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1. Background

The Camassa-Holm (CH) equation

ut − uxxt + 3uux + 2κux = 2uxuxx + uuxxx

was suggested as a model for shallow water waves by Camassa and Holm
[5], although originally found by Fuchssteiner and Fokas [12]. Here κ is a
constant related to dispersion. The equation has scaling properties such that
one needs only study the cases κ = 1 and the zero dispersion case κ = 0.

There are compelling reasons to study the equation. Like the KdV equa-
tion it is an integrable system but, unlike the KdV equation, among its so-
lutions are breaking waves (see Camassa and Holm [5] and Constantin [8]).
These are solutions with smooth initial data that stay bounded, but where
the wave front becomes vertical in finite time, so that the derivative blows
up. A model for water waves displaying wave breaking was long sought after.

Since the CH equation is an integrable system it has an associated
spectral problem, which is

−f ′′ + 1
4f = λwf, (1.1)

where w = u−uxx+κ. At least two cases are particularly important, namely
the periodic case and the case of decay at infinity. We only deal with the latter
case here (see, e.g, Constantin and Escher [9]), so in the zero dispersion case
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we should have w small at infinity. For the periodic case see Constantin and
McKean [6].

In the zero dispersion case the solitons (here called peakons) give rise
to w which is a Dirac measure, so one should clearly at least allow w to be a
measure1. It is also important that one does not assume that w has a fixed
sign, since no wave breaking will then take place (see Jiang, Ni and Zhou
[15]).

In [3] we discussed scattering and inverse scattering in the case κ 6= 0,
which is the important case for shallow water waves. We did not discuss the
zero dispersion case κ = 0, which is relevant in some other situations, but
this case was treated by Eckhardt and Teschl in [10], based on the results of
Eckhardt [11].

The approach of [10] was based on the fact that in the zero dispersion
case it is possible to define a Titchmarsh-Weyl type m-function for the whole
line spectral problem. This approach does not work if κ 6= 0. The fundamental
reason behind this is that for corresponding half-line problems one gets a
discrete spectrum in the zero dispersion case, but there is always a half-line
of continuous spectrum if κ 6= 0. More conceptually, the continuous spectrum
is of multiplicity 2 which excludes the existence of a scalar m-function. For
the inverse theory Eckhardt [11] uses de Branges’ theory of Hilbert spaces
of entire functions. Our approach is different and analogous to that in our
paper [3].

It should be noted that the methods of this note combined with those of
[3] allow one to prove a uniqueness theorem for inverse scattering in the case
κ 6= 0 for the case when w is a measure, extending the results of [3] where
it was assumed that w ∈ L1

loc. These results do not appear to be accessible
using de Branges’ theory.

2. A Hilbert space

Instead of (1.1) we shall analyze the slightly more general spectral problem

−f ′′ + qf = λwf, (2.1)

where q is a positive measure not identically zero, since this presents few addi-
tional difficulties. A solution of (2.1), or more generally of−f ′′+qf = λwf+g,
where g is a given measure, is a continuous function f satisfying the equation
in the sense of distributions. Since (λw− q)f + g is then a measure it follows
that a solution is locally absolutely continuous with a derivative of locally
bounded variation. It is known that a unique solution exists with prescribed
values of f and, say, its left derivative at a given point (this result may be
found for example in Bennewitz [1, Chapter 1]), and we will occasionally use
this. It follows that the solution space of the homogeneous equation is of
dimension 2.

1In this paper we use the word measure for a distribution of order 0.
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We will also have occasion to talk about the Wronskian [f1, f2] = f1f
′
2−

f ′1f2 of two solutions f1 and f2 of (2.1). The main property is that such a
Wronskian is constant, which easily follows on differentiation and use of the
equation. Note that the regularity of solutions is such that the product rule
applies when differentiating the Wronskian in the sense of distributions. The
unique solvability of the initial value problem shows that f1 and f2 are linearly
dependent precisely if [f1, f2] = 0.

We shall consider (2.1) in a Hilbert space H1 with scalar product

〈f, g〉 =

∫
R
(f ′g′ + qfg).

Thus we are viewing (2.1) as a ‘left definite’ equation. The space H1 consists
of those locally absolutely continuous functions f which have derivative in
L2(R) and for which

∫
R q|f |

2 <∞, so it certainly contains the test functions
C∞0 (R). Some properties of the space H1 will be crucial for us.

Lemma 2.1. Non-trivial solutions of −u′′ + qu = 0 have at most one zero,
and there is no non-trivial solution in H1.

Proof. The real and imaginary parts of a solution u are also solutions and in
H1 if u is, so it is enough to consider real-valued solutions. From the equation
it is clear that such a solution is convex in any interval where it is positive,
concave where it is negative.

The set of zeros of a real-valued non-trivial solution u is a closed set
with no interior by the uniqueness of the initial value problem. Since u is con-
tinuous it keeps a fixed sign in any component of the complement. Convexity
of |u| in each component shows that any such component is unbounded, so u
has at most one zero.

Since |u| is convex and non-negative u′ can only be in L2 if u is constant.
But this would imply q = 0, so the second claim follows. �

As we shall see there are, however, non-trivial solutions with |u′|2+q|u|2
integrable on a half-line. We shall also need the following lemma (cf. Lemmas
2.1 and 2.2 of [3]).

Lemma 2.2. Functions with square integrable (distributional) derivative for

large |x| are o(
√
|x|) as x → ±∞ and point evaluations are bounded linear

forms on H1. Furthermore, C∞0 (R) is dense in H1,

Proof. The first two claims are proved in [3, Lemma 2.1]). The final claim
follows since clearly C∞0 (R) ⊂ H1 and if u ∈ H1 is orthogonal to C∞0 (R) an
integration by parts shows that

∫
u(−ϕ′′+qϕ) = 0 for all ϕ ∈ C∞0 (R) so that

u is a distributional solution of −u′′ + qu = 0. By Lemma 2.1 it is therefore
identically 0. �

We also need the following result.

Lemma 2.3. For any λ ∈ C there can be at most one linearly independent
solution of −f ′′ + qf = λwf with f ′ in L2 near infinity. Similarly for f ′ in
L2 near −∞.



4 C. Bennewitz, B. M. Brown and R. Weikard

This means that (2.1) is in the ‘limit-point case’ at ±∞, with a termi-
nology borrowed from the right definite case. The lemma is a consequence
of general facts about left definite equations (see our paper [2]), but we will
give a simple direct proof.

Proof. Suppose there are two linearly independent solutions f, g with f ′, g′

in L2 near ∞. We may assume the Wronskian fg′ − f ′g = 1. Now by
Lemma 2.2 f(x)/

√
x and g(x)/

√
x are bounded for large x. It follows that

(fg′ − f ′g)/
√
x = 1/

√
x is in L2 for large x, which is a contradiction.

Similar calculations may be made for x near −∞. �

Let E(x) be the norm of the linear form H1 3 f 7→ f(x). We can easily
find an expression for E(x), since the Riesz representation theorem tells us
that there is an element g0(x, ·) ∈ H1 such that f(x) = 〈f, g0(x, ·)〉. Thus
|f(x)| ≤ ‖g0(x, ·)‖‖f‖, with equality for f = g0(x, ·) so that

E(x) = ‖g0(x, ·)‖ =
√
g0(x, x).

