
ON THE INVERSE RESONANCE PROBLEM FOR
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Abstract. We consider Schrödinger operators on [0,∞) with compactly sup-

ported, possibly complex-valued potentials in L1([0,∞)). It is known (at least
in the case of a real-valued potential) that the location of eigenvalues and res-

onances determines the potential uniquely. From the physical point of view
one expects that large resonances are increasingly insignificant for the recon-

struction of the potential from the data. In this paper we prove the validity

of this statement, i.e., we show conditional stability for finite data. As a by-
product we also obtain a uniqueness result for the inverse resonance problem

for complex-valued potentials.

1. Introduction

Inverse scattering theory as well as inverse spectral theory for the Schrödinger
equation

−y′′ + qy = λy

are classical subjects, its central tenets having been established some 60 years ago
by Borg, Levinson, Gelfand and Levitan, Krein, and Marchenko1. During this time
a vast body of literature on the subject has been created. A particular class of prob-
lems, not quite so well-established, are the inverse resonance problems which are
formulated only for a much narrower class of potentials. However, they are highly
interesting from the point of view of applications since eigenvalues and resonances
are directly observable in spectrometers.

We begin by expanding somewhat on the basics of scattering theory2. To be
specific, the equation −y′′ + qy = λy will be considered on the half-line [0,∞)
with a Dirichlet boundary condition at zero, a case of considerable importance
(thanks to separation of variables) for potential scattering in three dimensions with
a spherically symmetric potential. When q is integrable there is a unique solution of
−y′′ + qy = z2y which behaves asymptotically like eizx as long as z is in the upper
half plane. This solution is called the Jost solution and is denoted by ψ(z, ·). At
least when q is superexponentially decaying in the mean, i.e., when

∫∞
0

erx |q(x)|dx
is finite for all positive r, the function ψ(·, x) may be extended to the complex
plane as an entire function for any fixed x ∈ [0,∞) (see, for example, Lemma 3
in [2]). If, for some C > 0 and p > 1, the potential q satisfies |q(x)| ≤ C e−x

p

,
the growth order of ψ(·, x) is at most p/(p − 1). The function ψ(·, 0) is called the
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Jost function and is of central importance in scattering theory. If z0 is a zero of
the Jost function in the upper half plane then, due to its asymptotic behavior,
the corresponding Jost solution is an eigenfunction of the Schrödinger operator
associated with the eigenvalue z2

0 . The zeros of the Jost function in the lower half
plane are also of physical importance. They (or rather their squares) are called
resonances. Our interest in eigenvalues and resonances stems from the fact that
they are fundamental objects in quantum physics with a long history, dating back to
the early days of the theory when Weisskopf and Wigner [19] studied the behavior
of unstable particles. Physically, eigenvalues represent states in which the particles
are permanently localized. Resonances, however, correspond to quasi-stationary
(metastable) states that only exist for a finite time, proportional to the inverse of
the imaginary part of the resonance, and have energy proportional to the real part
of the resonance. Resonances that are close to the real axis appear as bumps in the
scattering cross section and can be measured in the laboratory. For more details
on resonances the reader may consult Zworski [20].

If the Jost function ψ(·, 0) is of finite growth and the location of all eigenvalues
and all resonances is known, then Hadamard’s factorization theorem implies that
it is known up to a factor eP (z) where P is a polynomial. But the coefficients of P
are determined also since it is known that the Jost function tends to one as z tends
to infinity along the positive imaginary axis for any potential under consideration.
The Jost function, in turn, determines directly the norms of the Jost solutions
associated with eigenvalues and a quantity called the scattering phase. Marchenko’s
inverse scattering theorem states that the eigenvalues, the norming constants, and
the scattering phase determine uniquely the potential of the Schrödinger equation,
assuming it is real-valued and satisfies the moment condition

∫∞
0
x|q(x)|dx < ∞.

Thus, as a corollary, we have that the location of all eigenvalues and resonances
determine a real superexponentially decaying potential. To our best knowledge this
observation was first publicly made by Korotyaev in 2000 (published in [8]) but
Zworski [21] had realized (but not published) it earlier in the context of compactly
supported even potentials on R.

We shall call the problem of obtaining a potential from just the location of
all eigenvalues and resonances an inverse resonance problem. Inverse resonance
problems are eminently interesting in a practical sense since, as mentioned before,
eigenvalues and (small) resonances are attainable in the laboratory. This is in
contrast to the scattering phase which is not easily measured. But, admittedly,
finding all resonances — as the theorem requires — is just as elusive a goal as
finding the scattering phase. Therefore a fundamental question arises: What may
be said about a potential when only the location of the associated eigenvalues and
small resonances is known.

The following argument shows that large resonances carry little physical infor-
mation. If the potential q is compactly supported in [0, b], absolutely continuous on
its support, and if q(b) 6= 0 then it is well known that there are only finitely many
eigenvalues and that the (roots of the) resonances xn+ iyn are asymptotically close
to the curve given by

y =
−1
2b

log
(

4x2

|q(b)|

)
.

This shows that the asymptotic distribution of resonances changes upon the mi-
nutest change of the potential near the right endpoint of its support and suggests
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that one might be able to say a good deal about the potential from knowing the
location of eigenvalues and resonances of modest size and, in particular, without
knowledge of the asymptotic distribution of the large ones.

