥
0 ⊆ K⊥

0 , z ∈ C\R.
In addition,

(5.18) K0 = lin. span{(A − zIH)−1u+ | u+ ∈ Ni , z ∈ C\R}.
Moreover, all self-adjoint extensions of Ȧ coincide on K⊥

0 , that is, if Aα denotes an

arbitrary self-adjoint extension of Ȧ, then

(5.19) Aα = A0,α ⊕ A⊥
0 in K = K0 ⊕ K⊥

0 ,

where

(5.20) A⊥
0 is independent of the chosen Aα,

and A0,α (resp., A⊥
0 ) is self-adjoint in K0 (resp., K⊥

0 ).

In this context we note that a densely defined closed symmetric operator Ȧ
with deficiency indices (k, k), k ∈ N ∪ {∞} is called completely non-self-adjoint

(equivalently, simple or prime) in K if K⊥
0 = {0} in the decomposition (5.15) (cf.

[66, pp. 80–81]).
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Remark 5.5. In addition to Hypothesis 5.1 assume that Ȧ is not completely
non-self-adjoint in K. Then in addition to (5.15), (5.19), and (5.20) one obtains

(5.21) Ȧ = Ȧ0 ⊕ A⊥
0 , Ni = N0,i ⊕ {0}

with respect to the decomposition K = K0 ⊕K⊥
0 . In particular, the part A⊥

0 of Ȧ in
K⊥

0 is self-adjoint. Thus, if A = A0 ⊕ A⊥
0 is a self-adjoint extension of Ȧ in K, then

(5.22) MDo
A,Ni

(z) = MDo
A0,N0,i

(z), z ∈ C\R.

This reduces the A-dependent spectral properties of the Donoghue-type operator
MDo

A,Ni
(·) effectively to those of A0. A different manner in which to express this

fact would be to note that the subspace K⊥
0 is “not detectable” by MDo

A,Ni
(·) (we

refer to [27]) for a systematic investigation of this circle of ideas, particularly, in
the context of non-self-adjoint operators).

We are particularly interested in the question under which conditions on Ȧ, the
spectral information for A contained in its family of spectral projections {EA(λ)}λ∈R
is already encoded in the B(Ni)-valued measure �Do

A,Ni
(·). In this connection we

now mention the following result, denoting by Cb(R) the space of scalar-valued
bounded continuous functions on R:

Theorem 5.6. Let A be a self-adjoint operator on a separable Hilbert space

K and {EA(λ)}λ∈R the family of spectral projections associated with A. Suppose
that N ⊂ K is a closed linear subspace such that

lin. span{g(A)v | g ∈ Cb(R), v ∈ N} = K.(5.23)

Let PN be the orthogonal projection in K onto N. Then A is unitarily equiva-
lent to the operator of multiplication by the independent variable λ in the space

L2(R; dA(λ);N). Here the operator-valued measure dA(·) is given in terms of

the Lebesgue–Stieltjes measure defined by the nondecreasing uniformly bounded
family A(·) = PNEA(·)PN

∣∣
N

.

Proof. It suffices to construct a unitary transformation

U : K → L2(R; dA(λ);N)

that satisfies UAu = λUu for all u ∈ K. First, define U on the set of vectors
S = {g(A)v | g ∈ Cb(R), v ∈ N} ⊂ K by

U[g(A)v] = g(λ)v, g ∈ Cb(R), v ∈ N,(5.24)
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and then extend U by linearity to the span of these vectors, which by assumption
is a dense subset of K. Applying the above definition to the function λg(λ) yields
UAu = λUu for all u in S and hence by linearity also for all u in the dense subset
lin. span(S). In addition, the following simple computation utilizing the spectral
theorem for the self-adjoint operator A shows that U is an isometry on S and hence
by linearity also on lin. span(S),(

f (A)u, g(A)v
)
K

=
(
u, f (A)∗g(A)v

)
K

=
(
u,PN f (A)∗g(A)PN

∣∣
N
v
)
N

=
∫
R

(
u, f (λ)g(λ)dA(λ)v

)
N

(5.25)

=
(
f (·)u, g(·)v)L2(R;dA(λ);N), f, g ∈ Cb(R), u, v ∈ N.

Thus, U can be extended by continuity to the whole Hilbert space K. Since
the range of U contains the set {g(·)v | g ∈ Cb(R), v ∈ N} which is dense in
L2(R; dA(λ);N) (cf. [52, Appendix B]), it follows that U is a unitary
transformation. �

Remark 5.7. Since {(λ − z)−1 | z ∈ C\R} ⊂ Cb(R), the condition (5.23) in
Theorem 5.6 can be replaced by the following stronger, and frequently encoun-
tered, one,

lin. span{(A − zIK)−1v | z ∈ C\R, v ∈ N} = K.(5.26)

Combining Lemma 5.4, Remark 5.5, Theorem 5.6, and Remark 5.7 then yields
the following fact:

Corollary 5.8. Assume Hypothesis 5.1 and suppose that A is a self-adjoint
extension of Ȧ. Let MDo

A,Ni
(·) be the Donoghue-type m-operator associated with

the pair (A,Ni), with Ni = ker
(
(Ȧ)

∗ − iIK
)
, and denote by �Do

A,Ni
(·) the B(Ni )-

valued measure in the Nevanlinna–Herglotz representation of MDo
A,Ni

(·) (cf. (5.8)).
Then A is unitarily equivalent to the operator of multiplication by the inde-
pendent variable λ in the space L2(R; (λ2 + 1)−1d�Do

A,Ni
(λ);Ni), with

�Do
A,Ni

(λ) = (λ2 + 1)PNi EA(λ)PNi

∣∣
Ni

, λ ∈ R, if and only if Ȧ is completely non-
self-adjoint in K.

Proof. If Ȧ is completely non-self-adjoint in K, then K0 = K, K⊥
0 = {0} in

(5.15), together with (5.18), and (5.26) with N = Ni yields

A(λ) = (λ2 + 1)PNiEA(λ)PNi

∣∣
Ni

= �Do
A,Ni

(λ), λ ∈ R,
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in Theorem 5.6. Conversely, if Ȧ is not completely non-self-adjoint in K, then the
fact (5.22) shows that �Do

A,Ni
(·) cannot describe the nontrivial self-adjoint operator

A⊥
0 in K⊥

0 � {0}. �

In other words, Ȧ is completely non-self-adjoint in K, if and only if the entire
spectral information on A contained in its family of spectral projections EA(·),
is already encoded in the B(Ni )-valued measure �Do

A,Ni
(·) (including multiplicity

properties of the spectrum of A).