If ϕ ∈ C∞0 we have 〈ϕ, g0(x, ·)〉 = ϕ(x), which after an integration by
parts means ∫

R
(−ϕ′′ + qϕ)g0(x, ·) = ϕ(x)

so (in a distributional sense) g0(x, ·) is a solution of −f ′′ + qf = δx, where
δx is the Dirac measure at x. Since g0(x, y) = 〈g0(x, ·), g0(y, ·)〉 we have a

symmetry g0(x, y) = g0(y, x). Now g0 is realvalued since Im g0(x, ·) satisfies
−f ′′ + qf = 0 and therefore vanishes according to Lemma 2.1. We may thus
write

g0(x, y) = F+(max(x, y))F−(min(x, y))

where F± are real-valued solutions of −f ′′ + qf = 0 small enough at ±∞ for
g0(x, ·) to be in H1 and by Lemma 2.3 this determines F± up to real multi-
ples. The equation satisfied by g0(x, ·) shows that the Wronskian [F+, F−] =
F+F

′
− − F ′+F− = 1. In particular, E(x) is locally absolutely continuous. At

any specified point of R there are elements of H1 that do not vanish, so that
E > 0 and F± never vanish. Since g0(x, x) > 0 we may therefore assume both
to be strictly positive. Note that this still does not determine F± uniquely
since multiplying F+ and dividing F− by the same positive constant does not
change g0.

However, |F ′±|2 + q|F±|2 has finite integral near ±∞, although not,
according to Lemma 2.3, over R. If we can solve the equation −f ′′ + qf = 0
we can therefore determine E(x). For example, if q = 1/4 we have g0(x, y) =
exp(−|x− y|/2) and E(x) ≡ 1.

We shall need some additional properties of F± and make the following
definition.

Definition 2.4. Define K = F−/F+.

We have the following proposition.
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Proposition 2.5.

• F± are both convex,
• lim∞ F ′+ = lim−∞ F ′− = 0,
• F ′± as well as F− are non-decreasing while F+ is non-increasing,
• F+(x)→∞ as x→ −∞ and F−(x)→∞ as x→∞,
• lim−∞ F− and lim∞ F+ are finite,
• 1/F+ ∈ L2 near −∞ while 1/F− ∈ L2 near ∞,
• The function K is strictly increasing with range R+ and of class C1

with a C1 inverse, and K ′ = 1/F 2
+.

Proof. The convexity of F± follows from positivity and the differential equa-
tion they satisfy. Thus F ′± has finite or infinite limits at ±∞, and since F ′± is
in L2 near ±∞ we have lim−∞ F ′− = lim∞ F ′+ = 0 so F ′− ≥ 0 while F ′+ ≤ 0.
It follows that lim∞ F+ and lim−∞ F− are finite.

Neither of F± is constant so it follows that lim∞ F+ = lim−∞ F−+ =
+∞ and that the range of K is R+. Furthermore K ′ = [F+, F−]/F 2

+ = 1/F 2
+

so K ′ is continuous and > 0. Thus K has an inverse of class C1.
Since K(x) =

∫ x
−∞ 1/F 2

+ we have 1/F+ in L2 near −∞, and differenti-

ating 1/K we similarly obtain 1/F− in L2 near ∞. �

3. Spectral theory

In addition to the scalar product, the Hermitian form w(f, g) =
∫
R fgw plays

a role in the spectral theory of (2.1). We denote the total variation measure
of w by |w|, and make the following assumption in the rest of the paper.

Assumption 3.1. w is a real-valued, non-zero measure (distribution of order
zero) and E2|w| is a finite measure.

We then note the following.

Proposition 3.2. If E2|w| is a finite measure the form w(f, g) is bounded in
H1.

Proof. We have |w(f, g)| ≤ ‖f‖‖g‖
∫
RE

2|w|. �

As we shall soon see, the assumption actually implies that the form
w(f, g) is compact in H1. Note that if q = 1/4, or any other constant > 0,
then the assumption is simply that |w| is finite. It may be proved that this
is the case also if q − q0 is a finite signed measure for some constant q0 > 0,
and that it is in all cases enough if (1 + |x|)w(x) is finite.

Using Riesz’ representation theorem Proposition 3.2 immediately shows
that there is a bounded operator R0 on H1 such that∫

R
fgw = 〈R0f, g〉, (3.1)

where ‖R0‖ ≤
∫
RE

2|w|. Since w is realvalued the operator R0 is symmet-

ric. We also have R0u(x) = 〈R0u, g0(x, ·)〉 =
∫
R ug0(x, ·)w so that R0 is an

integral operator.
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It is clear that R0u = 0 precisely if uw = 0, so unless2 suppw = R the
operator R0 has a nontrivial nullspace. We need the following definition.

Definition 3.3. The orthogonal complement of the nullspace of R0 is denoted
by H.

The restriction of R0 toH, which we also denote by R0, is an operator on
H with dense range since the orthogonal complement of the range of R∗0 = R0

is the nullspace of R0. Thus the restriction of R0 toH has a selfadjoint inverse
T densely defined in H and R0 is the resolvent of T at 0.

Lemma 3.4. f ∈ DT and Tf = g precisely if f, g ∈ H and (in the sense of
distributions) −f ′′ + qf = wg.

Proof. Tf = g means that f = R0g which in turn means that 〈f, ϕ〉 =
∫
gϕw

for ϕ ∈ C∞0 which may be written
∫
f(−ϕ′′+qϕ) =

∫
gϕw after an integration

by parts. But this is the meaning of the equation −f ′′ + qf = wg.
The same calculation in reverse, using that according to Lemma 2.2

C∞0 (R) is dense in H1, proves the converse. �

The complement of suppw is a countable union of disjoint open inter-
vals. We shall call any such interval a gap in suppw. We obtain the following
characterisation of the elements of H.

Corollary 3.5.

• The projection of v ∈ H1 onto H equals v in suppw, and if (a, b) is a
gap in the support of w the projection is determined in the gap as the
solution of −u′′+qu = 0 which equals v in the endpoints a and b if these
are finite.

If a = −∞ the restriction of the projection to the gap is the multiple
of F− which equals v in b, and if b = ∞ it is the multiple of F+ which
equals v in a.
• The support of an element of H can not begin or end inside a gap in

the support of w.
• The reproducing kernel g0(x, ·) ∈ H if and only if x ∈ suppw.

Proof. The difference between v and its projection onto H can be non-zero
only in gaps of suppw. Clearly ϕw = 0 for any ϕ ∈ C∞0 (a, b) so that C∞0 (a, b)
is orthogonal to H. It follows that an element of H satisfies the equation
−u′′ + qu = 0 in any gap of the support of w.

The first two items are immediate consequences of this, that non-trivial
solutions of −u′′ + qu = 0 have at most one zero according to Lemma 2.1,
and of the fact that elements of H are continuous.

The third item is an immediate consequence of the first two. �

Theorem 3.6. Under Assumption 3.1 the operator R0 is compact with simple
spectrum, so T has discrete spectrum.

2We always use supports in the sense of distributions.
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Proof. Suppose fj ⇀ 0 weakly in H. Since point evaluations are bounded
linear forms we have fj → 0 pointwise, and {fj}∞1 is bounded in H, as is
{R0fj}∞1 . We have

‖R0fj‖2 =

∫
R
R0fjfjw.

Here the coefficient of w tends point-wise to 0 and is bounded by ‖R0‖‖fj‖2E2

which in turn is bounded by a multiple of E2. It follows by dominated con-
vergence that ‖R0fj‖ → 0. Thus R0 is compact, and the spectrum is simple
by Lemma 2.3. �

Actually, R0 is of trace class as is proved by Eckhardt and Teschl in [10]
for the case q = 1/4, but we will not need this.