Indeed, despite the fact that the finite data inverse resonance problem (or the
finite data eigenvalue problem, on compact intervals) is ill-posed, having no unique
solution, many numerical methods have been developed for its solution. Without a
claim to completeness we mention here Andrew [1], Brown, Samko, Knowles, and
Marletta [3], Hald [6], Paine [16], Röhrl [17], Rundell and Sacks [18]. The question
now is how close these solutions are to each other and, more importantly, how close
they are to the actual potential. The usual way to answer this question in the
numerical analysis literature is to apply the recovery algorithm to a situation in
which finite spectral data were generated from some known potential. The quality
of the recovery procedure is then assessed according to how closely the recovered
potential approximates the original one in some norm (sometimes the “eyeball”
norm). Mathematically this involves are large leap of faith (practically such a leap
of faith may, of course, be necessary).

Surprisingly it seems that this stability problem has not received much attention
(one exception is Hitrik [7]). Even for the much simpler inverse eigenvalue problem
on a compact interval, this question was only answered as recently as [12]. In [13]
it was addressed for a discrete Schrödinger equation. Some stability results for the
case of a real-valued potential are given by Korotyaev [9] but these do not address
the case of finite resonance data, and indeed require quite delicate knowledge of
the large-resonance asymptotics which will certainly not be available if only finitely
many resonances are known.

In this paper we allow the potentials to be complex-valued but assume that they
lie in a ball of fixed radius in L1(0, 1) and are compactly supported. We suppose
that two potentials q and q̃ are both known to have compact support in some fixed
interval - without loss of generality, the interval [0, 1] - and that for some R > 0 and
for some ε > 0, their resonances and eigenvalues are ε-close inside the disc of radius
R centered at zero. Outside the disc of radius R, the resonances and eigenvalues of
q and q̃ need not be close at all; no assumption on the resonances outside the disc
is made. If we also assume that q − q̃ is in a ball of fixed radius in Lp(0, 1), p > 1,
we obtain an estimate on

sup
x

∣∣∣∣∫ 1

x

(q(t)− q̃(t))dt
∣∣∣∣ (1)

in terms of ε and R which tends to zero as 1/R and ε tend to zero. Even without
the assumption that q − q̃ ∈ Lp(0, 1) we can show that (1) tends to zero as 1/R
and ε tend to zero but we have no control over the rate of convergence. Note that
in the case where all eigenvalues and resonances for q coincide with those for q̃ we
obtain a uniqueness result, i.e., q and q̃ are then equal almost everywhere. To the
best of our knowledge this uniqueness result is new for complex-valued potentials.

Our bound is obtained using transformation operators, Hadamard factorization,
estimates developed from Jensen’s formula and some elementary facts about Fourier
transforms. The bulk of the work, however, lies in the estimation of the transfor-
mation operators from the resonance data. This is based on solving a non-standard
boundary value problem for the hyperbolic PDE satisfied by the transformation
kernels, with data given on a characteristic line. Our main result is Theorem 6.1
together with its corollaries 6.2 and 6.3.
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2. Transformation operators

Definition 1. Let Q > 0. By B(Q) we denote the set of all (complex valued)
functions q ∈ L1[0,∞) which have compact support in [0, 1] and are such that∫ 1

0
|q| ≤ Q.

Throughout this work we shall consider Schrödinger operators on the half-line
[0,∞) in which the potentials lie in B(Q). Given any q ∈ B(Q) and any z ∈ C we
consider the Schrödinger equation

−u′′ + q(x)u = z2u, x > 0.

Since q is compactly supported in [0, 1], for each z ∈ C this equation has a unique
solution u satisfying the condition

u(z, x) = exp(izx), x ≥ 1.

This solution is called the Jost solution and, for each fixed x ≥ 0, it is an entire
function of z of growth order one. We shall denote it by ψ(z, x). Note that if
Im(z) > 0 then ψ(z, ·) ∈ L2[0,∞), and so if ψ(z, ·) happens to satisfy the Dirichlet
boundary condition ψ(z, 0) = 0 then z2 will be an eigenvalue of the Dirichlet
Schrödinger operator H0(q) defined by

H0(q)u = −u′′ + qu

on the domain

D(H0(q)) = {u ∈ L2[0,∞) | − u′′ + qu ∈ L2[0,∞), u(0) = 0}.
If, on the other hand, ψ(z, 0) = 0 and Im(z) ≤ 0, then ψ(z, ·) 6∈ L2[0,∞) and so
ψ(z, ·) cannot be an eigenfunction of H0(q). In this case z2 is called a resonance of
H0(q). Thus we have the following dichotomy of the zeros of z 7→ ψ(z, 0):

• If Im(z) > 0 and ψ(z, 0) = 0 then z2 is an eigenvalue of H0(q) with eigen-
function ψ(z, ·).

• If Im(z) ≤ 0 and ψ(z, 0) = 0 then z2 is a resonance of H0(q) with wave
function ψ(z, ·).

Where no confusion will result, we shall abbreviate ψ(z, 0) simply to ψ(z) and call
this the Jost function.

A remarkable fact about Schrödinger equations – see, e.g., Levitan [10] – is the
existence of an integral operator K, not depending on z, which maps Jost solutions
for one potential to Jost solutions for a different potential. Given two potentials q1

and q2, let ψj(z, x) be the Jost solution of the equation −u′′ + qju = z2u, j = 1, 2.
Then there exists a kernel K such that

ψ2(z, x) = ψ1(z, x) +
∫ ∞
x

K(x, t)ψ1(z, t)dt.

Throughout the later sections of this article we shall require estimates of kernels
such as K. Since, in our situation,∫ (t−x)/2

0

|q2(α− β)− q1(α+ β)|dβ ≤ 2Q

one obtains (see, e.g., Theorem 3 and Lemma 1 of [4]) that

K(x, t) =
∞∑
n=0

Kn(x, t) =: K0(x, t) +H(x, t) (2)
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where

K0(x, t) =
1
2

∫ 1

(t+x)/2

(q2(s)− q1(s))ds

and, for n ∈ N,

Kn(x, t) =
∫ 1

(t+x)/2

∫ (t−x)/2

0

(q2(α− β)− q1(α+ β))Kn−1(α− β, α+ β)dβdα

so that

|Kn(x, t)| ≤ 1
2

(2Q)n

n!