6 Donoghue-type m-functions for Schrödinger
operators with operator-valued potentials and their
connections to Weyl–Titchmarsh m-functions

In our principal section we construct Donoghue-type m-functions for half-line and
full-line Schrödinger operators with operator-valued potentials and establish their
precise connection with the Weyl–Titchmarsh m-functions discussed in Sections 3
and 4.

To avoid overly lengthy expressions involving resolvent operators, we now
simplify our notation a bit and use the symbol I to denote the identity operator
in L2((x0,±∞); dx;H) and L2(R; dx;H).

The principal hypothesis for this section will be the following:

Hypothesis 6.1. (i) For half-line Schrödinger operators on [x0,∞) we as-
sume Hypothesis 2.6 with a = x0, b = ∞ and τ = −(d2/dx2)IH + V (x) to be
in the limit-point case at ∞.

(ii) For half-line Schrödinger operators on (−∞, x0] we assume Hypothesis 2.6
with a = −∞, b = x0 and τ = −(d2/dx2)IH + V (x) to be in the limit-point
case at −∞.

(iii) For Schrödinger operators on R we assume Hypothesis 4.1.

6.1 The half-line case. We start with half-line Schrödinger operators H±,min

in L2((x0,±∞); dx;H) and note that for {e j } j∈J a given orthonormal basis in H

(J ⊆ N an appropriate index set), and z ∈ C\R,

(6.1) {ψ±,α(z, · , x0)e j } j∈J
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is a basis in the deficiency subspace

N±,z = ker
(
H ∗

±,min − zI
)
.

In particular, given f ∈ L2((x0,±∞); dx;H), one has

(6.2) f ⊥{ψ±,α(z, · , x0)e j } j∈J,

if and only if

0 = (ψ±,α(z, · , x0)e j , f )L2((x0,±∞);dx;H)

= ±
∫ ±∞

x0

dx (ψ+,α(z, x, x0)e j , f (x))H

= ±
∫ ±∞

x0

dx (e j , ψ±,α(z, x, x0)
∗ f (x))H, j ∈ J,

(6.3)

and since j ∈ J is arbitrary,

f ⊥{ψ±,α(z, · , x0)e j } j∈J if and only if

±
∫ ±∞

x0

dx (h, ψ±,α(z, x, x0)
∗ f (x))H = 0, h ∈ H,

(6.4)

a fact to be exploited below in (6.5).

Next, we prove the following generating property of deficiency spaces of H±,min:

Theorem 6.2. Assume Hypothesis 6.1 (i), respectively, (ii), and suppose that

f ∈ L2((x0,±∞); dx;H) satisfies for all z ∈ C\R, f ⊥ ker
(
H ∗±,min − zI

)
. Then

f = 0. Equivalently, H±,min are completely non-self-adjoint in L2((x0,±∞); dx;H).

Proof. We focus on the right-half line [x0,∞) and recall the B(H)-valued
Green’s function G+,α(z, · , · ) in (3.16) of a self-adjoint extension H+,α of H+,min.

Choosing a test vector η ∈ C∞
0 ((x0,∞);H), λ j ∈ R, j = 1, 2, λ1 < λ2, one

computes with the help of Stone’s formula (cf. Lemma 3.5),
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(η,EH+,α((λ1, λ2])) f )L2((x0,∞);dx;H)

= lim
δ↓0

lim
ε↓0

1
2πi

∫ λ2+δ

λ1+δ
dλ

[
(η, (H+,α − (λ + iε)I )−1 f )L2((x0,∞);dx;H)

− (η, (H+,α − (λ− iε)I )−1 f )L2((x0,∞);dx;H)

]
= lim
δ↓0

lim
ε↓0

1
2πi

∫ λ2+δ

λ1+δ
dλ

∫ ∞

x0

dx

×
{[(

η(x), ψ+,α(λ + iε, x, x0)
∫ x

x0

dx′ φα(λ− iε, x′, x0)
∗ f (x′)

)
H

+
∫ ∞

x0

dx′ (φα(λ + iε, x, x0)
∗η(x), ψ+,α(λ− iε, x′, x0)

∗ f (x′))H︸ ︷︷ ︸
=0 by (6.4)

−
(
η(x), φα(λ + iε, x, x0)

∫ x

x0

dx′ψ+,α(λ− iε, x′, x0)
∗ f (x′)

)
H

]
−

[(
η(x), ψ+,α(λ− iε, x, x0)

∫ x

x0

dx′ φα(λ + iε, x′, x0)
∗ f (x′)

)
H

+
∫ ∞

x0

dx′ (φα(λ− iε, x, x0)
∗η(x), ψ+,α(λ + iε, x′, x0)

∗ f (x′))H︸ ︷︷ ︸
=0 by (6.4)

−
(
η(x), φα(λ− iε, x, x0)

∫ x

x0

dx′ψ+,α(λ + iε, x′, x0)
∗ f (x′)

)
H

]}
.

(6.5)

Here we twice employed the orthogonality condition (6.4) in the terms with un-
derbraces.

Thus, one finally concludes,

(η,EH+,α((λ1, λ2])) f )L2((x0,∞);dx;H) = lim
δ↓0

lim
ε↓0

1
2πi

∫ λ2+δ

λ1+δ
dλ

∫ ∞

x0

dx
∫ x

x0

dx′

× [
(η(x), [θα(λ + iε, x, x0)φα(λ− iε, x′, x0)

∗

− φα(λ + iε, x, x0)θα(λ− iε, x, x0)
∗] f (x′))H

− (η(x), [θα(λ− iε, x, x0)φα(λ + iε, x′, x0)
∗(6.6)

− φα(λ− iε, x, x0)θα(λ + iε, x, x0)
∗] f (x′))H

]
= 0.

Here we used the fact that η has compact support, rendering all x-integrals over
the bounded set supp (η). In addition, we employed the property that for fixed
x ∈ [x0,∞), φα(z, x, x0) and θα(z, x, x0) are entire with respect to z ∈ C, permitting
freely the interchange of the ε limit with all integrals and implying the vanishing
of the limit ε ↓ 0 in the last step in (6.6).
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Since η ∈ C∞
0 ((x0,∞);H) and λ1, λ2 ∈ R were arbitrary, (6.6) proves f = 0.

The fact that H±,min are completely non-self-adjoint in L2((x0,±∞); dx;H)
now follows from (5.16). �

We note that Theorem 6.2 in the context of regular (and quasi-regular) half-line
differential operators with scalar coefficients has been established by Gilbert [53,
Theorem 3]. The corresponding result for 2n × 2n Hamltonian systems, n ∈ N,
was established in [42, Proposition 7.4], and the case of indefinite Sturm–Liouville
operators in the associated Krein space has been treated in [17, Proposition 4.8].
While these proofs exhibit certain similarities with that of Theorem 6.2, it ap-
pears that our approach in the case of a regular half-line Schrödinger operator
with B(H)-valued potential is a canonical one.