4. Jost solutions

In one-dimensional scattering theory Jost solutions play a crucial part. In
the case of the Schrödinger equation these are solutions asymptotically equal
at ∞ respectively −∞ to certain solutions of the model equation −f ′′ = λf .
In the present case the model equation would be one where w ≡ 0, i.e.,
−f ′′+qf = 0. We shall therefore look for solutions f±(·, λ) of −f ′′+qf = λwf
which are asymptotic to F± at ±∞.

Let us write f+(x, λ) = g(x, λ)F+(x), so we are looking for g which
tends to 1 at ∞. We shall see that if, with K = F−/F+ as in Definition 2.4,
there is a bounded solution to the integral equation

g(x, λ) = 1− λ
∫ ∞
x

(K −K(x))F 2
+g(·, λ)w, (4.1)

then it will have the desired properties. For x ≤ t Proposition 2.5 shows that

0 ≤ (K(t)−K(x))F 2
+(t) ≤ F−(t)F+(t) = E2(t),

so that (4.1) implies that

|g(x, λ)| ≤ 1 + |λ|
∫ ∞
x

|g|E2|w|. (4.2)

Therefore successive approximations in (4.1) starting with 0 will lead to a
bounded solution (see Bennewitz [1, Chapter 1]). The convergence is uniform
in x and locally so in λ, so our ‘Jost solution’ f+(x, λ) exists for all complex
λ and is an entire function of λ, locally uniformly in x and real-valued for
real λ. Differentiating (4.1) we obtain

g′(x, λ) = λF+(x)−2
∫ ∞
x

F 2
+g(·, λ)w, (4.3)

so f ′+ = g′F+ + gF ′+ = λF−1+

∫∞
x
F 2
+gw + gF ′+. Differentiating again shows

that f+ satisfies (2.1). Since F 2
+(t) = E2(t)F+(t)/F−(t) ≤ E2(t)F+(x)/F−(x)

if x ≤ t clearly f ′+ is in L2 near ∞, so since g(·, λ) is bounded the first term

is O((F−(x))−1
∫∞
x
E2|w|), and the second term is O(|F ′+|). By Lemma 2.3

there can be no linearly independent solution with derivative in L2 near ∞.
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Since g is bounded in fact |f ′+|2 + q|f+|2 is integrable near ∞. Similar state-
ments, with ∞ replaced by −∞, are valid for f−. We summarize as follows.

Lemma 4.1. The solutions f± have the following properties:

• f+(x, λ) ∼ F+(x) as x→∞ and f−(x, λ) ∼ F−(x) as x→ −∞.
• f ′+(x, λ)→ 0 as x→∞ and f ′−(x, λ)→ 0 as x→ −∞.
• Any solution f of (2.1) for which |f ′|2 + q|f |2 is integrable near ∞ is

a multiple of f+. Similarly, integrability near −∞ implies that f is a
multiple of f−.
• λk is an eigenvalue precisely if f+(·, λk) and f−(·, λk) are linearly depen-

dent, and all eigenfunctions with eigenvalue λk are multiples of f+(·, λk).

Thus λ is an eigenvalue precisely if f±(·, λ) are linearly dependent,
the eigenvalues are simple, and the eigenfunctions are multiples of f+(·, λ).
Clearly f ′+(x, λ) → 0 as x → ∞, but in general one can not expect that
f ′+ ∼ F ′+. For u ∈ H and every eigenvalue λn we define the Fourier coeffi-
cients

u±(λn) = 〈u, f±(·, λn)〉 = λn

∫
R
uf±(·, λn)w, (4.4)

where the second equality follows from (3.1).
Applying Gronwall’s inequality3 to (4.2) gives

|g(x, λ)| ≤ exp
(
|λ|
∫ ∞
x

E2|w|
)
,

|g′(x, λ)| ≤ E−2(x)
(

exp
(
|λ|
∫ ∞
x

E2|w|
)
− 1
)
,

where the second formula is easily obtained by inserting the first in (4.3).
Thus f+(x, ·) and f ′+(x, ·) are entire functions of exponential type

∫∞
x
E2|w|

at most. This is easily sharpened to yield the following lemma.

Lemma 4.2. As functions of λ and locally uniformly in x, the quantities
f±(x, λ) and f ′±(x, λ) are entire functions of zero exponential type4. In fact,
λ 7→ f+(x, λ)/F+(x) is of zero exponential type uniformly for x in any in-
terval bounded from below and f−(x, λ)/F−(x) in any interval bounded from
above. Also the Wronskian [f+, f−] is an entire function of λ of zero expo-
nential type.

Proof. Consider first a solution f of (2.1) with initial data at some point a.
Differentiating H = |f ′|2 + |λ||f |2 we obtain

H ′ = 2 Re((f ′′ + |λ|f)f ′)

= 2 Re((q − λw + |λ|)ff ′) ≤
√
|λ|(|w|+ 1 + |q|/|λ|)H.

3A version of Gronwall’s inequality valid when w is a measure may be found in [1, Lemma

1.3], and [1, Lemma 1.2] may be useful for the estimate of g′.
4Uniformity here means that one can for every ε > 0 find a constant Cε so that the function
may be estimated by eε|λ| for |λ| ≥ Cε, independently of x.
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By use of Gronwall’s inequality this shows that

H(x) ≤ H(a) exp
(√
|λ|
∣∣∣ ∫ x

a

(|w|+ 1 + |q|/|λ|)
∣∣∣)

where the second factor contributes a growth of order 1/2 and type locally
bounded in x.

If now the initial data of f are entire functions of λ of exponential type
then so are f and f ′, and at most of the same type as the initial data. It
follows that locally uniformly in x the functions f+ and f ′+ are entire of

exponential type
∫∞
a
E2|w| for any a, and are thus of zero type. For f+/F+

the uniformity extends to intervals bounded from below.
Similar arguments may be carried out for f− and f ′−, which immediately

implies the result for the Wronskian. �

We shall need the following definition.

Definition 4.3. Let H(a, b) = {u ∈ H : suppu ⊂ [a, b]}.

Clearly H(a, b) is a closed subspace of H.

Corollary 4.4. For every u ∈ H(a,∞) with a ∈ R the generalized Fourier
transform û+ extends to an entire function of zero exponential type vanishing
at 0 and defined by

û+(λ) = λ

∫
R
uf+(·, λ)w.

A similar statement is valid for û− given any u ∈ H(−∞, a).

5. Inverse spectral theory

We shall give a uniqueness theorem for the inverse spectral problem. In or-
der to avoid the trivial non-uniqueness caused by the fact that translating
the coefficients of the equation by an arbitrary amount does not change the
spectral properties of the corresponding operator, we normalize F±, and thus
f±, by requiring F+(0) = F−(0). This means that F+(0) = F−(0) = E(0).

We will need the following lemma.

Lemma 5.1. The Wronskian W (λ) = [f−(·, λ), f+(·, λ)] is determined by the
eigenvalues of T and if λk is an eigenvalue, then

λkW
′(λk) = 〈f−(·, λk), f+(·, λk)〉. (5.1)

Proof. For any x we have

W (λ)−W (λk) = [f−(x, λ)− f−(x, λk), f+(x, λ)− f+(x, λk)]

+ [f−(x, λ), f+(x, λk)] + [f−(x, λk), f+(x, λ)]

since W (λk) = 0. Since f±(x, ·) and f ′±(x, ·) are entire functions the first
term is O(|λ− λk|2) as λ→ λk.

The function h(x) = [f−(x, λ), f+(x, λk)]→ 0 as x→ −∞ by Lemma 4.1
and since f± are proportional for λ = λk.