[
1− t+ x

2

]n
+

∫ 1

(t+x)/2

|q2(s)− q1(s)|ds

and

|K(x, t)| ≤ 1
2

∫ 1

(t+x)/2

|q2(s)− q1(s)|ds exp(2Q [1− (t+ x)/2]+).

In particular,
|K(x, t)| ≤ Q e2Q (3)

and Kn(x, t) = K(x, t) = 0 if t + x ≥ 2. Notice also that Kn(x, x) = 0 for n ≥ 1
and hence

K(x, x) = K0(x, x) =
1
2

∫ 1

x

(q2(s)− q1(s))ds, (4)

which allows the difference of the potentials to be recovered from the transformation
kernel K.

It is also shown in [4] that the function t 7→ Ht(0, t) is absolutely continuous,
and

|Ht(0, t)| ≤ CQ e2Q, (5)

for some constant C independent of q1 and q2.
As explained in the introduction, we consider in this paper the problem of esti-

mating the difference between two potentials q and q̃ whose resonances are close to
each other, if they are not far from the origin. In order to do this we adopt some no-
tation for specific transformation operator kernels corresponding to different choices
of q1 and q2 above:

• Kq for the transformation from a potential 0 to a potential q.
• Lq for the transformation from a potential q to the potential 0.
• Kq̃ for the transformation from a potential 0 to a potential q̃.
• B for the transformation from a potential q to a potential q̃.

We denote the Jost solution for the potential q by ψ and for q̃ by ψ̃. Thus we have

ψ(z, x) = exp(izx) +
∫ 2−x

x

Kq(x, t) exp(izt)dt (6)

and

ψ̃(z, x) = exp(izx) +
∫ 2−x

x

Kq̃(x, t) exp(izt)dt. (7)

Correspondingly, the kernel Lq maps Jost solutions for potential q back to solutions
of the free problem with potential 0:

exp(izx) = ψ(z, x) +
∫ 2−x

x

Lq(x, t)ψ(z, t)dt. (8)
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Into the right hand side of (7) we insert the expression for exp(izx) from (8) to
obtain

ψ̃(z, x) = ψ(z, x) +
∫ 2−x

x

Lq(x, t)ψ(z, t)dt+
∫ 2−x

x

Kq̃(x, t)ψ(z, t)dt

+
∫ 2−x

x

ds

∫ 2−s

s

Kq̃(x, s)Lq(s, t)ψ(z, t)dt.

This means that

ψ̃(z, x) = ψ(z, x) +
∫ 2−x

x

B(x, t)ψ(z, t)dt,

in which

B(x, t) = Kq̃(x, t) + Lq(x, t) +
∫ t

x

Kq̃(x, s)Lq(s, t)ds.

This expression is standard and may be found in [10]. In the special case in which
q̃ = q we know that B must be zero and Kq must be Kq̃; this yields

0 = Kq(x, t) + Lq(x, t) +
∫ t

x

Kq(x, s)Lq(s, t)ds.

In particular, this gives

B(0, t) = Kq̃(0, t)−Kq(0, t) +
∫ t

0

(Kq̃(0, s)−Kq(0, s))Lq(s, t)ds. (9)

We know from (3) that the sup-norm of transformation kernel Lq is bounded by a
constant which depends only on ‖q‖1. Thus we obtain a bound on B(0, t) from one
on (Kq̃ −Kq)(0, ·). This estimate on B(0, t), in turn, will eventually yield a bound
for B(x, t) by an iterative procedure; the difference q̃ − q is then found from (4),
which yields

2B(x, x) =
∫ 1

x

(q̃ − q). (10)

In order to find a bound on (Kq̃ − Kq)(0, ·) we observe that, setting x = 0 in
eqns. (6), (7) and inverting the Fourier transform,

(Kq̃ −Kq)(0, t) =
1

2π

∫
R

(ψ̃(z)− ψ(z)) exp(−izt)dz. (11)

Our first task, therefore, is to estimate ψ̃(z) − ψ(z) for real z. We shall start by
doing this in the case when ψ and ψ̃ have exactly the same zeros in some large
disc; the resulting bound on |(Kq̃ − Kq)(0, ·)| is in Theorem 4.1. The case where
the zeros inside the disc are perturbed is handled in Section 6.

3. Estimates on the difference of Jost functions having the same
zeros in a disc of radius R

In this section we will derive a pointwise bound for the difference of two Jost
functions in the interval [−R1/3, R1/3] under the assumption that eigenvalues and
resonances in the disc of radius R coincide. More precisely, we will prove the
following theorem.
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Theorem 3.1. For any positive number Q there are numbers C > 0 and R0 ≥ e so
that the following statement is true for any R ≥ R0. If q and q̃ are two potentials
in B(Q) and if the zeros of the associated Jost functions ψ and ψ̃ coincide in the
disc |z| < R then

|ψ(z)− ψ̃(z)| ≤ CR−1/3

for all z satisfying −R1/3 ≤ z ≤ R1/3.

This theorem will be proved at the end of the section after several lemmas have
been established. The key is Hadamard’s factorization theorem which says that

ψ(z) = zn0 eg(z)
∞∏
n=1

E(z/zn)

where n0 is a nonnegative integer, g is a polynomial of degree at most one, E(w) =
(1−w) ew, and the zn are nonzero complex numbers. We introduce the abbreviation

Π(R, z) =
∞∏

|zn|≥R

E(z/zn).

