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Abstract. This work develops a scattering and an inverse scat-
tering theory for the Sturm-Liouville equation −u′′ + qu = λwu
where w may change sign but q ≥ 0. Thus the left-hand-side of
the equation gives rise to a positive quadratic form and one is led
to a left-definite spectral problem. The crucial ingredient of the
approach is a generalized transform built on the Jost solutions of
the problem and hence termed the Jost transform and the associ-
ated Paley-Wiener theorem linking growth properties of transforms
with support properties of functions.

One motivation for this investigation comes from the Camassa-
Holm equation for which the solution of the Cauchy problem can be
achieved by the inverse scattering transform for −u′′ + 1

4u = λwu.
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1. Introduction

In this paper we will consider the direct and inverse scattering prob-
lem for the differential equation

−u′′ + qu = λwu, (1.1)

in the case when w is not required to have a fixed sign. Instead we
assume q ≥ 0. This situation is known as the left definite case.

An important motivation for considering this is the study of the
spectral problem associated with the Camassa-Holm equation. This is
the equation

−u′′ + 1
4
u = λwu, (1.2)

where w = ψxx − ψ + κ, κ is a constant and ψ satisfies the Camassa-
Holm equation (7.1). The Camassa–Holm equation is an integrable
system in a similar sense as the Korteweg–de Vries (KdV) equation. It
was first derived as an abstract bi-Hamiltonian system by Fuchssteiner
and Fokas [23]. Subsequently, it was shown by Camassa and Holm [11]
that it may serve as an integrable model for shallow water waves.

In contrast to the KdV equation the Camassa–Holm equation can
model breaking waves, i.e., smooth initial data may develop singulari-
ties in finite time; cf. Constantin and Escher [17] and Constantin [15].
This, however, happens only when the initial w is not of fixed sign,
and it is this fact which motivates us to consider (1.1) without the
assumption that w is positive.

The well developed theory of scattering and inverse scattering for
the Schrödinger equation is of crucial importance to the theory of the
KdV equation. In the same way scattering/inverse scattering theory
for (1.2) is important for dealing with the Camassa–Holm equation.

The problem of inverse scattering for (1.2) is considerably more dif-
ficult than for the Schrödinger equation, which may be viewed as a
rather mild perturbation of the equation −u′′ = λu. In case of (1.2)
one deals with a perturbation of the equation −u′′ + 1

4
u = λu, which

changes the coefficient containing the eigenvalue parameter λ. It ap-
pears that the methods used so far for dealing with the Schrödinger
equation are no longer applicable.
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One may treat the scattering/inverse scattering problem for (1.2) by
transforming the equation to the Schrödinger equation and using the
known theory for this, see Constantin [16] and Constantin and Lenells
[19]. However, such a transformation requires considerable smoothness
of w and, which is more serious, requires w > 0.

From the physical point of view the full-line case where w decays
at infinity and the periodic case are most interesting. The former was
treated by Fokas [22] and Constantin and various co-authors, for ex-
ample in [16], [18], and [19]. The latter was addressed by Constantin
and McKean [13], Constantin [14], and Vaninsky [30].

We will be interested in the full line problem where the solution ψ
decays at infinity. If κ 6= 0 one may, after appropriate scaling, assume
κ = 1 which we will from now on. The so called zero dispersion limit
where κ = 0 may be treated by similar methods, but we refer to the
recent paper by Eckhardt [21] which deals with this case by methods
involving de Branges spaces, also crucially using the fact that in this
situation the spectrum is discrete. In (1.1) we will thus assume that
w − 1 decays at infinity, which is reflected in Assumption 1.2.

The key to a spectral theory with w of indefinite sign is to note that
even if w changes sign, the quadratic form

∫
R(|u′|2 + 1

4
|u|2) associated

with the left hand side of (1.2) is positive and well adapted to serve
as a norm-square of a Hilbert space in which to treat (1.2). Problems
of this nature have a long history and their study seems to have been
initiated by Weyl [31], who called such problems polar.