10 C. Bennewitz, B. M. Brown and R. Weikard

We have h′(x) = (λ− λk)f−(x, λ)f+(x, λk)w so if w has no point mass
at x,

[f−(x, λ), f+(x, λk)]

λ− λk
→
∫ x

−∞
f−(·, λk)f+(·, λk)w

as λ→ λk, by Lemma 4.2. A similar calculation shows that interchanging λ
and λk in the Wronskian the limit is the same integral, but taken over (x,∞),
so we obtain W ′(λk) =

∫
R f−(·, λk)f+(·, λk)w. Now, if v ∈ H, then

〈f−(·, λk), v〉 = λk〈R0f−(·, λk), v〉 = λk

∫
R
f−(·, λk)vw,

so we obtain (5.1).
The zeros of the Wronskian are located precisely at the eigenvalues, and

by (5.1) the zeros of the Wronskian are all simple, so that the corresponding
canonical product is determined by the eigenvalues.

However, if two entire functions with the same canonical product are
both of zero exponential type, then their quotient is also entire of zero ex-
ponential type according to Lemma A.1 and has no zeros. It is therefore
constant. It follows that the Wronskian , which equals −1 for λ = 0, is de-
termined by the eigenvalues. �

In addition to the eigenvalues we introduce, for each eigenvalue λn,
the corresponding matching constant αn defined by f+(·, λn) = αnf−(·, λn).
Together with the eigenvalues the matching constants will be our data for
the inverse spectral theory. Instead of the matching constants one could use
normalization constants ‖f+(·, λn)‖ or ‖f−(·, λn)‖. If λn is an eigenvalue,
then by Lemma 5.1 the scalar product 〈f−(·, λn), f+(·, λn)〉 is determined by
the Wronskian, in other words by the eigenvalues, and since

〈f−(·, λn), f+(·, λn)〉 = αn‖f−(·, λn)‖2 = α−1n ‖f+(·, λn)‖2

all three sets of data are equivalent if the eigenvalues are known. We therefore
make the following definition.

Definition 5.2. By the spectral data of the operator T we mean the set of
eigenvalues for T together with the corresponding matching constants and
the two sets of normalization constants.

The spectral data of T are thus determined if the eigenvalues and for
each eigenvalue either the matching constant or one of the normalization
constants are known.

In our main result we will be concerned with two operators T and T̆ of
the type we have discussed. Connected with T̆ there are then coefficients q̆, w̆

and solutions F̆±, f̆±, etc.

Theorem 5.3. Suppose T and T̆ have the same spectral data. Then there
are continuous functions r, s defined on R such that r is strictly positive
with a derivative of locally bounded variation, s : R → R is bijective and
s(x) =

∫ x
0
r−2. Moreover, q̆ ◦ s = r3(−r′′ + qr) and w̆ ◦ s = r4w.
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Conversely, if the coefficients of T and T̆ are connected in this way,then
T and T̆ have the same spectral data.

Given additional information one may even conclude that T = T̆ .

Corollary 5.4. Suppose in addition to the operators T and T̆ having the same
spectral data that q̆ = q. Then T = T̆ .

We postpone the proofs to the next section.

Remark 5.5. The spectral data of T , as we have defined them, are particularly
appropriate for dealing with the Camassa-Holm equation, i.e. the case q =
1/4, since if w = u−uxx where u is a solution of the Camassa-Holm equation
for κ = 0, then as w evolves with time the eigenvalues are unchanged while
the other spectral data evolve in the following simple way:

• αk(t) = et/2λkαk(0),
• ‖f−(·, λk; t)‖2 = e−t/2λk‖f−(·, λk; 0)‖2,
• ‖f+(·, λk; t)‖2 = et/2λk‖f+(·, λk; 0)‖2.

6. Proofs of Theorem 5.3 and Corollary 5.4.

We begin with the proof of the converse of Theorem 5.3, and then de-

fine ϕ±(·, λ) = rf̆±(s(·), λ). Using that r2s′ = 1 one easily checks that

[ϕ−, ϕ+] = [f̆−, f̆+]. If we can prove that ϕ± = f± it follows that eigen-
values and matching constants agree for the two equations.

Now ϕ±(x, λ)/ϕ±(x, 0) = f̆±(s(x), λ)/F̆±(s(x))→ 1 as x→ ±∞ so we
only need to prove that ϕ± solve the appropriate equation and that ϕ±(·, 0) =
F±. The first property follows by an elementary computation, so it follows
that ϕ±(·, 0) = A±F+ +B±F− for constants A± and B±. We have

A− +B−K

A+ +B+K
=
ϕ−(·, 0)

ϕ+(·, 0)
= K̆ ◦ s,

so the Möbius transform t 7→ A−+B−t
A++B+t

has fixpoints 0, 1 and ∞ so that

A− = B+ = 0 and B− = A+ 6= 0. Thus ϕ±(·, 0) = AF± for some constant

A which is > 0 since ϕ±(·, 0) and F± are all positive. But 1 = [F̆−, F̆+] =
[ϕ−(·, 0), ϕ+(·, 0)] = A2 so A = 1 and the proof is finished.

Keys for proving our inverse result are the connections between the sup-
port of an element of H and the growth of its generalized Fourier transform.
Such results are usually associated with the names of Paley and Wiener. We
could easily prove a theorem of Paley-Wiener type for our equation, analogous
to what is done in our paper [3], but shall not quite need this.

Lemma 6.1. Suppose δ > 0, a ∈ suppw and u ∈ H(a,∞). Then

û+(λ)/λf+(a, λ) = O(|λ/ Imλ|) as λ→∞,
û+(λ)/λf+(a, λ) = o(1) as λ→∞ in | Imλ| ≥ δ|Reλ|.

Similar estimates hold for û−(λ)/λf−(a, λ) if u ∈ H(−∞, a).
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Proof. For Imλ 6= 0 we have f+(x, λ) = λf+(a, λ) f+(x,λ)
λf+(a,λ) , where we denote

the last factor by ψ[a,∞)(x, λ), since this is the Weyl solution for the left
definite Dirichlet problem (1.1) on [a,∞) (see our paper [2, Lemma 4.10]).
Like in [2, Chapter 3] one may show that

〈u, ψ[a,∞)(·, λ)〉 =

∫
R

ũ(t)

t− λ
dσ(t)

with absolute convergence, where ũ is the generalized Fourier transform of
u associated with the Dirichlet problem on [a,∞) and dσ the corresponding
spectral measure. Thus

û+(λ) = λf+(a, λ)

∫
R

ũ(t)

t− λ
dσ(t),

so the statement for û+ follows by Lemma A.3. Similar calculations give the
result for for û−. �

We shall also need the following lemma.

Lemma 6.2. Suppose x ∈ suppw. Then

f−(x, λ)f+(x, λ)

[f−, f+]
= O(|λ/ Imλ|) as λ→∞.

Proof. Let m±(λ) = ±f ′±(x, λ)/(λf±(x, λ)). These are the Titchmarsh-Weyl
m-functions (see [2, Chapter 3]) for the left definite problem (2.1) with Dirich-
let boundary condition at x for the intervals [x,∞) and (−∞, x] respectively,
and are thus Nevanlinna functions5. Setting m = −1/(m−+m+) also m is a
Nevanlinna function and

f−(x, λ)f+(x, λ)

[f−, f+]
= −m(λ)/λ.