We begin by establishing a preliminary estimate for the Jost function.

Lemma 3.2. For every positive number Q there is a positive constant κ such
that the Jost function associated with any potential q ∈ B(Q) has the following
properties.

(1) |ψ(z)| ≤ κ for all z ∈ R.
(2) |ψ(z)| ≤ κ e2|z| for all z ∈ C.
(3) If ρ > 0 then |ψ(z)− 1| ≤ κ/ρ for all z in the disc {z : |z − 3iρ| ≤ ρ}.

Proof. The representation ψ(z) = 1 +
∫ 2

0
Kq(0, t) eizt dt gives immediately that

|ψ(z) − 1| ≤ 2‖Kq(0, ·)‖∞ exp(2| Im(z)|) for all z ∈ C. This proves the first two
statements. If Im(z) > 0 we may estimate |ψ(z)−1| by ‖Kq(0, ·)‖∞

∫ 2

0
e−t Im(z) dt ≤

‖Kq(0, ·)‖∞/ Im(z). Since the disc {z : |z−3iρ| ≤ ρ} is contained in a sector where
Im(z) ≥ |z|/2 we obtain the third statement. �

We now assume that ρ ≥ 2κ and introduce the function N(r) which counts the
number of zeros of ψ contained in the disc {z : |z − 3iρ| < r}. Note first that
N(0) = 0 since |ψ(3iρ)| ≥ 1/2. Since ψ has growth order one the counting function
can only grow linearly. In fact, Jensen’s formula∫ e r

0

N(t)
t

dt =
1

2π

∫ 2π

0

log |ψ(3iρ+ e r eit)|dt− log |ψ(3iρ)|,

the inequality N(r) ≤
∫ e r

0
t−1N(t)dt, and part (2) of Lemma 3.2 give

N(r) ≤ log(2κ) + 6ρ+ 2 e r. (12)

The elementary factor E(w) = (1−w) ew satisfies | logE(w)| ≤ 2|w|2 as long as
|w| ≤ 1/2. Therefore, thinking of w as z/zn, we are interested in an estimate on

S =
∑
|zn|≥R

|zn|−2.
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It will be convenient to assume that R ≥ 9ρ ≥ 18κ. Since |zn| ≥ R we get
|zn| ≥ 3|zn − 3iρ|/4 so that

S ≤ 2
∑

|zn−3iρ|≥2R/3

|zn − 3iρ|−2 ≤ 2
∫ ∞

2R/3

dN(t)
t2

≤ 4
∫ ∞

2R/3

N(t)dt
t3

.

Using now inequality (12) and log(2κ) ≤ ρ/2 gives S ≤ 36/R. With the aid of the
inequality | eu−1| ≤ |u| e|u| we arrive at the following lemma.

Lemma 3.3. Let zn, n ∈ N, denote the nonzero zeros of the Jost function ψ and
assume that R is a positive number which exceeds 18κ, where κ is the quantity given
in Lemma 3.2. Then

|Π(R, z)− 1| ≤ 72|z|2

R
exp(72|z|2/R).

provided that |z| ≤ R/2.

Now we return to the case of two potentials q and q̃ in B(Q). Let κ be the
number associated to Q according to Lemma 3.2. Since we assume the zeros of ψ
and ψ̃ within the disc of radius R to coincide we get

ψ(z)
ψ̃(z)

= eg(z)−g̃(z)
Π(R, z)
Π̃(R, z)

and we need to estimate exp(g − g̃).

Lemma 3.4. There are positive constants R0 and c depending only on κ such that

| eg(z)−g̃(z)−1| ≤ cR−1/3

provided that R ≥ R0 and |z| ≤ R1/3.

Proof. Suppose |z − 3iρ| ≤ ρ. Since

eg(z)−g̃(z)−1 =
Π̃(R, z)
Π(R, z)

(
ψ(z)
ψ̃(z)

− 1
)

+
Π̃(R, z)−Π(R, z)

Π(R, z)

we get, when ρ2/R is sufficiently small,

| eg(z)−g̃(z)−1| ≤ Aκ

ρ
+
Bρ2

R

from (3) of Lemma 3.2 and Lemma 3.3 when A and B denote suitable numerical
constants. The two contributions to the error are in balance when we choose ρ on
the order of R−1/3. Specifically, there are positive constants R0 and c depending
only on κ such that

| eg(z)−g̃(z)−1| ≤ c

10
R−1/3

if ρ3 = R ≥ R0 and |z − 3iρ| ≤ ρ.
Suppose f(z) = exp(a1z + a0)− 1. It is easy to show that

|f(z)| ≤ 5ε
1− ε

exp(5ε/(1− ε))

in the disc |z| ≤ ρ if |f(z)| ≤ ε < 1 in the disc |z − 3iρ| ≤ ρ. Applying this to the
case at hand gives the stated estimate after possibly increasing R0 to ensure that
cR−1/3 ≤ 1. �
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Proof of Theorem 3.1. Suppose −R1/3 ≤ z ≤ R1/3. By part (1) of Lemma 3.2

|ψ(z)− ψ̃(z)| ≤ κ
∣∣∣∣ψ(z)
ψ̃(z)

− 1
∣∣∣∣ ≤ κ| eg(z)−g̃(z)−1|

∣∣∣∣Π(R, z)
Π̃(R, z)

∣∣∣∣+ κ

∣∣∣∣Π(R, z)
Π̃(R, z)

− 1
∣∣∣∣ .