For future purpose we recall formulas (4.10)–(4.14), and now add some addi-
tional results:

Lemma 6.3. Assume Hypothesis 6.1 (i), respectively, (ii), and let z ∈ C\R.
Then, for all h ∈ H, and ρ+,α( · , x0)-a.e. λ ∈ σ(H±,α),

± s-lim
R→∞

∫ ±R

x0

dxφα(λ, x, x0)
∗ψ±,α(z, x, x0)h = ±(λ− z)−1h,(6.7)

± s-lim
R→∞

∫ ±R

x0

dx θα(λ, x, x0)
∗ψ±,α(z, x, x0)h = ∓(λ− z)−1m±,α(z, x0)h,(6.8)

where s-lim refers to the L2(R; dρ+,α( · , x0);H)-limit.

Proof. Without loss of generality, we consider the case of H+,α only. Let
u ∈ C∞

0 ((x0,∞);H) ⊂ L2((x0,∞); dx;H) and v = (H+,α − zI )−1u, then by Theo-
rem 3.4, (3.33), and (3.34),

u = (H+,α − zI )v = s-lim
μ2↑∞,μ1↓−∞

∫ μ2

μ1

φα(λ, · , x0) dρ+,α(λ, x0) û+,α(λ)

= s-lim
μ2↑∞,μ1↓−∞

∫ μ2

μ1

(λ− z)φα(λ, · , x0) dρ+,α (λ, x0)v̂+,α(λ),(6.9)

that is,

(6.10) v̂+,α(λ) = (λ− z)−1û+,α(λ) for ρ+,α( · , x0)-a.e. λ ∈ σ(H+,α).

Hence,

v = (H+,α − zI )−1u

= s-lim
μ2↑∞,μ1↓−∞

∫ μ2

μ1

φα(λ, · , x0) dρ+,α (λ, x0)û+,α(λ)(λ− z)−1

=
∫ ∞

x0

dx′ G+,α(z, · , x′)u(x′).(6.11)
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Thus one computes, given unitarity of U+,α (cf. (3.33), (3.34)),

(
h,

(
(H+,α−zI )−1u

)
(x)

)
H

=
∫ ∞

x0

dx′ (h,G+,α(z, x, x
′)u(x′))H

=
∫ ∞

x0

dx′ (G+,α(z, x, x
′)∗h, u(x′))H

= s-lim
μ2↑∞,μ1↓−∞

∫ μ2

μ1

(
̂(G+,α(z, x, · )∗h)(λ), dρ+,α(λ, x0) û+,α(λ)

)
H

= s-lim
μ2↑∞,μ1↓−∞

∫ μ2

μ1

(
h, φα(λ, x, x0) dρ+,α(λ, x0) û+,α(λ)

)
H

(λ− z)−1

= s-lim
μ2↑∞,μ1↓−∞

∫ μ2

μ1

(
(λ− z)−1φα(λ, x, x0)

∗h, dρ+,α(λ, x0) û+,α(λ)
)
H
.

(6.12)

Since u ∈ C∞
0 ((x0,∞);H) was arbitrary, one concludes that(

̂G+,α(z, x, · )∗h
)
(λ) = (λ− z)−1φα(λ, x, x0)

∗h, h ∈ H, z ∈ C\R,
for ρ+,α( · , x0)-a.e. λ ∈ σ(H+,α).

(6.13)

In precisely the same manner one derives,(
∂x ̂G+,α(z, x, · )∗h

)
(λ) = (λ− z)−1φ′

α(λ, x, x0)
∗h, h ∈ H, z ∈ C\R,

for ρ+,α( · , x0)-a.e. λ ∈ σ(H+,α).
(6.14)

Taking x ↓ x0 in (6.13) and (6.14), observing that

G+,α(z, x0, x
′) = sin(α)ψ+,α(z, x

′, x0),

[∂xG+,α(z, x, x
′)]

∣∣
x=x0

= cos(α)ψ+,α(z, x
′, x0),

(6.15)

and choosing h = sin(α)g in (6.13) and h = cos(α)g in (6.14), g ∈ H, then yields

̂(
ψ+,α(z, · , x0)[sin(α)]2g

)
(λ) = (λ− z)−1[sin(α)]2g,(6.16)

̂(
ψ+,α(z, · , x0)[cos(α)]2g

)
(λ) = (λ− z)−1[cos(α)]2g,(6.17)

g ∈ H, z ∈ C\R, for ρ+,α( · , x0)-a.e. λ ∈ σ(H+,α).

Adding equations (6.16) and (6.17) yields relation (6.7).
Finally, changing α into α− (π/2)IH, and noticing

φα−(π/2)IH (z, · , x0) = θα(z, · , x0), θα−(π/2)IH (z, · , x0) = −φα(z, · , x0),(6.18)

m+,α−(π/2)IH (z, x0) = −[m+,α(z, x0)]
−1,(6.19)

ψ+,α−(π/2)IH (z, · , x0) = −ψ+,α(z, · , x0)[m+,α(z, x0)]
−1,(6.20)
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yields

(6.21)
∫ ∞

x0

dx θα(λ, x, x0)
∗ψ±,α(z, x, x0)h̃ = ∓(λ− z)−1m±,α(z, x0)h̃,

with h̃ = −[m+,α(z, x0)]−1h, and hence (6.8) since h ∈ H was arbitrary. �
By Theorem 3.3

(6.22) [Im(m±,α(z, x0))]
−1 ∈ B(H), z ∈ C\R,

therefore, (
ψ±,α(z, · , x0)[±(Im(z))−1 Im(m±,α(z, x0))]

−1/2e j , ψ±,α(z, · , x0)

× [±(Im(z))−1 Im(m±,α(z, x0))]
−1/2ek

)
L2((x0,±∞);dx;H)

=
(
[± Im(m±,α(z, x0))]

−1/2e j , Im(m±,α(z, x0)

× [± Im(m±,α(z, x0))]
−1/2ek

)
H

= (e j , ek)H = δ j,k, j, k ∈ J, z ∈ C\R.(6.23)

Thus, one obtains in addition to (6.1) that

(6.24)
{

±,α, j (z, · , x0) = ψ±,α(z, · , x0)[±(Im(z))−1 Im(m±,α(z, x0))]

−1/2e j
}

j∈J

is an orthonormal basis for N±,z = ker
(
H ∗±,min − zI

)
, z ∈ C\R, and hence (cf. the

definition of PN in Section 5)

(6.25) PN±,i =
∑
j∈J

(

±,α, j (i, · , x0), · )L2((x0,±∞);dx;H)
±,α, j (i, · , x0).