As a Nevanlinna function m may be represented as

m(λ) = A+Bλ+

∫
R

1 + tλ

t− λ
dρ(t)

t2 + 1
,

where A ∈ R, B ≥ 0 and dρ(t)/(t2 + 1) is a finite positive measure. Thus

m(λ)/λ = A/λ+B +
1

λ

∫
R

1

t− λ
dρ(t)

t2 + 1
+

∫
R

1

t− λ
t dρ(t)

t2 + 1
.

The lemma therefore follows by use of Lemma A.3. �

We may expand every u ∈ H in a series u(x) =
∑
û±(λn) f±(x,λn)

‖f±(·,λn)‖2

where {û±(λn)/‖f±(·, λn)‖} ∈ `2. Conversely, any such series converges to

an element of H and thus locally uniformly. Similarly for ŭ ∈ H̆. If the
eigenvalues and normalization constants for T and T̆ are the same we may
therefore define a unitary map U : H → H̆ by setting

Uu(s) = ŭ(s) =
∑

û+(λn)
f̆+(s, λn)

‖f̆+(·, λn)‖2
.

5That is, functions m analytic in C \ R with Imλ Imm(λ) ≥ 0 and m(λ) = m(λ).
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Note that expanding with respect to {f−(·, λn)} and defining U by use of
these expansions we obtain the same operator U . The following proposition
is an immediate consequence of the definition of U .

Proposition 6.3. Suppose that ŭ = Uu, v̆ = Uv, λk is an eigenvalue and

û±(λk) = 〈u, f±(·, λk)〉. Then û±(λk) = 〈ŭ, f̆±(·, λk)〉, Uf±(·, λk) = f̆±(·, λk)
and u is in the domain of T with Tu = v if and only if ŭ is in the domain of
T̆ with T̆ ŭ = v̆.

Assume now that the generalized Fourier transform û± of u ∈ H, which
is defined on all eigenvalues λn, has an entire extension and define the aux-
iliary function

A±(u, x, λ) = Rλu(x) +
û±(λ)f∓(x, λ)

λ[f−(·, λ), f+(·, λ)]
,

where Rλ is the resolvent at λ of T . Similar auxiliary functions Ă± may be

defined related to T̆ .
The next lemma is crucial.

Lemma 6.4. Suppose x ∈ suppw and y ∈ supp w̆. Also suppose u ∈ H(x,∞)

and v̆ ∈ H̆(y,∞) and let ŭ = Uu, v = U−1v̆. Then either ŭ ∈ H̆(y,∞) or
v ∈ H(x,∞).

Similarly, if u ∈ H(−∞, x) and v̆ ∈ H̆(−∞, y), then ŭ ∈ H̆(−∞, y) or
v ∈ H(−∞, x).

Proof. By Corollary 4.4 u and v̆ have generalized Fourier transforms û+ and
v̂+ which have entire extensions of zero exponential type. These are also
extensions of the generalized Fourier transforms of ŭ respectively v. We have

A+(v, x, λ) = Rλv(x) +
v̂+(λ)

λf̆+(y, λ)

f̆+(y, λ)

f+(x, λ)

f+(x, λ)f−(x, λ)

[f−, f+]
.

The first term is O(‖Rλv‖) and therefore O(| Imλ|−1), and by Lemmas 6.1
and 6.2 respectively both the first and last factors in the second term are
O(|λ/ Imλ|) as λ→∞ while the first factor tends to 0 in any double sector

| Imλ| ≥ δ|Reλ|. Adding similar considerations for Ă+ we therefore obtain

A+(v, x, λ) = (|λ|/| Imλ|)2O
(

1 +
∣∣∣ f̆+(y, λ)

f+(x, λ)

∣∣∣) as λ→∞,

Ă+(ŭ, y, λ) = (|λ|/| Imλ|)2O
(

1 +
∣∣∣f+(x, λ)

f̆+(y, λ)

∣∣∣) as λ→∞,

A+(v, x, λ) = o
(

1 +
∣∣∣ f̆+(y, λ)

f+(x, λ)

∣∣∣) as λ→∞ in | Imλ| ≥ δ|Reλ|,

Ă+(ŭ, y, λ) = o
(

1 +
∣∣∣f+(x, λ)

f̆+(y, λ)

∣∣∣) as λ→∞ in | Imλ| ≥ δ|Reλ|.
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Thus

min(|A+(v, x, λ)|, |Ă+(ŭ, y, λ)|) = O(|λ/ Imλ|2) as λ→∞,

min(|A+(v, x, λ)|, |Ă+(ŭ, y, λ)|) = o(1) as λ→∞ in | Imλ| ≥ δ|Reλ|,

By Lemma 4.2 and Theorem A.4 the functions A+(v, x, ·) and Ă+(ŭ, y, ·) are
of zero exponential type, so by Lemma A.6 one of them vanishes.

If A+(v, x, ·) = 0 Lemma A.5 shows that A+(v, z, ·) = 0 for all z ≤ x.
Thus inserting f(z) = A+(v, z, λ) in −f ′′ + (q − λw)f shows that wv = 0
in (−∞, x], so that v = 0 in (−∞, x] except in gaps of suppw. Since v
vanishes at the endpoints of any gap with endpoints in (−∞, x] it follows by
Corollary 3.5 that v vanishes in all such gaps. We conclude that v ∈ H(x,∞).

Similarly, if Ă+(ŭ, y, ·) = 0 we conclude that ŭ ∈ H̆(y,∞).

Analogous considerations involving A− and Ă− prove the second state-
ment. �

We next show how supports of elements of H are related to the supports
of their images under U . Note that dimH equals the number of points in
suppw if this is finite and is infinite otherwise.

Lemma 6.5. Suppose suppw contains at least two points. Then so does supp w̆
and there are strictly increasing, bijective maps

s+ : suppw \ {sup suppw} → supp w̆ \ {sup supp w̆}
s− : suppw \ {inf suppw} → supp w̆ \ {inf supp w̆}

such that H̆(s+(x),∞) = UH(x,∞) and H̆(−∞, s−(x)) = UH(−∞, x) for
all x in the domains of s+ respectively s−.

Proof. Suppose u ∈ H(x,∞) where x ∈ suppw \ {sup suppw}. There is at
least one such u 6= 0 (obtained by subtracting an appropriate multiple of

g0(z, ·) from g0(x, ·) where x < z ∈ suppw). Therefore ŭ /∈ H̆(y,∞) for
some y ∈ supp w̆. By Lemma 6.4 this means that v ∈ H(x,∞) for every

v̆ ∈ H̆(y,∞). Now let s+(x) be the infimum of all y ∈ supp w̆ for which the
last statement is true.

If s+(x) = −∞ the support of w̆ is unbounded from below so that the

projection onto H̆ of a compactly supported element of H̆1 has a support
bounded from below. Such elements of H̆ are dense, and consequently H̆ ⊂
UH(x,∞). However, this would contradict the fact that U is unitary. Thus
s+(x) is finite, so s+(x) ∈ supp w̆.

Note that if s+(x) is the left endpoint of a gap in supp w̆, then the
infimum defining s+(x) is attained. Thus, if it is not there are points of supp w̆
to the right of and arbitrarily close to s+(x). But then we may approximate

elements of H̆(s+(x),∞) arbitrarily well (see [3, Lemma 6.8]) by elements of

H̆(y,∞) for some y > s+(x). It follows that H̆(s+(x),∞) ⊂ UH(x,∞).
On the other hand, if y = −∞ or supp w̆ 3 y < s+(x) there exists v̆ ∈

H̆(y,∞) such that U−1v̆ /∈ H(x,∞) and thus, by Lemma 6.4, UH(x,∞) ⊂
H̆(y,∞). Since this is true for all y ∈ supp w̆ with y < s+(x) we have in
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fact UH(x,∞) ⊂ H̆(s+(x),∞) unless s+(x) is the right endpoint of a gap in
supp w̆. In the latter case we may choose y ≥ −∞ so that (y, s+(x)) is a gap
in supp w̆.