Using the estimates obtained in Lemma 3.3 and Lemma 3.4 establishes the theorem
for a C depending only on c, R0, κ, and numerical constants and hence only on
Q. �

4. Large z asymptotics of the Jost functions: further results and
consequences for transformation kernels

In this section we assume that q and q̃ lie in B(Q) and that q̃− q lies in Lp[0, 1]
for some p > 1. If p > 2 then q̃ − q is still in L2([0, 1]) and therefore we assume
henceforth that p ∈ (1, 2].

We start with (11) from Section 2:

Kq̃(0, t)−Kq(0, t) =
1

2π

∫
R
(ψ̃(z)− ψ(z)) exp(−izt)dz.

In particular, therefore,

Kq̃(0, t)−Kq(0, t) =
1

2π

∫ R1/6

−R1/6
(ψ̃−ψ)(z) exp(−izt)dz+

1
2π

∫
|z|>R1/6

(ψ̃−ψ)(z) exp(−izt)dz.

(13)
The first term on the right hand side of (13) will be handled using Theorem 3.1,
which yields ∣∣∣∣∣ 1

2π

∫ R1/6

−R1/6
(ψ̃ − ψ)(z) exp(−izt)dz

∣∣∣∣∣ ≤ C

R1/6
. (14)

The second term,

ER(t) :=
1

2π

∫
|z|>R1/6

(ψ̃ − ψ)(z) exp(−izt)dz, (15)

will be handled using asymptotics which refine the results in Lemma 3.2 and which
we develop using the transformation equation (6) (with x = 0) and integration by
parts. Following the notation in (2), we obtain, after an integration by parts,

ψ(z) = 1 +
iKq(0, 0)

z
− i

4z

∫ 2

0

g(t) exp(izt)dt,

where g(t) = q(t/2)− 4Ht(0, t). We can also write

ψ(z) = 1 +
iKq(0, 0)

z
− i

4z
ĝ(z)

where ĝ is the Fourier transform of g. This immediately yields, in an obvious
notation,

ψ̃(z)− ψ(z) =
i

z
(Kq̃ −Kq)(0, 0)− i

4z
̂(g̃ − g)(z). (16)

Since Ht(0, t) is continuous and bounded by the bound given in (5) g̃ − g is in
Lp([0, 2]) where p ∈ (1, 2] so that ̂(g̃ − g) is in Lp/(p−1)(R) by the Hausdorff-Young
inequality.
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Now we substitute (16) into the right hand side of (15) to obtain

ER(t) =
i

2π
(Kq̃ −Kq)(0, 0)

∫
|z|>R1/6

1
z

exp(−izt)dz

− i

8π

∫
|z|>R1/6

1
z

̂(g̃ − g)(z) exp(−izt)dz. (17)

The first integral in (17) can be rewritten by a change of variable ξ = tz as∫
|ξ|>tR1/6

1
ξ exp(−iξ)dξ, and hence an integration by parts yields

−2i
cos(tR1/6)
tR1/6

+ i

∫
|ξ|>tR1/6

exp(−iξ)dξ
ξ2
,

which is O((tR1/6)−1) when tR1/6 is large. When tR1/6 is small the integral can
be estimated by taking the Cauchy principal value. In either case, there exists a
numerical constant C1 such that∣∣∣∣∣ i2π

∫
|z|>R1/6

1
z

exp(−izt)dz

∣∣∣∣∣ ≤ C1 min
(

1,
1

tR1/6

)
. (18)

The remaining integral in (17) is estimated by the inequalities of Hölder and
Hausdorff-Young so that∣∣∣∣∣
∫
|z|>R1/6

1
z

̂(g̃ − g)(z) exp(−izt)dz

∣∣∣∣∣ ≤ C2(p− 1)−1/pR(1−p)/(6p)(1 + ‖q̃− q‖p) (19)

where the constant C2 depends only onQ by (5). Note that this becomes unbounded
as p tends to one.

Combining the estimates (14), (18) and (19) yields:

Theorem 4.1. Suppose that q and q̃ lie in B(Q) and that q̃ − q is in Lp[0, 1],
p ∈ (1, 2]; suppose that R0 is as in Theorem 3.1 and that R ≥ R0. Then there
exists a constant C (possible larger than the one used in Theorem 3.1) depending
only on Q such that

|Kq̃(0, t)−Kq(0, t)| ≤ C(p− 1)−1/p(1 + ‖q − q̃‖p) min
(

1,
1
tRν

)
(20)

where ν = (p− 1)/(6p).

The relationship (9) gives immediately the following corollary.

Corollary 4.2. Under the assumptions of Theorem 4.1 we have the estimate

|B(0, t)| ≤ C ′(p− 1)−1/p(1 + ‖q − q̃‖p) min
(

1,
logR
tRν

)
where ν = (p− 1)/(6p) and C ′ is a constant depending only on Q.

Remark 1. If we do not require a rate-of-convergence estimate then we can assume
simply that q and q̃ lie in L1[0, 1]. In order to see this, consider the term

FR(t) :=
∫
|z|>R1/6

q̂(z)
z

exp(−izt)dz.

Using the definition of the Fourier transform and Fubini’s theorem, we get

FR(t) = 2i lim
n→∞

∫ 1

0

q(s)
(∫ n

R1/6

sin(z(s− t))
z

dz

)
ds.
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The inner integral is bounded as function of n, R, s, and t. Hence, applying the
dominated convergence theorem twice shows that FR(t) tends to zero as R tends
to infinity.

5. Estimating the difference of two potentials from the difference
of two Jost functions

Eqn. (10) will yield bounds on
∫ 1

x
(q̃ − q) from a bound on B(x, x) and hence,

in particular, from a bound on B(x, t). Corollary 4.2 gives a bound on B(0, t). In
order to determine a bound on B(x, t) from the bound on B(0, t) we first observe
that, following the material in Section 2,

B(x, t) = 0 for x+ t ≥ 2.