Consequently (cf. (5.5)), one obtains for the half-line Donoghue-type m-functions,

MDo
H±,α,N±,i (z, x0) = ±PN±,i (zH±,α + I )(H±,α − zI )−1PN±,i

∣∣
N±,i ,

=
∫
R

d�Do
H±,α,N±,i (λ, x0)

[
1

λ− z
− λ

λ2 + 1

]
, z ∈ C\R,

(6.26)

where�Do
H±,α,N±,i ( · , x0) satisfies the analogues of (5.9)–(5.11) (resp., (A.9)–(A.11)).

Next, we explicitly compute MDo
H±,α,N±,i ( · , x0).

Theorem 6.4. Assume Hypothesis 6.1 (i), respectively, (ii). Then,

MDo
H±,α,N±,i (z, x0) = ± ∑

j,k∈J

(
e j ,m

Do
±,α(z, x0)ek

)
H

× (
±,α,k(i, · , x0), · )L2((x0,±∞);dx;H)
±,α, j (i, · , x0)
∣∣
N±,i , z ∈ C\R,

(6.27)
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where the B(H)-valued Nevanlinna–Herglotz functions mDo±,α( · , x0) are given by

mDo
±,α(z, x0) = ±[± Im(m±,α(i, x0))]

−1/2[m±,α(z, x0) − Re(m±,α(i, x0))]

× [± Im(m±,α(i, x0))]
−1/2(6.28)

= d±,α ±
∫
R

dωDo
±,α(λ, x0)

[
1

λ− z
− λ

λ2 + 1

]
, z ∈ C\R.(6.29)

Here d±,α = Re(mDo±,α(i, x0)) ∈ B(H), and

(6.30) ωDo
±,α( · , x0) = [± Im(m±,α(i, x0))]

−1/2ρ±,α( · , x0)[± Im(m±,α(i, x0))]
−1/2

satisfy the analogues of (A.10), (A.11).

Proof. We will consider the right half-line [x0,∞). To verify (6.27) it suffices
to insert (6.25) into (6.26) and then apply (3.28), (3.29) to compute,(


+,α, j (i, · , x0), (zH+,α + I )(H+,α − zI )−1
+,α,k(i, · , x0)
)
L2((x0,∞);dx;H)

=
(
ê j,+,α, (z · +IH)(· − zIH)−1êk,+,α

)
L2(R;dρ+,α;H)

=
∫
R

d
(
ê j,+,α, ρ+,α(λ, x0)êk,+,α

)
H

zλ + 1
λ− z

, j, k ∈ J,(6.31)

where

ê j,+,α(λ) =
∫ ∞

x0

dxφα(λ, x, x0)
∗ψ+,α(i, x, x0)[Im(m+,α(i, x0))]

−1/2e j

= (λ− i)−1[Im(m+,α(i, x0))]
−1/2e j , j ∈ J,(6.32)

employing (6.7) (with z = i). Thus,

(6.31) =
∫
R

d
(
[Im(m+,α(i, x0))]

−1/2e j , ρ+,α(λ, x0)[Im(m+,α(i, x0))]
−1/2ek

)
H

× zλ + 1
λ− z

1
λ2 + 1

=
∫
R

d
(
[Im(m+,α(i, x0))]

−1/2e j , ρ+,α(λ, x0)[Im(m+,α(i, x0))]
−1/2ek

)
H

×
[

1
λ− z

− λ

λ2 + 1

]
=

(
[Im(m+,α(i, x0))]

−1/2e j , [m+,α(z, x0) − Re(m+,α(i, x0)]

× [Im(m+,α(i, x0))]
−1/2ek

)
H
,(6.33)

using (3.17), (3.18) in the final step. �
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Remark 6.5. Combining Corollary 5.8 and Theorem 6.2 proves that the en-
tire spectral information for H±,α, contained in the corresponding family of spec-
tral projections {EH±,α(λ)}λ∈R in L2((x0,±∞); dx;H), is already encoded in the
operator-valuedmeasure {�Do

H±,α,N±,i (λ, x0)}λ∈R inN±,i (including multiplicity prop-
erties of the spectrum of H±,α). By the same token, invoking Theorem 6.4 shows
that the entire spectral information for H±,α is already contained in {ωDo±,α(λ, x0)}λ∈R
in H.

6.2 The full-line case. In the remainder of this section we turn to
Schrödinger operators on R, assuming Hypotheis 4.1. Decomposing

(6.34) L2(R; dx;H) = L2((−∞, x0); dx;H) ⊕ L2((x0,∞); dx;H),

and introducing the orthogonal projections P±,x0 of L2(R; dx;H) onto the left/right
subspaces L2((x0,±∞); dx;H), we now define a particular minimal operator Hmin

in L2(R; dx;H) via

Hmin := H−,min ⊕ H+,min, H ∗
min = H ∗

−,min ⊕ H ∗
+,min,(6.35)

Nz = ker
(
H ∗

min − zI
)

= ker
(
H ∗

−,min − zI
) ⊕ ker

(
H ∗

+,min − zI
)

= N−,z ⊕ N+,z, z ∈ C\R.(6.36)

We note that (6.35) is not the standard minimal operator associated with the dif-
ferential expression τ on R. Usually, one introduces

Ĥmin f = τ f,

f ∈ dom
(
Ĥmin

)
=

{
g ∈ L2(R; dx;H)

∣∣ g ∈ W 2,1
loc (R; dx;H);

supp(g) compact; τg ∈ L2(R; dx;H)
}
.(6.37)

However, due to our limit-point assumption at ±∞, Ĥmin is essentially self-adjoint
and hence (cf. (4.3)),

(6.38) Ĥmin = H,

rendering Ĥmin unsuitable as a minimal operator with nonzero deficiency
indices. Consequently, H given by (4.3), as well as the Dirichlet extension,
HD = H−,D ⊕ H+,D, where H±,D = H±,0 (i.e., α = 0 in (3.9), see also our nota-
tional conventions following (3.16)), are particular self-adjoint extensions of Hmin

in (6.35).
Associated with the operator H in L2(R; dx;H) (cf. (4.3)) we now introduce its

2 × 2 block operator representation via

(6.39) (H − zI )−1 =

(
P−,x0 (H − zI )−1P−,x0 P−,x0 (H − zI )−1P+,x0

P+,x0 (H − zI )−1P−,x0 P+,x0 (H − zI )−1P+,x0

)
.
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Hence (cf. (6.24)),

{

̂−,α, j (z, · , x0) = P−,x0ψ−,α(z, · , x0)[−(Im(z))−1 Im(m−,α(z, x0))]