Thus H̆(y,∞) is a one-dimensional extension of H̆(s+(x),∞), so if there

exists u ∈ H(x,∞) with suppUu intersecting (y, s+(x)), then U−1H̆(y,∞) ⊂
H(x,∞). But this would mean that s+(x) ≤ y. It follows that UH(x,∞) =

H̆(s+(x),∞) in all cases.
The function s+ has range supp w̆ \{sup supp w̆}, since if not let y be in

this set but not in the range of s+. An argument analogous to that defining

s+ determines x ∈ suppw such that H̆(y,∞) = UH(x,∞). Since x can not
be in the domain of s+ we must have x = sup suppw, so that H(x,∞) = {0}
and thus also H̆(y,∞) = {0}. This contradicts the choice of y.

Analogous reasoning proves the existence of the function s−. �

We can now show that U is given by a so called Liouville transform.

Lemma 6.6. There exist real-valued maps r, s defined in suppw such that r
does not vanish and s : suppw → supp w̆ is increasing and bijective and such
that u = rUu ◦ s on suppw for any u ∈ H.

Proof. If suppw = {x}, then dimH = 1 so also dim H̆ = 1. It follows that
also supp w̆ is a singleton, say {s}. It is clear that H consists of all multiples

of g0(x, ·) and H̆ of all multiples of ğ0(s, ·). It follows that for all u ∈ H we
have u(x) = rŭ(s) where r = g0(x, x)/ğ0(s, s) which proves the lemma in this
case, so now assume suppw has at least two points.

If x ∈ suppw and v ∈ H with v(x) = 1 we may, given any u ∈ H,
write u = u− + u+ + u(x)v where u− ∈ H(−∞, x) and u+ ∈ H(x,∞).
Applying U we obtain from Lemma 6.5 that ŭ = ŭ− + ŭ+ + u(x)v̆ where

ŭ− ∈ H̆(−∞, s−(x)) unless x = inf suppw in which case u− = 0 and thus

ŭ− = 0. Similarly ŭ+ ∈ H̆(s+(x),∞) unless x = sup suppw in which case
u+ = 0 and thus ŭ+ = 0.

If s± are both defined at x we can not have s−(x) < s+(x) since then the

restrictions of elements of H̆ to (s−(x), s+(x)) would be a one-dimensional
set, which implies that (s−(x), s+(x)) is an unbounded gap in supp w̆, con-
tradicting the fact that s±(x) are in supp w̆.

A similar reasoning but starting from ŭ ∈ H̆ and using the inverses
of s± shows that we can not have s−(x) > s+(x) either, so that we define
s = s+ = s− whenever one of s± is defined. It now follows that ŭ(s(x)) =

v̆(s(x))u(x), and v̆(s(x)) 6= 0 since not all elements of H̆ vanish at s(x). We
may now set r(x) = 1/v̆(s(x)) and the proof is finished. �

Since s : suppw → supp w̆ is bijective and increasing it follows that
(a, b) is a gap in suppw if and only if (s(a), s(b)) is a gap in supp w̆, and
similarly if a = −∞ or b = ∞. Thus gaps in suppw and supp w̆ are in a
one-to-one correspondence. We now need to define the functions r, s also in
gaps of suppw and prove the other claimed properties of these functions. The
key to this is the following proposition.
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Proposition 6.7. If x and y are in suppw, then

g0(x, y) = r(x)r(y)ğ0(s(x), s(y)).

Proof. Suppose ŭ ∈ H̆ and u = U−1ŭ. Since s(x) ∈ supp w̆ it follows that

ğ0(s(x), ·) ∈ H̆ and, by Lemma 6.6, u(x) = r(x)ŭ(s(x)) so that

〈ŭ,Ug0(x, ·)〉 = 〈u, g0(x, ·)〉 = u(x) = r(x)ŭ(s(x)) = r(x)〈ŭ, ğ0(s(x), ·)〉.
Thus Ug0(x, ·) = r(x)ğ0(s(x), ·). Since y ∈ suppw Lemma 6.6 also shows that
g0(x, y) = r(y)Ug0(x, ·)(s(y)), and combining these formulas completes the
proof. �

The proposition has the following corollary.

Corollary 6.8. If x ∈ suppw, then

F±(x) = r(x)F̆±(s(x)). (6.1)

Proof. Suppose x, y ∈ suppw and y ≤ x. Then, by Proposition 6.7,

F+(x)

r(x)F̆+(s(x))
=
r(y)F̆−(s(y))

F−(y)
.

This implies that both sides are independent of x and y and thus equal a
constant C. The corollary is proved if we can prove that C = 1.

Now let λ be an eigenvalue of T̆ so that f̆+(·, λ) is an eigenfunction and

according to Proposition 6.3 f+(·, λ), given by f+(x, λ) = r(x)f̆+(s(x), λ) for
x ∈ suppw, the corresponding eigenfunction for T . We then have

C
f+(x, λ)

F+(x)
=
f̆+(s(x), λ)

F̆+(s(x))

for all x ∈ suppw. If suppw is bounded above, choose x = sup suppw. Then

we have f+(x, λ) = F+(x) and f̆+(s(x), λ) = F̆+(s(x)) so that C = 1. If
suppw is not bounded above we take a limit as x→∞ in suppw and arrive
at the same conclusion. �

If we can extend the definitions of r and s to continuous functions such
that (6.1) continues to hold for all x it follows that u = rUu ◦ s for all u ∈ H
even in gaps of suppw. This is a consequence of two facts. Firstly, the formula
u = rŭ ◦ s then gives a bijective map of the solutions of −u′′ + qu = 0 to the
solutions of −ŭ′′+ q̆ŭ = 0 and, secondly, elements of H and H̆ are determined
in gaps of suppw respectively supp w̆ as described in Corollary 3.5.

With K as in Definition 2.4 and K̆ defined similarly we must define s so
that K = K̆ ◦s, so Proposition 2.5 and the normalization of F± and F̆± show

that s(0) = 0 and we have s = K̆−1 ◦K. Thus s is strictly increasing of class

C1 with range R and a strictly positive derivative s′ = (F̆+ ◦ s/F+)2, which

is locally absolutely continuous. Furthermore we must define r = F+/F̆+ ◦ s.
This gives r > 0 and shows that r is locally absolutely continuous with a
derivative of locally bounded variation as well as r2s′ = 1 so that s(x) =∫ x
0
r−2. With these definitions (6.1) holds for all x.
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Differentiating F+ = rF̆+ ◦ s we obtain F ′+ = rs′F̆ ′+ ◦ s + r′F̆+ ◦ s =

F̆ ′+ ◦ s/r + r′F̆+ ◦ s. Differentiating once more we obtain

qF+ = F ′′+ = s′F̆ ′′+ ◦ s/r − r′F̆ ′+ ◦ s/r2 + r′s′F̆ ′+ ◦ s+ r′′F̆+ ◦ s

= r−3q̆ ◦ sF̆+ ◦ s+ r′′F̆+ ◦ s = r−4q̆ ◦ sF+ + r′′F+/r.

It follows that
q̆ ◦ s = r3(−r′′ + qr).

A similar calculation, using that according to Proposition 6.3 Tu = v
precisely if T̆ ŭ = v̆, shows that we also have

w̆ ◦ s = r4w.