In particular,
B(x, 2− x) = 0, 0 ≤ x ≤ 1. (21)

We shall show that this condition, combined with the knowledge of B(0, t) for
0 ≤ t ≤ 2, determines B completely. In order to do this we derive a second integral
equation for B.

Following Levitan [10] we observe that the function

z0(x, t) =
1
2

∫ x

0

du

∫ t−u+x

t+u−x
F (u, v)dv

satisfies the inhomogeneous wave equation

z0,xx − z0,tt = F (x, t),

with boundary condition z0(0, t) = 0. Putting g(x) = z0(x, 2− x) we observe that

v0(x, t) = g

(
1− t+ x

2

)
− g

(
1− t− x

2

)
satisfies the homogeneous wave equation together with the boundary conditions
v0(0, t) = 0, v0(x, 2 − x) = −g(x) = −z0(x, 2 − x). Hence the function u0(x, t) =
z0(x, t) + v0(x, t) will satisfy the inhomogeneous wave equation

u0,xx − u0,tt = F (x, t)

with homogeneous boundary conditions

u0(0, t) = 0, u0(x, 2− x) = 0.

Now u0(x, t) is expressed as a sum of three integrals:

u0(x, t) = I1(x, t) + I2(x, t)− I3(x, t),

where

I1(x, t) = z0(x, t) =
1
2

∫ x

0

du

∫ t−u+x

t+u−x
F (u, v)dv,

I2(x, t) = g

(
1− t+ x

2

)
=

1
2

∫ 1−(t+x)/2

0

du

∫ 2−u

t+x+u

F (u, v)dv,

I3(x, t) = g

(
1− t− x

2

)
=

1
2

∫ 1−(t−x)/2

0

du

∫ 2−u

t−x+u

F (u, v)dv.

These integrals all have the same integrand and elementary calculations show that
the regions over which integrals I1 and I2 take place are disjoint and are sub-
domains of the region over which integral I3 takes place. Subtracting I1 and I2 from
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I3 leaves an integral over the rectangle with corners (x, t), (1−(t−x)/2, 1+(t−x)/2),
(0, t+ x) and (1− (t+ x)/2, 1 + (t+ x)/2). We make the change of variables

v = α+ β, u = α− β, dudv = 2dαdβ,

and obtain

u0(x, t) = −
∫ 1

(t+x)/2

dα

∫ (t+x)/2

(t−x)/2

F (α− β, α+ β)dβ.

If we now ask for the solution w of the wave equation

wxx − wtt = F (x, t), w(0, t) = B(0, t), w(x, 2− x) = 0,

then, since B(0, t) = 0 for t ≥ 2, w will be given by

w(x, t) = u0(x, t) +B(0, x+ t). (22)

Now the transformation kernel B is required to satisfy the wave equation

(Bx −Bt)x + (Bx −Bt)t = (q̃(x)− q(t))B
subject to the condition (21), and with B(0, t) known. In view of the expression
(22) this means we should choose B as the solution of the integral equation

B(x, t) = B(0, x+ t) +
∫ 1

(t+x)/2

dα

∫ (t+x)/2

(t−x)/2

(q(α+β)− q̃(α−β))B(α−β, α+β)dβ.

Iteration (cf. Lemma 5.1 below) shows that this solution is given by

B(x, t) =
∞∑
n=0

Bn(x, t)

where
B0(x, t) = B(0, x+ t)

and

Bn+1(x, t) =
∫ 1

(t+x)/2

dα

∫ (t+x)/2

(t−x)/2

(q(α+ β)− q̃(α− β))Bn(α− β, α+ β)dβ. (23)

Lemma 5.1. Suppose that q and q̃ are in B(Q) and that there exist constants C0,
C1 and R2 ≥ e such that for all t ∈ (0, 2],

|B(0, t)| ≤ C1 + C0 min
(

1,
1
tR2

)
. (24)

Then

|Bn(x, t)| ≤
(
C1 + C0

log(2R2)
R2

)
(2Q)n

(n− 1)!

(
1− t+ x

2

)n−1

(25)

whenever n ∈ N and 0 ≤ x+ t ≤ 2.

Proof. The proof is by induction. We first check that the estimate holds for n = 1.
We have

|B1(x, t)| ≤
∫ 1

(t+x)/2

dα

∫ (t+x)/2

(t−x)/2

|q(α+ β)− q̃(α− β)||B(0, 2α)|dβ

≤ 2Q
∫ 1

0

|B(0, 2α)|dα

≤ 2QC0

(
C1 + C0

log(2R2)
R2

)
,
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which establishes the result for n = 1.
Next we substitute the estimate (25) into the right hand side of (23) and try to

recover the appropriate estimate for Bn+1. Since (25) holds we have

|Bn+1(x, t)| ≤
(
C1 + C0

log(2R2)
R2

)
(2Q)n+1

(n− 1)!

∫ 1

(t+x)/2

(1− α)n−1dα

which yields the required estimate. �

Lemma 5.2. Under the hypotheses of Lemma 5.1 the estimate

|B(x, t)| ≤
(
C1 + C0

log(R2)
(x+ t)R2

)
(1 + 8Q e2Q) (26)

holds for all (x, t) in the triangle bounded by the lines x = 0, x = t and x+ t = 2.