−1/2e j ,


̂+,α, j (z, · , x0) = P+,x0ψ+,α(z, · , x0)[(Im(z))−1 Im(m+,α(z, x0))]
−1/2e j

}
j∈J

(6.40)

is an orthonormal basis for Nz = ker
(
H ∗

min − zI
)
, z ∈ C\R, if {e j } j∈J is an or-

thonormal basis for H, and (cf. (6.25))

PNi = PN−,i ⊕ PN+,i

=
∑
j∈J

[(
ψ−,α(i, · , x0)[− Im(m−,α(i, x0))]

−1/2e j , · )L2((−∞,x0);dx;H)

×ψ−,α(i, · , x0)[− Im(m−,α(i, x0))]
−1/2e j(6.41)

⊕ (
ψ+,α(i, · , x0)[Im(m+,α(i, x0))]

−1/2e j , · )L2((x0,∞);dx;H)

×ψ+,α(i, · , x0)[Im(m+,α(i, x0))]
−1/2e j

]
,

=
∑
j∈J

[(

̂−,α, j (i, · , x0), · )L2((−∞,x0);dx;H)
̂−,α, j (i, · , x0)

⊕ (

̂+,α, j (i, · , x0), · )L2((x0,∞);dx;H)
̂+,α, j (i, · , x0)

]
(6.42)

is the orthogonal projection onto Ni .

Consequently (cf. (5.5)), one obtains for the full-line Donoghue-typem-function,

MDo
H,Ni

(z) = PNi (zH + I )(H − zI )−1PNi

∣∣
Ni
,

=
∫
R

d�Do
H,Ni

(λ)
[

1
λ− z

− λ

λ2 + 1

]
, z ∈ C\R,(6.43)

where �Do
H,Ni

(·) satisfies the analogues of (5.9)–(5.11) (resp., (A.9)–(A.11)). With
respect to the decomposition (6.34), one can represent MDo

H,Ni
(·) as the 2 × 2 block

operator,

MDo
H,Ni

(·) =
(
MDo

H,Ni ,	,	′(·)
)
0≤	,	′≤1

= z
(

PN−,i 0
0 PN+,i

)
+ (z2 + 1)

(
PN−,i P−,x0 (H−zI)−1P−,x0 PN−,i PN−,iP−,x0 (H−zI)−1P+,x0 PN+,i

PN+,i P+,x0 (H−zI)−1P−,x0 PN−,i PN+,iP+,x0 (H−zI)−1P+,x0 PN+,i

)
,

= z
(

PN−,i 0
0 PN+,i

)
+ (z2 + 1)

(
PN−,i (H−zI)−1PN−,i PN−,i (H−zI)−1PN+,i

PN+,i (H−zI)−1PN−,i PN+,i (H−zI)−1PN+,i

)
,(6.44)
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employing PN±,iP±,x0 = PN±,i , and hence explicitly obtains,

MDo
H,Ni ,0,0(z)

=
∑
j,k∈J

(

̂−,α, j (i, · , x0), (zH + I )(H − zI )−1
̂−,α,k(i, · , x0)

)
L2(R;dx;H)

× (

̂−,α,k(i, · , x0), · )L2(R;dx;H)
̂−,α, j (i, · , x0),(6.45)

MDo
H,Ni ,0,1(z)

=
∑
j,k∈J

(

̂−,α, j (i, · , x0), (zH + I )(H − zI )−1
̂+,α,k(i, · , x0)

)
L2(R;dx;H)

× (

̂+,α,k(i, · , x0), · )L2(R;dx;H)
̂−,α, j (i, · , x0),(6.46)

MDo
H,Ni ,1,0(z)

=
∑
j,k∈J

(

̂+,α, j (i, · , x0), (zH + I )(H − zI )−1
̂−,α,k(i, · , x0)

)
L2(R;dx;H)

× (

̂−,α,k(i, · , x0), · )L2(R;dx;H)
̂+,α, j (i, · , x0),(6.47)

MDo
H,Ni ,1,1(z)

=
∑
j,k∈J

(

̂+,α, j (i, · , x0), (zH + I )(H − zI )−1
̂+,α,k(i, · , x0)

)
L2(R;dx;H)

× (

̂+,α,k(i, · , x0), · )L2(R;dx;H)
̂+,α, j (i, · , x0),(6.48)

z ∈ C\R.

Taking a closer look at equations (6.45)–(6.48) we now state the following
preliminary result:

Lemma 6.6. Assume Hypothesis 4.1. Then,

(

̂ε,α, j (i, · , x0), (zH + I )(H − zI )−1
̂ε′,α,k(i, · , x0)

)
L2(R;dx;H)

=
∫
R

d
(
êε,α, j (λ),�α(λ, x0)êε′,α,k(λ)

)
H2

zλ + 1
λ− z

=
∫
R

d
(
eε,α, j (λ),�α(λ, x0)eε′,α,k(λ)

)
H2

zλ + 1
(λ− z)(λ2 + 1)

=
(
eε,α, j , [Mα(z, x0) − Re(Mα(i, x0)]eε′,α,k

)
H2,(6.49)

ε, ε′ ∈ {+,−}, j, k ∈ J, z ∈ C\R,
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where

êε,α, j (λ) =
(
êε,α, j,0(λ), êε,α, j,1(λ)

)�

=
1

λ− i
eε,α, j =

1
λ− i

(eε,α, j,0, eε,α, j,1)
�

=
1

λ− i

( − εmε,α(i, x0)[ε Im(mε,α(i, x0))]
−1/2e j , ε[ε Im(mε,α(i, x0))]

−1/2e j
)�
,

ε ∈ {+,−}, j ∈ J, λ ∈ R.