This uses that the range of T is H, so that there always are choices of v
different from 0 in a neighborhood of any given point.

This completes the proof of Theorem 5.3. To prove Corollary 5.4 we
need only note that if q = q̆, then K = K̆ so that s is the identity and r ≡ 1.
Thus w̆ = w.

Appendix A. Some technical lemmas

We begin by quoting a standard fact.

Lemma A.1. Suppose f , g are entire functions of zero exponential type such
that f/g is entire. Then f/g is also of zero exponential type.

The lemma is a special case of the corollary to Theorem 12 in Chapter
I of Levin [14]. We shall also need the following lemma.

Lemma A.2. Suppose f is entire and for every ε > 0 satisfies

Im(z)f(z) = O(eε|z|)

for large |z|. Then f is of zero exponential type.

Proof. Put u = log+ |f |. Then, with z = reiθ,

0 ≤ u(r, θ) ≤ εr +O(1) + log(| sin θ|−1)

for large r. The last term is locally integrable, so we obtain

1

2π

∫ 2π

0

u(r, θ) dθ ≤ εr +O(1).

Now, since u is subharmonic and non-negative we have, by the Poisson inte-
gral formula,

0 ≤ u(z) ≤ 1

2π

∫ 2π

0

r2 − |z|2

|reiθ − z|2
u(reiθ) dθ ≤ 3

2π

∫ 2π

0

u(reiθ) dθ

if |z| ≤ r/2, since then

0 ≤ r2 − |z|2

|reiθ − z|2
≤ r2 − |z|2

(r − |z|)2
=
r + |z|
r − |z|

≤ 3.
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It follows that 0 ≤ u(z) ≤ 6ε|z|+O(1) if |z| = r/2, so |f(z)| = O(e6ε|z|) for
large |z|. Thus f is of zero exponential type. �

Our next lemma estimates the Stieltjes transform of certain measures.

Lemma A.3. Suppose dµ is a (signed) Lebesgue-Stieltjes measure and that

h(λ) =
∫
R
dµ(t)
t−λ is absolutely convergent for Imλ 6= 0. As λ → ∞ we then

have h(λ) = O(|λ|/| Imλ|) and for any δ > 0 we have h(λ) = o(1) as λ→∞
in the double sector | Imλ| ≥ δ|Reλ|.

Proof. We have

|h(λ)| ≤
∫
R

∣∣∣ t− i
t− λ

∣∣∣ |dµ|(t)|t− i|
.

Here the first factor may be easily estimated by (2|λ| + 1)/| Imλ| so6 the
first statement follows. Furthermore, the first factor tends boundedly to 0 as
λ→∞ in the sector | Imλ| ≥ δ|Reλ|, so the second statement follows. �

We now turn to the auxiliary functions of the previous section.

Theorem A.4. If û+(λ)/λ is entire so is A+(u, x, ·), and if û+ is also of
zero exponential type so is A+(u, x, ·). Similarly for A−(u, x, ·), depending on
properties of û−.

Proof. Let A denote the function A+(u, x, ·), i.e.,

A(λ) = (Rλu)(x) +
û+(λ)f−(x, λ)

λW (λ)

where W (λ) = [f−(·, λ), f+(·, λ)]. Thus A is meromorphic with poles possible
at the eigenvalues of T , which are also the zeros of W . There is no pole at 0,
since this is no eigenvalue and û+ vanishes there. We have

Rλu(x) =
∑ û+(λn)f+(x, λn)

(λn − λ)‖f+(·, λn)‖2
,

so the residue at λ = λn is

−û+(λn)
f+(x, λn)

‖f+(·, λn)‖2
= −û+(λn)

f−(x, λn)

〈f−(·, λn), f+(·, λn)〉
.

Since λnW
′(λn) = 〈f−(·, λn), f+(·, λn)〉 by Lemma 5.1 the residues of the

two terms in A cancel and A is entire.
It is also clear that f(λ) = Rλu(x)W (λ) is entire, and since Im(λ)Rλ

is bounded we obtain the same growth estimates for Im(λ)f as for W . Since
W is of zero exponential type, so is f by Lemma A.2. It follows that A is the
quotient of two functions of zero exponential type if û+ is of zero exponential
type. Thus A is itself of zero exponential type by Lemma A.1.

Similarly one proves the statements about A−(u, x, ·). �

We shall also need the following result.

6The best possible t-independent estimate is (|λ+ i|+ |λ− i|)/(2| Imλ|).
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Lemma A.5. Suppose λ 7→ A+(u, z, λ) is an entire function of zero exponen-
tial type for every z ≤ x and that it vanishes identically for z = x. Then it
vanishes identically for all z ≤ x.

Similarly, if λ 7→ A−(u, z, λ) is an entire function of zero exponential
type for every z ≥ x and vanishes identically for z = x, then it vanishes
identically for all z ≥ x.

Proof. Suppose A+(u, x, ·) = 0. Then

A+(u, z, λ) = Rλu(z)− ψ(−∞,x](z, λ)λRλu(x),

where ψ(−∞,x](z, λ) = f−(z, λ)/(λf−(x, λ)) is the Weyl solution for (2.1) on
(−∞, x] with a Dirichlet condition at x. This function tends to 0 as λ→∞
along the imaginary axis (see [2, Corollary 3.12]), while the operator λRλ
stays bounded, so it is clear that A+(v, z, λ)→ 0 as λ→∞ on the imaginary
axis. Since A+(v, z, ·) is entire of zero exponential type it follows by the
theorems of Phragmén-Lindelöf and Liouville that A+(v, z, ·) = 0.

Similar arguments apply in the case of A−. �

The next lemma is crucial but a very slight extension of a lemma by de
Branges. We shall give a full proof, however, since there is an oversight in
the proof by de Branges which will be corrected below. We are not aware of
the oversight being noted in the literature, but a correct proof may also be
found in the Diplomarbeit of Koliander [13].

Lemma A.6. Suppose Fj are entire functions of zero exponential type, and
assume that for some α ≥ 0 we have

min(|F1(λ)|, |F2(λ)|) = o(|λ|α)

uniformly in Reλ as | Imλ| → ∞, as well as min(|F1(iν)|, |F2(iν)|) = o(1)
as ν → ±∞. Then F1 or F2 vanishes identically.

This is a simple consequence of the following lemma, which is essentially
de Branges’ [4, Lemma 8, p. 108].

Lemma A.7. Let Fj be entire functions of zero exponential type, and assume
that min(|F1(z)|, |F2(z)|) = o(1) uniformly in Re z as | Im z| → ∞. Then F1

or F2 is identically zero.

Proof of Lemma A.6. Suppose first that F1 is a polynomial not identically
zero. Then, by assumption, F2(iν) = o(1) as ν → ±∞, so by the theorems
of Phragmén-Lindelöf and Liouville it follows that F2 vanishes identically.
Similarly if F2 is a polynomial.

In all other cases F1, F2 both have infinitely many zeros, so if n ≥ α
and z1, . . . , zn are zeros of F1 we put G1(λ) = F1(λ)/

∏n
1 (λ − zj). Defining

G2 similarly we now have min(|G1(λ)|, |G2(λ)|) = o(1) uniformly in Reλ
as Imλ → ±∞, while G1, G2 are still entire of zero exponential type. By
Lemma A.7 it follows that G1 or G2 is identically zero, and the lemma follows.

�

To prove Lemma A.7 we need some additional lemmas.
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Lemma A.8. Suppose F is entire of exponential type. If there is a constant
C and a sequence rj →∞ such that |F (z)| = O(1) as j →∞ for | Im z| ≥ C
and |z| = rj, then F is constant.