Later many authors have dealt with more or less general left-definite
problems. In particular we mention a series of papers by Niessen,
Schneider, and their collaborators on singular left-definite so-called S-
hermitian systems; see, e.g., [28], and Bennewitz [4] and the references
cited there. For a more recent contribution, see Kong, Wu, and Zettl
[25]. However, papers in inverse spectral theory for left-definite prob-
lems are much more scarce; one example is Binding, Browne, and Wat-
son [10].

Closer to our present purpose, but dealing with a half-line problem,
is our paper [3], where a theory modeled on standard Titchmarsh-Weyl
theory is given. This may be extended to a full line theory in standard
fashion, but this will not serve our purpose since such a theory does
not interact smoothly with scattering theory. We will therefore in this
paper construct a spectral theory closely associated with scattering the-
ory. Our main results are uniqueness theorems for inverse scattering for
the equation (1.1) and some closely related results given in Section 6.1.
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The plan of the paper is as follows. After introducing the basic
assumptions for the paper and stating some auxiliary results needed
later, we define in Section 2 a Hilbert space and a selfadjoint operator in
this which is a realization of (1.1). We discuss properties of the operator
and the underlying Hilbert space. In Section 3 we discuss the direct
scattering process for (1.1) and introduce appropriate Jost solutions
and a scattering matrix. Of particular importance is the high energy
asymptotics for the Jost solutions which we give in Theorem 3.3. We
end the section by preparing the introduction of a generalized Fourier
transform which we call the Jost transform associated with (1.1).

The Jost transform is defined in Section 4 where essential properties
are discussed and a full spectral theory based on the Jost transform is
given. Our approach to inverse spectral and scattering theory is based
on a generalized form of the classical Paley-Wiener theorem (see also
[3] and Bennewitz [7]) which is valid for the Jost transform, and we
deal with this in Section 5.

Our uniqueness theorem for inverse scattering, which is at the same
time an inverse spectral theorem, is given in Section 6 where we also
discuss similarities and differences to the standard uniqueness theorem
for inverse scattering for the Schrödinger equation. Finally, in Section 7
we give the time-evolution of the scattering data and thereby exhibit
how the inverse scattering is used to solve the Cauchy problem of the
Camassa-Holm equation. An appendix deals with several technicali-
ties from analytic function theory, needed primarily for the proof of
the Paley-Wiener theorem. Some of the results and techniques in the
appendix we have not been able to find in the literature and may be
new.

1.1. Basic assumptions.
Minimal requirements on the coefficients q and w in (1.1) are given

in the following assumption which will be in force throughout the entire
paper even when it is not explicitly mentioned.

Assumption 1.1. The coefficients q and w are locally integrable, real-
valued functions on R. The function q is nonnegative and both q and
w are supported on sets of positive measure.

This assumption will be enough for the basic spectral theory given in
Section 2, but from Section 3 onwards, and in order to be able to discuss
scattering, we will need the following more restrictive assumption.

Assumption 1.2. The coefficients q and w satisfy Assumption 1.1. In
addition it is assumed that there is a constant q0 ≥ 0 such that q − q0

and w − 1 are in L1(R),
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For inverse scattering we shall need a further restriction, as given in
the following assumption.

Assumption 1.3. The coefficients q and w satisfy Assumption 1.2. In
addition the first moment

∫
R |x(q(x)− q0w(x))|dx of q − q0w is finite.

This is assumed from Section 5 onwards. It is used earlier occa-
sionally, but then always explicitly mentioned. The assumption is only
essential at one point, when proving, in Theorem A.2, analyticity prop-
erties at q0 of the function (5.1).

Note that, if 1/p > 0 is locally integrable, the change of variables
t =

∫ x
0

1/p turns the equation−(pu′)′+qu = λwu into−v′′+Qv = λWv
where v(t) = u(x(t)), Q(t) = p(x(t))q(x(t)) andW (t) = p(x(t))w(x(t)).
Therefore, our results concerning equation (1.1) pertain actually to a
more general class of equations of the form −(pu′)′ + qu = λwu.

We use the following notation in the paper: We denote the open up-
per half-plane by C+ and if ω ⊂ R we denote the characteristic function
of ω by χω. Furthermore, [f, g] = fg′ − f ′g denotes the Wronskian of
f and g. Recall that if f and g solve the same homogeneous equation
u′′ = hu, then [f, g] is constant.