(6.50)

Proof. The first two equalities in (6.49) follow from (4.26), (4.27) upon in-
troducing êε,α, j (·) =

(
êε,α, j,0(·), êε,α, j,1(·)

)�, where

êε,α, j,0(λ) = ε
∫ ε∞

x0

dx θα(λ, x, x0)
∗ψε,α(i, x, x0)[ε Im(mε,α(i, x0))]

−1/2e j

= −ε(λ− i)−1mε,α(i, x0)[ε Im(mε,α(i, x0))]
−1/2e j ,(6.51)

êε,α, j,1(λ) = ε
∫ ε∞

x0

dxφα(λ, x, x0)
∗ψε,α(i, x, x0)[ε Im(mε,α(i, x0))]

−1/2e j

= ε(λ− i)−1[ε Im(mε,α(i, x0))]
−1/2e j ,(6.52)

ε ∈ {+,−}, j ∈ J, λ ∈ R,

and we employed (6.8), (6.7) (with z = i) to arrive at (6.51), (6.52). The third
equality in (6.49) follows from (4.22), (4.23). �

Next, further reducing the computation (6.49) to scalar products of the type
(e j , · · · ek)H, j, k ∈ J, naturally leads to a 2 × 2 block operator

(6.53) MDo
α ( · , x0) =

(
MDo
α,	,	′( · , x0)

)
0≤	,	′≤1,

where (
e j ,M

Do
α,0,0(z, x0)ek

)
H

=
(
e−,α, j , [Mα(z, x0) − Re(Mα(i, x0)]e−,α,k

)
H2,(

e j ,M
Do
α,0,1(z, x0)ek

)
H

=
(
e−,α, j , [Mα(z, x0) − Re(Mα(i, x0)]e+,α,k

)
H2,(

e j ,M
Do
α,1,0(z, x0)ek

)
H

=
(
e+,α, j , [Mα(z, x0) − Re(Mα(i, x0)]e−,α,k

)
H2,(6.54) (

e j ,M
Do
α,1,1(z, x0)ek

)
H

=
(
e+,α, j , [Mα(z, x0) − Re(Mα(i, x0)]e+,α,k

)
H2,

j, k ∈ J, z ∈ C\R.
Theorem 6.7. Assume Hypothesis 4.1. Then MDo

α ( · , x0) is a B
(
H2

)
-valued

Nevanlinna–Herglotz function given by

MDo
α (z, x0) = T ∗

αMα(z, x0)Tα + Eα(6.55)

=
∫
R

d�Do
α (λ, x0)

[
1

λ− z
− λ

λ2 + 1

]
, z ∈ C\R,(6.56)
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where the 2 × 2 block operators Tα ∈ B
(
H2

)
and Eα ∈ B

(
H2

)
are defined by

Tα =
(

m−,α(i,x0)[− Im(m−,α(i,x0))]−1/2 −m+,α(i,x0)[Im(m+,α(i,x0))]−1/2

−[− Im(m−,α(i,x0))]−1/2 [Im(m+,α(i,x0))]−1/2

)
,(6.57)

Eα =
(

0 Eα,0,1
Eα,1,0 0

)
= E∗

α,

Eα,0,1 = 2−1[− Im(m−,α(i, x0))]
−1/2[m−,α(−i, x0) − m+,α(i, x0)](6.58)

× [Im(m+,α(i, x0))]
−1/2,

Eα,1,0 = 2−1[Im(m+,α(i, x0))]
−1/2[m−,α(i, x0) − m+,α(−i, x0)]

× [− Im(m−,α(i, x0))]
−1/2,

and T −1
α ∈ B

(
H2

)
, with

(
T −1
α

)
0,0 = [− Im(m−,α(i, x0))]

1/2[m−,α(i, x0) − m+,α(i, x0)]
−1,(6.59) (

T −1
α

)
0,1 = [− Im(m−,α(i, x0))]

1/2[m−,α(i, x0) − m+,α(i, x0)]
−1m+,α(i, x0),(6.60) (

T −1
α

)
1,0 = [Im(m+,α(i, x0))]

1/2[m−,α(i, x0) − m+,α(i, x0)]
−1,(6.61) (

T −1
α

)
1,1 = [Im(m+,α(i, x0))]

1/2[m−,α(i, x0) − m+,α(i, x0)]
−1m−,α(i, x0).(6.62)

In addition, �Do
α ( · , x0) = T ∗

α�α( · , x0)Tα satisfies the analogue of (A.10).

Proof. While (6.56) is clear from (6.55) (one notes that the typical constant
term in front of the integral in the representation (6.56) now vanishes as by (6.54),
Re

(
MDo
α (i, x0)

)
= 0) and similarly, (6.59)–(6.62) is clear from (6.57), the main

burden of proof consists in verifying (6.55), given (6.57), (6.58). This can be
achieved after straightforward, yet tedious computations. To illustrate the na-
ture of this computations we just focus on the (0, 0)-entry of the 2 × 2 block
operator (6.55) and consider the term (cf. the first equation in (6.54)),
(e−,α, j ,Mα(z, x0)e−,α,k)H2 , temporarily suppressing x0 and α for simplicity:
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(e−,α, j ,Mα(z, x0)e−,α,k)H2 =
((

m−(i)[− Im(m−(i))]−1/2e j

−[− Im(m−(i))]−1/2e j

)
,(

[m−(z)−m+(z)]−1 2−1[m−(z)−m+(z)]−1[m−(z)+m+(z)]
2−1[m−(z)+m+(z)][m−(z)−m+(z)]−1 m∓(z)[m−(z)−m+(z)]−1m±(z)

)
×

(
m−(i)[− Im(m−(i))]−1/2ek

−[− Im(m−(i))]−1/2ek

))
H2

=
(
m−(i)[− Im(m−(i))]−1/2e j , [m−(z) − m+(z)]

−1

× m−(i)[− Im(m−(i))]−1/2ek
)
H

− 2−1(m−(i)[− Im(m−(i))]−1/2e j , [m−(z) − m+(z)]
−1[m−(z) + m+(z)]

× [− Im(m−(i))]−1/2ek
)
H

− 2−1([− Im(m−(i))]−1/2e j , [m−(z) + m+(z)][m−(z) − m+(z)]
−1

× m−(i)[− Im(m−(i))]−1/2ek
)
H

+
(
[− Im(m−(i))]−1/2e j ,m∓(z)[m−(z) − m+(z)]

−1m±(z)

× [− Im(m−(i))]−1/2ek
)
H

=
(
e j , [− Im(m−(i))]−1/2m−(−i)[m−(z) − m+(z)]

−1

× m−(i)[− Im(m−(i))]−1/2ek
)
H

− 2−1(e j , [− Im(m−(i))]−1/2m−(−i)[m−(z) − m+(z)]
−1[m−(z) + m+(z)]

× [− Im(m−(i))]−1/2ek
)
H

− 2−1(e j , [− Im(m−(i))]−1/2[m−(z) + m+(z)][m−(z) − m+(z)]
−1

× m−(i)[− Im(m−(i))]−1/2ek
)
H

+
(
e j , [− Im(m−(i))]−1/2m∓(z)[m−(z) − m+(z)]

−1m±(z)

× [− Im(m−(i))]−1/2ek
)
H
, z ∈ C\R.