Proof. This is an immediate consequence of the fact that B(x, t) = B(0, x + t) +∑∞
n=1Bn(x, t) together with the bounds (24,25). �

Theorem 5.3. Let Q1 and Qp be positive numbers and p ∈ (1, 2]. Then there
is a positive number C, depending only on Q1 and Qp, and a positive number R0,
depending on Q1, Qp, and p, so that the following statement is true for any R ≥ R0.
If q and q̃ are two potentials in B(Q1) such that ‖q̃ − q‖p ≤ Qp and for which the
zeros of the corresponding Jost functions are identical in a disc of radius R, then

sup
x∈[0,1]

∣∣∣∣∫ 1

x

(q̃ − q)
∣∣∣∣ ≤ C(Q1, Qp)(logR)(2p−2)/(2p−1)R−(p−1)2/(6p(2p−1)). (27)

Proof. Let γ = (p − 1)/p = 6ν and 0 < η < 1. Lemma 5.2, with C1 = 0 and C0

determined by Corollary 4.2, implies the existence of a constant C2, depending only
on Q1, such that

2|B(η, η)| ≤ C2(p− 1)−1/p(1 +Qp)
(logR)2

ηRν
:=

M

η

provided that R is at least as large as R0 given by Theorem 3.1. By possibly
enlarging R0 we have M < γQp when R ≥ R0. (If M is not much smaller than
γQp our final estimate will be worse or not much better than the trivial estimate∣∣∣∫ 1

x
(q̃ − q)

∣∣∣ ≤ Qp).
Thus, if 0 < η < 1 then, for all x ∈ [0, 1],∣∣∣∣∫ 1

x

(q̃ − q)
∣∣∣∣ ≤ ∫ η

0

|q̃ − q|+
∣∣∣∣∫ 1

η

(q̃ − q)
∣∣∣∣ ≤ Qpηγ +

M

η
(28)

according to equation (10). Substituting η = (M/(γQp))1/(γ+1) < 1, the point
where the best estimate occurs, into (28) gives the desired result. Note that
C(Q1, Qp) may be chosen, independently of p. �

Remark 2. The proof of Theorem 5.3 reveals that C(Q1, Qp) = O(Qp/(2p−1)
p ) as

Qp tends to zero.
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6. Further errors from perturbation of the resonances

In the previous sections we considered a change of potential from q to q̃ which
preserved all zeros of the Jost function in a disc of radius R. In the current section
we allow the potentials q and q̃ to have different zeros zn and z̃n inside the disc of
radius R, satisfying a uniform bound:

|zn − z̃n| ≤ ε, n = 1, 2, . . . N := N(R).

Since zeros of the Jost function in the upper half plane lie in a half disc centered
at zero whose radius is bounded by a constant times Q we may assume without
loss of generality that none of the zeros zn or z̃n lie on the real axis. If this is not
true then the contours taken below for the inversions of the Fourier transforms may
be deformed around the zeros. We therefore assume that at every point z on our
inversion contour, and for all n,

|z − zn| ≥ 1, |z − z̃n| ≥ 1.

Define a function

W (z) =
N(R)∏
n=1

(z − zn)
(z − z̃n)

.

Then the Jost functions ψ(z) and ψ̃(z) satisfy

ψ(z) = W (z)ψ̃(z)
eg(z)Π(R, z)
eg̃(z)Π̃(R, z)

in the notation of Section 3. We still have the equation

Kq(0, t)−Kq̃(0, t) =
1

2π

∫
R

(ψ(z)− ψ̃(z)) exp(−izt)dz =: IR(t) + ER(t),

in which

ER(t) =
1

2π

∫
|z|>R1/6

(ψ(z)− ψ̃(z)) exp(−izt)dz,

IR(t) =
1

2π

∫ R1/6

−R1/6
(ψ(z)− ψ̃(z)) exp(−izt)dz,

We also still have the estimate on ER from (18), (19) giving the existence of a
constant C1 depending only on Q such that

|ER(t)| ≤ C1(1 + ‖q − q̃‖p) min
(

1,
1
tRν

)
in which ν = (p − 1)/(6p). We therefore turn to estimating IR(t), which we first
write as

IR(t) =
1

2π

∫ R1/6

−R1/6
(ψ(z)

(
1− eg̃(z)Π̃(R, z)

eg(z)Π(R, z)

)
+ ψ̃(z)(W (z)− 1)) exp(−izt)dz.

Estimating the first term using Lemma 3.2 (part (1)) to bound ψ(z), and Lemmas
3.3, 3.4 to bound 1− eg̃(z)Π̃(R,z)

eg(z)Π(R,z)
, we obtain

|IR(t)| ≤ C2R
−1/6 +

1
2π

∫ R1/6

−R1/6
|ψ̃(z)||W (z)− 1|dz
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for some constant C2 depending only on Q. We now apply the inequality |W −1| ≤
| logW | exp(| logW |) together with the bound |ψ̃(z)| ≤ κ from Lemma 3.2 (part
(1)) to obtain

|IR(t)| ≤ C2R
−1/6 + κ

∫ R1/6

−R1/6
| logW (z)| exp(| logW (z)|)dz. (29)

Since | log(1 + x)| ≤ − log(1− |x|) ≤ 2|x| whenever |x| ≤ 3/4 we find

| logW (z)| ≤
N(R)∑
n=1

∣∣∣∣log
(

1 +
z̃n − zn
z − z̃n

)∣∣∣∣ ≤ 2
N(R)∑
n=1

∣∣∣∣ z̃n − znz − z̃n

∣∣∣∣ (30)

provided the summands on the right are bounded by 3/4. Denoting the smallest
integer which is at least as large as x by dxe we distinguish now the cases n ≤
d8eR1/6e and n > d8eR1/6e. (Here we assume that N(R) > d8eR1/6e, since the
case N(R) ≤ d8eR1/6e will give the same bounds a fortiori.) In the former case
we use the assumption |z − z̃n| ≥ 1 to estimate a summand in (30) by ε which we
assume to be less than 3/4. In the latter case we observe that thanks to eqn. (12)
with ρ = 2κ, we have

|z − z̃n| ≥ |z̃n| − |z| ≥
1
2e
n−R1/6 − 12κ− log(2κ) ≥ 1

4 e
n

if we require R1/6 ≥ 12κ + log(2κ). Hence, if n > d8eR1/6e a summand in (30) is
estimated by 4 e ε/n. Using (12) again we find

| logW (z)| ≤ 16 e εR1/6 + 8 e ε log(R) + ε ≤ 17 e εR1/6.