Proof. Setting u = log+ |F | we have u(z) = O(1) if | Im z| ≥ C and |z| = rj .
If z = rje

iθ the condition | Im z| ≤ C means | sin θ| ≤ C/rj , and the measure
of the set of θ ∈ [0, 2π] satisfying this is O(1/rj) as j →∞, whereas |F (z)| ≤
eO(|z|) so that u(rje

iθ) = O(rj). Thus
∫ 2π

0
u(rje

iθ) dθ = O(1) as j →∞.
It follows that F is bounded, using the Poisson integral formula in much

the same way as in the proof of Lemma A.2, so that F is constant. �

Next we prove a version of de Branges’ Lemma 7 on p. 108 of [4], with
the added assumption that 0 < p < 1, with p as below. Without the extra
assumption the lemma is not true7. If F is an entire function we define u as
before and

V (r) =

∫ 2π

0

(u(reiθ))2 dθ.

Furthermore, let x = log r so that u(reiθ) = u(ex+iθ) is a continuous, sub-
harmonic and non-negative function of (x, θ), with period 2π in θ, and put
v(x) = V (ex). Let M = {(x, θ) : u(ex+iθ) > 0}. The set M has period 2π in
θ, and we define p(x) so that 2πp(x) is the measure of the trace

M(x) = {θ ∈ [0, 2π) : (x, θ) ∈M}.
The function p is lower semi-continuous, and we have p(x) ≤ 1. Now assume
one may choose a so that p(x) > 0 for x ≥ a. Thus p is locally in [a,∞)
bounded away from 0, so that 1/p is upper semi-continuous, positive and
locally bounded. We may therefore define the strictly increasing function

s(x) =

∫ x

a

exp(

∫ t

a

1/p) dt.

Lemma A.9. Suppose 0 < p(x) < 1 for all x ≥ a. Then the quantity v is a
convex function of s > 0.

Proof. We may think of u as defined on a cylindrical manifold C with coor-
dinates (x, θ) ∈ R× [0, 2π) of which M is an open subset. In M the function
u is harmonic, and the boundary ∂M is a level set of |F |. The boundary is
therefore of class C1 except where the gradient of |F | vanishes. However, the
length of the gradient equals |F ′|, as is easily seen, and the exceptional points
are therefore locally finite in number. We may therefore use integration by
parts (the divergence theorem or the general Stokes theorem) for the set M .

Assuming ϕ ∈ C∞0 (C) and integrating by parts we obtain∫
M

∆ϕu2 =

∫
∂M

(
u2
∂ϕ

∂n
− 2ϕu

∂u

∂n

)
+

∫
M

ϕ∆u2 = 2

∫
M

ϕ| gradu|2,

7The original statement of de Branges is correct if one defines p(x) =∞ whenever p(x) = 1

according to de Branges. This is not an unnatural definition, but will not help in proving
his Theorem 35 nor our Lemma A.7.
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since u vanishes on ∂M and is harmonic in M . Now suppose ϕ is independent
of θ. Then we may write the above as∫

R
ϕ′′v =

∫
R
ϕ(x)

(
2

∫
M(x)

(u2x + u2θ)
)
dx,

so that (in the sense of distributions) v′′(x) = 2
∫
M(x)

(u2x + u2θ). A similar

calculation shows that v′(x) =
∫
M(x)

2uux.

The function s has a C1 inverse, so we may think of x, and thus v,

as a function of s. We obtain v′ = s′ dvds and v′′ = (s′)2 d
2v
ds2 + s′′ dvds . Thus

(s′)2 d
2v
ds2 = v′′ − v′s′′/s′ = v′′ − v′/p. We need to prove the positivity of this.

Now

v′′(x)− v′(x)/p(x) = 2

∫
M(x)

(u2x + u2θ − uux/p)

= 2

∫
M(x)

((ux − u/2p)2 + u2θ − u2/4p2) dθ

≥ 2
(∫

M(x)

u2θ −
1

4p2

∫
M(x)

u2
)
.

Positivity therefore follows if we have the inequality∫
M(x)

u2θ ≥
1

4p2(x)

∫
M(x)

u2. (A.1)

Since p(x) < 1 the function θ 7→ u(ex+iθ) has a zero, so that u vanishes
at the endpoints of all components of the open set M(x). If I is such a
component we therefore have

∫
I
(uθ)

2 ≥ (π/|I|)2
∫
I
u2 where |I| is the length

of I.

This just expresses the fact that the smallest eigenvalue of −u′′ = λu
with Dirichlet boundary conditions on I is (π/|I|)2. We have (π/|I|)2 ≥
(2p)−2 since |I| ≤ 2πp, so adding up the inequalities for the various compo-
nents of M(x) we obtain (A.1), and the proof is finished. �

Proof of Lemma A.7. Suppose first that F1 is bounded and therefore con-
stant. If this constant is not zero the assumption implies that F2(iν) → 0
as ν → ±∞. Since F2 is of zero exponential type the Phragmén-Lindelöf
principle shows that F2 is bounded and has limit zero along the imaginary
axis and therefore is the constant 0. Similarly if F2 is bounded. We may thus
assume that F1 and F2 are both unbounded.

If there is a sequence rj →∞ such that F1(z) satisfies the assumptions
of Lemma A.8, then F1 is constant according to Lemma A.8. Similarly for
F2.

We may thus also assume that for k = 1, 2 and every large r the in-
equality |Fk(z)| ≤ 1 is violated for some z with |z| = r and | Im z| > C. Since
Fk is analytic and thus continuous, the opposite inequalities must hold on
some open θ-sets for z = reiθ and every large r.
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But if |F1(z)| > 1 we must have |F2(z)| ≤ 1 for large |z| and | Im z| > C
and vice versa. It follows that for some a we have 0 < pk(x) < 1, k = 1, 2,
for x ≥ a.

By Cauchy-Schwarz 1
2π

∫ 2π

0
u1(reiθ) dθ ≤

(
1
2π

∫ 2π

0
u21(reiθ) dθ

)1/2
, so it

follows that if v1 is bounded, then so is F1, using the Poisson integral formula
in much the same way as in the proof of Lemma A.2. Thus v1 must be
unbounded, and since it is non-negative and convex as a function of s1 there
is a constant c > 0 such that v1(x) ≥ cs1(x) for large x. Similarly we may
assume v2(x) ≥ cs2(x) for large x. We shall show that this contradicts the
assumption of order for F1, F2.

Using the convexity of the exponential function we obtain for large x > a(
V1(r(x)) + V2(r(x))

)
/2 ≥ c

∫ x

a

exp
(∫ t

a

(1/p1 + 1/p2)/2
)
dt. (A.2)

Now, by assumption min(u1(reiθ), u2(reiθ)) = 0 for large r and C ≤ r| sin θ|
so that then u1 or u2 equal zero. The measure of the θ-set not satisfying
r| sin θ| ≥ C for a given r is less than 2πC/r. It follows that p1+p2 ≤ 1+C/r.
Since

1

p1
+

1

p2
=
p1 + p2
p1p2

≥ 4

p1 + p2
≥ 4r

r + C
=

4ex

ex + C

the integral in (A.2) is at least 1
2 (e2x− e2a)/(ea +C)2. Thus V1(r) + V2(r) ≥

c′r2 for some constant c′ > 0 and large r. The assumption of order for Fk
means, however, that Vk(r) = o(r2). This contradiction proves the lemma.

�
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