(6.63)

Explicitly computing (e j , [T ∗
αMα(z, x0)Tα]0,0ek)H, given Tα in (6.57) yields the

same expression as in (6.63). Similarly, one verifies that

(6.64) (e−,α, j ,Re(Mα(i, x0))e−,α,k)H2 = 0,

verifying the (0, 0)-entry of (6.55). The remaining three entries are verified
analogously. �

Combining Lemma 6.6 and Theorem 6.7 then yields the following result:

Theorem 6.8. Assume Hypothesis 4.1. Then MDo
H,Ni

(·) =
(
MDo

H,Ni ,	,	′(·)
)
0≤	,	′≤1,

explicitly given by (6.43)–(6.48), is of the form,
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MDo
H,Ni ,0,0(z) =

∑
j,k∈J

(e j ,M
Do
α,0,0(z, x0)ek)H

× (

̂−,α,k(i, · , x0), · )L2(R;dx;H)
̂−,α, j (i, · , x0),(6.65)

MDo
H,Ni ,0,1(z) =

∑
j,k∈J

(e j ,M
Do
α,0,1(z, x0)ek)H

× (

̂+,α,k(i, · , x0), · )L2(R;dx;H)
̂−,α, j (i, · , x0),(6.66)

MDo
H,Ni ,1,0(z) =

∑
j,k∈J

(e j ,M
Do
α,1,0(z, x0)ek)H

× (

̂−,α,k(i, · , x0), · )L2(R;dx;H)
̂+,α, j (i, · , x0),(6.67)

MDo
H,Ni ,1,1(z) =

∑
j,k∈J

(e j ,M
Do
α,1,1(z, x0)ek)H

× (

̂+,α,k(i, · , x0), · )L2(R;dx;H)
̂+,α, j (i, · , x0),(6.68)

z ∈ C\R,
with MDo

α ( · , x0) given by (6.55)–(6.58).

Remark 6.9. Combining Corollary 5.8 and Theorem 6.8 proves that the en-
tire spectral information for H , contained in the corresponding family of spec-
tral projections {EH (λ)}λ∈R in L2(R; dx;H), is already encoded in the operator-
valued measure {�Do

H,Ni
(λ)}λ∈R in Ni (including multiplicity properties of the spec-

trum of H ). In addition, invoking Theorem 6.7 shows that for any fixed α =
α∗ ∈ B(H), x0 ∈ R, the entire spectral information for H is already contained in
{�Do

α (λ, x0)}λ∈R in H2.

Appendix A Basic facts on bounded operator-valued
Nevanlinna–Herglotz functions

We review some basic facts on (bounded) operator-valued Nevanlinna–Herglotz
functions (also called Nevanlinna, Pick, R-functions, etc.), frequently employed
in the bulk of this paper. For additional details concerning the material in this
appendix we refer to [50], [52].

Throughout this appendix, H is a separable, complex Hilbert space with inner
product denoted by ( · , · )H, identity operator abbreviated by IH. We also denote
C± = {z ∈ C | ± Im(z) > 0}.

Definition A.1. The map M : C+ → B(H) is called a bounded operator-
valued Nevanlinna–Herglotz function on H (in short, a bounded Nevanlinna–
Herglotz operator on H) if M is analytic on C+ and Im(M (z)) ≥ 0 for all z ∈ C+.
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Here we follow the standard notation

(A.1) Im(M ) = (M − M∗)/(2i), Re(M ) = (M + M∗)/2, M ∈ B(H).

Note that M is a bounded Nevanlinna–Herglotz operator if and only if the
scalar-valued functions (u,Mu)H are Nevanlinna–Herglotz for all u ∈ H.

As in the scalar case one usually extends M to C− by reflection, that is, by
defining

(A.2) M (z) = M (z)∗, z ∈ C−.

Hence M is analytic on C\R, but M
∣∣
C− and M

∣∣
C+

, in general, are not analytic
continuations of each other.

In contrast to the scalar case, one cannot generally expect strict inequality in
Im(M (·)) ≥ 0. However, the kernel of Im(M (·)) has the following simple prop-
erties recorded in [49, Lemma 5.3] (whose proof was kindly communicated to us
by Dirk Buschmann) in the matrix-valued context. Below we indicate that the
proof extends to the present infinite-dimensional situation (see also [39, Proposi-
tion 1.2 (ii)] for additional results of this kind):

Lemma A.2. Let M (·) be aB(H)-valued Nevanlinna–Herglotz function. Then
the kernel H0 = ker(Im(M (z))) is independent of z ∈ C\R. Consequently, upon

decomposing H = H0 ⊕ H1, H1 = H⊥
0 , Im(M (·)) takes on the form

(A.3) Im(M (z)) =

(
0 0
0 N1(z)

)
, z ∈ C+,

where N1(·) ∈ B(H1) satisfies

(A.4) N1(z) ≥ 0, ker(N1) = {0}, z ∈ C+.

Proof. Pick z0 ∈ C\R, and suppose f0 ∈ ker(Im(M (z0))). Introducing m(z) =
( f0,M (z) f0)H, z ∈ C\R, m(·) is a scalar Nevanlinna–Herglotz function and
m(z0) ∈ R. Hence the Nevanlinna–Herglotz function m(z) − m(z0) has a zero
at z = z0, and thus must be a real-valued constant, m(z) = m(z0), z ∈ C\R. Since
( f0,M (z)∗ f0)H = ( f0,M (z) f0)H = m(z) = m(z0) ∈ R, z ∈ C\R, one concludes
that ( f0, Im(M (z)) f0)H = ±∥∥[± Im(M (z))]1/2 f0

∥∥2
H

= 0, z ∈ C±, that is,

(A.5) f0 ∈ ker
(
[± Im(M (z))]1/2

)
= ker(Im(M (z))), z ∈ C±,

and hence ker(M (z0) ⊆ ker(M (z)), z ∈ C\R. Interchanging the role of z0 and z

finally yields ker(M (z0) = ker(M (z)), z ∈ C\R. �
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Next we recall the definition of a bounded operator-valued measure (see, also
[19, p. 319], [75], [92]):

Definition A.3. Let H be a separable, complex Hilbert space. A map
 : B(R) → B(H), with B(R) the Borel σ-algebra on R, is called a bounded,

nonnegative, operator-valued measure if the following conditions (i) and (ii) hold:
(i) (∅) = 0 and 0 ≤ (B) ∈ B(H) for all B ∈ B(R);
(ii) (·) is strongly countably additive (i.e., with respect to the strong operator
topology in H), that is,

(A.6) (B) = s-lim
N→∞

N∑
j =1

(Bj ) whenever B =
⋃
j∈N

Bj ,

with Bk ∩ B	 = ∅ for k �= 	, Bk ∈ B(R), k, 	 ∈ N.