Using this estimate for the argument of the exponential function in (29) we
obtain

|IR(t)| ≤ C2R
−1/6 + κ exp(17 e εR1/6)

∫ R1/6

−R1/6
| logW (z)|dz. (31)

To estimate
∫
| logW |dz we stick to the bound in (30), i.e.,∫ R1/6

−R1/6
| logW (z)|dz ≤ 2ε(S1 + S2),

where

S1 =
d8eR1/6e∑
n=1

∫ R1/6

−R1/6

dz

|z − z̃n|
,

S2 =
N(R)∑

n=d8eR1/6e+1

∫ R1/6

−R1/6

dz

|z − z̃n|
.

In the sum S1 we set ξ = Re(z − z̃n) and observe that |z − z̃n| ≥
√

1 + ξ2 with
|ξ| ≤ 2R. Hence ∫ R1/6

−R1/6

dz

|z − z̃n|
≤
∫ 2R

−2R

dξ√
1 + ξ2

giving
S1 ≤ cR1/6 log(R) (32)
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for some numerical constant c. In the sum S2 we use the same approach as before
to obtain

S2 ≤ 16 eR1/6 log(R). (33)

Combining (31), (32) and (33) we obtain

|IR(t)| ≤ C2R
−1/6 + C3 exp(17 e εR1/6)εR1/6 log(R)

in which C2 and C3 depend only on Q. We thus obtain the total estimate:

|Kq̃(0, t)−Kq(0, t)| ≤ CεR1/6 log(R) exp(17 e εR1/6)

+ C(p− 1)−1/p(1 + ‖q̃ − q‖p) min
(

1,
1
tRν

)
.

where C depends only on Q. Upon possible enlarging C equation (9) gives

|B(0, t)| ≤ CεR1/6 log(R) exp(17 e εR1/6)

+ C(p− 1)−1/p(1 + ‖q̃ − q‖p) min
(

1,
logR
tRν

)
.

The final result follows from Lemma 5.2 with C1 = CεR1/6 log(R) exp(17 e εR1/6)
and C0 = C(p − 1)−1/p(1 + ‖q̃ − q‖p) min

(
1, logR

tRν

)
using the same method proof

as for Theorem 5.3:

Theorem 6.1. Let Q1 and Qp be positive numbers and p ∈ (1, 2]. Then there
is a positive number C, depending only on Q1 and Qp, and a positive number R0,
depending on Q1, Qp, and p, so that the following statement is true for any R ≥ R0

and any ε ∈ (0, 3/4). If q and q̃ are two potentials in B(Q1) such that ‖q̃−q‖p ≤ Qp
and for which the respective zeros of the corresponding Jost functions are ε-close in
a disc of radius R, then

sup
x∈[0,1]

∣∣∣∣∫ 1

x

(q̃ − q)
∣∣∣∣ ≤ C(Q1, Qp)

{
(logR)(2p−2)/(2p−1)R−(p−1)2/(6p(2p−1))

+ εR
1
6 log(R) exp(17 e εR

1
6 )
}
.

Corollary 6.2. (Conditional stability). Let q and q̃ be two potentials with support
in [0, 1]. Let

∫ 1

0
|q|p < Qp and

∫ 1

0
|q̃|p < Qp for some p > 1. Then for any

δ > 0 there exists a pair (ε, R), depending only on δ, Qp, and p, such that if the
corresponding Jost functions have zeros differing by at most ε in a disc of radius R
then

sup
x∈[0,1]

∣∣∣∣∫ 1

x

(q̃ − q)
∣∣∣∣ ≤ δ.

Theorem 6.1 and Remark 1also imply the next corollary.

Corollary 6.3. (Uniqueness) Let q and q̃ be two integrable potentials with support
in [0, 1]. If all eigenvalues and resonances for one potential coincide with those of
the other, then q equals q̃ almost everywhere.

Remark 3. Taking into account Remark 1, one can prove conditional stability for
q, q̃ just from B(Q). But in this case the radius R can not be chosen uniformly.
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Indeed, consider the sequence of potentials qn(x) := nχ[0,1/n](x) where χ is the
characteristic function. Then for the corresponding Jost functions ψ(z;n) we have

ψ(z;n) = eiz/n

(
cos

(√
z2 − n
n

)
− i z√

z2 − n
sin

(√
z2 − n
n

))
.

Obviously, for any R there are no zeros of ψ(z;n) in the disc |z| < R if n = n(R)
is sufficiently large. Thus, one cannot choose R to depend only on δ and Q. At
the same time, in the same way as in the proof of the estimate (27) one can still
get uniformity for the class of potentials from B(Q) if their behavior as x → 0 is
specified. Namely, if we assume that q, q̃ ∈ B(Q) and∫ ε

0

(|q̃|+ |q|) ≤ η(ε),

where η(ε) → 0 as ε → 0, then R can be chosen to depend only on δ, Q, and the
function η.

Acknowledgment: The authors wish to thank Sergey Naboko for many discus-
sions on the topic.
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