(·) is called an (operator-valued) spectral measure (or an orthogonal operator-
valued measure) if additionally the following condition (iii) holds:

(iii) (·) is projection-valued (i.e., (B)2 = (B), B ∈ B(R)) and (R) = IH.
(iv) Let f ∈ H and B ∈ B(R). Then the vector-valued measure(·) f has finite

variation on B , denoted by V ( f ;B), if

(A.7) V ( f ;B) = sup
{ N∑

j =1

‖(Bj ) f ‖H

}
< ∞,

where the supremum is taken over all finite sequences {Bj }1≤ j≤N of pairwise dis-
joint subsets on R with Bj ⊆ B , 1 ≤ j ≤ N . In particular, (·) f has finite total
variation if V ( f ;R) <∞.

We recall that due to monotonicity considerations, taking the limit in the strong
operator topology in (A.6) is equivalent to taking the limit with respect to the weak
operator topology in H.

For relevant material in connection with the following result we refer the reader,
for instance, to [1], [5], [6], [11], [19, Sect. VI.5,], [23, Sect. I.4], [29], [30], [32],
[37]–[39], [62], [68], [69], [74], [75], [87], [88], [89], [83], [100], [102], and the
detailed bibliography in [52].

Theorem A.4. ([6], [23, Sect. I.4], [100].) Let M be a bounded operator-
valued Nevanlinna–Herglotz function in H. Then the following assertions hold:

(i) For each f ∈ H, ( f,M (·) f )H is a (scalar) Nevanlinna–Herglotz function.

Suppose that {e j } j∈N is a complete orthonormal system in H and that for some
subset of R having positive Lebesgue measure, and for all j ∈ N, (e j ,M (·)e j )H
has zero normal limits. Then M ≡ 0.
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(ii) There exists a bounded, nonnegative B(H)-valued measure � on R such
that the Nevanlinna representation

M (z) = C + Dz +
∫
R

d�(λ)
[

1
λ− z

− λ

λ2 + 1

]
, z ∈ C+,(A.8)

�̃((−∞, λ]) = s-lim
ε↓0

∫ λ+ε

−∞
d�(t) (t2 + 1)−1, λ ∈ R,(A.9)

�̃(R) = Im(M (i)) − D =
∫
R

d�(λ) (λ2 + 1)−1 ∈ B(H),(A.10)

C = Re(M (i)), D = s-lim
η↑∞

1
iη

M (iη) ≥ 0,(A.11)

holds in the strong sense in H. Here �̃(B) =
∫
B

(
1 + λ2

)−1
d�(λ), B ∈ B(R).

Let λ1, λ2 ∈ R, λ1 < λ2. Then the Stieltjes inversion formula for � reads

(A.12) �((λ1, λ2]) f = π−1 s-lim
δ↓0

s-lim
ε↓0

∫ λ2+δ

λ1+δ
dλ Im(M (λ + iε)) f, f ∈ H.

(iii) Any isolated poles of M are simple and located on the real axis, the
residues at poles being nonpositive bounded operators in B(H).

For all λ ∈ R,

s-lim
ε↓0

εRe(M (λ + iε)) = 0,(A.13)

�({λ}) = s-lim
ε↓0

ε Im(M (λ + iε)) = −i s-lim
ε↓0

εM (λ + iε).(A.14)

(iv) If, in addition, M (z) ∈ B∞(H), z ∈ C+, then the measure � in (A.8) is
countably additive with respect to the B(H)-norm, and the Nevanlinna represen-
tation (A.8) and the Stieltjes inversion formula (A.12) as well as (A.13), (A.14)
hold with the limits taken with respect to the ‖ · ‖B(H)-norm. (iii) Let f ∈ H and
assume in addition that �(·) f is of finite total variation. Then for a.e. λ ∈ R, the
normal limits M (λ + i0) f exist in the strong sense and

(A.15) s-lim
ε↓0

M (λ + iε) f = M (λ + i0) f = H (�(·) f )(λ) + iπ�′(λ) f,

where H (�(·) f ) denotes the H-valued Hilbert transform

(A.16) H (�(·) f )(λ) = p.v.
∫ ∞

−∞
d�(t) f

1
t − λ

= s-lim
δ↓0

∫
|t−λ|≥δ

d�(t) f
1

t − λ
.

As usual, the normal limits in Theorem A.4 can be replaced by nontangential
ones. The nature of the boundary values of M (· + i0) when for some p > 0,
M (z) ∈ Bp(H), z ∈ C+, was clarified in detail in [20], [84], [85], [86]. We
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also mention that Shmul’yan [100] discusses the Nevanlinna representation (A.8);
moreover, certain special classes of Nevanlinna functions, isolated by Kac and
Krein [63] in the scalar context, are studied by Brodskii [23, Sect. I.4] and
Shmul’yan [100].

Our final result of this appendix offers an elementary proof of bounded in-
vertibility of Im(M (z)) for all z ∈ C+ if and only if this property holds for some
z0 ∈ C+:

Lemma A.5. Let M be a bounded operator-valuedNevanlinna–Herglotz func-
tion in H. Then [Im(M (z0))]−1 ∈ B(H) for some z0 ∈ C+ (resp., z0 ∈ C−) if and

only if [Im(M (z))]−1 ∈ B(H) for all z ∈ C+ (resp., z ∈ C−).

Proof. By relation (A.2), it suffices to consider z0, z ∈ C+, and because of
Theorem A.4(iii), we can assume that M (z), z ∈ C+, has the representation (A.8).

Let x0, x ∈ R and y0, y > 0, then there exists a constant c ≥ 1 such that

sup
λ∈R

(
(λ− x)2 + y2

(λ− x0)2 + y2
0

)
≤ c,(A.17)

since the function on the left-hand side is continuous and tends to 1 as λ → ±∞.
If [Im(M (x0 + iy0)]−1 ∈ B(H), there exists δ > 0 such that Im(M (x0 + iy0)) ≥ δIH,
and hence, using c ≥ 1, y > 0, and � ≥ 0, one obtains

δIH ≤ Im(M (x0 + iy0)) = Dy0 +
∫
R

y0

(λ− x0)2 + y2
0

d�(λ)

≤ y0

y

[
Dy + c

∫
R

y
(λ− x)2 + y2 d�(λ)

]
(A.18)

≤ y0

y

[
cDy + c

∫
R

y
(λ− x)2 + y2

d�(λ)
]

≤ cy0

y
Im(M (x + iy)).

This completes the proof. �
For a variety of additional spectral results in connection with operator-valued

Nevanlinna–Herglotz functions we refer to [22] and [39, Proposition 1.2]. For a
systematic treatment of operator-valued Nevanlinna–Herglotz families we refer to
[34].
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