Sometimes in the sequel we will encounter so called Nevanlinna func-
tions. These are functions N analytic in C \ R with Imλ ImN(λ) ≥ 0

and N(λ) = N(λ). The typical example is the Titchmarsh-Weyl m-
function, crucial in the spectral theory of half-line Sturm-Liouville
equations. The fundamental fact about Nevanlinna functions is as fol-
lows (see, e.g., Akhiezer and Glazman [2]).

Lemma 1.4. For any Nevanlinna function N there are uniquely deter-
mined constants A ∈ R and B ≥ 0 and a uniquely determined positive
measure dρ with

∫
R(1 + t2)−1 dρ(t) <∞ such that

N(λ) = A+Bλ+

∫ ∞
−∞

( 1

t− λ
− t

1 + t2

)
dρ(t)

= A+Bλ+

∫ ∞
−∞

(
λ+

1 + λ2

t− λ

) dρ(t)

1 + t2
.

We will primarily need the following fact about Nevanlinna functions.

Proposition 1.5. If N is Nevanlinna the function λ 7→ (Imλ)N(λ)
is bounded by a second order polynomial in |λ| for all non-real λ.

In particular, N(λ)/λ is bounded as λ → ∞ in sets where |λ|/ Imλ
is bounded and (Imλ)N(λ) is bounded as λ approaches a real value.

Proof. This follows from the (second) representation formula of Lemma
1.4 since | Imλ/(t− λ)| ≤ 1 if t ∈ R. �
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We shall also use the following well known consequence of the reflec-
tion principle (see Ahlfors [1]).

Proposition 1.6. Suppose f is analytic in a connected domain Ω ⊂
C+, with a non-empty open real set ω ⊂ ∂Ω ∩ R.

(1) If Re f extends continuously to ω and vanishes there, then f
extends analytically to Ω∪Ω∗∪ω, where Ω∗ = {z ∈ C : z ∈ Ω}.

(2) If f extends continuously to ω, then f is uniquely determined
by its values on ω.

2. Definition of operator and resolvent

2.1. A Hilbert space.
We introduce the set H1 of locally absolutely continuous functions

on R for which both |u′|2 and q|u|2 are integrable. The form

〈u, v〉 =

∫
R
(u′v′ + quv)

is an inner product on H1 and ‖·‖ is the associated norm. In fact H1 is
complete in the metric induced by 〈·, ·〉 and hence a Hilbert space. The
proof of completeness is analogous to the corresponding one presented
in our previous paper [3] and depends on the following lemma which
will also be used on other occasions in the sequel.

Lemma 2.1. For any u ∈ H1 we have u(x) = o(
√
|x|) as x → ±∞.

Moreover, if I is a bounded interval there is a constant CI such that
|u(x)| ≤ CI‖u‖ for x ∈ I.

Finally, if there is a constant q0 > 0 such that the negative part of
q− q0 is in L1(R), then there is even a constant CR such that |u(x)| ≤
CR‖u‖ for all x ∈ R.

Proof. The proof uses the identity u(x) = u(y) +
∫ x
y
u′. Cauchy’s in-

equality shows that

|u(x)| ≤ |u(y)|+
∣∣∣(x− y)

∫ x

y

|u′|2
∣∣∣1/2. (2.1)

This gives limx→∞ |u(x)|/
√
x ≤

( ∫∞
y
|u′|2

)1/2
, which is arbitrarily small

for large y. Treating the case x → −∞ similarly we obtain the first
statement.

For the second claim assume x ∈ I and choose the bounded interval
J ⊃ I so that

∫
J
q > 0. Multiplying (2.1) by q(y) and integrating with
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respect to y over J we obtain, again using Cauchy’s inequality, that

|u(x)|
∫
J

q ≤ ‖√q u‖2

√∫
J

q +
√
|J |‖u′‖2

∫
J

q,

where ‖ · ‖2 is the norm of L2(R) and |J | is the length of J . Dividing

by
∫
J
q we now obtain the second claim with CI =

√
|J |+ 1/

∫
J
q.

For the final claim, note that the additional hypothesis implies the
existence of a constant B such that Bq0 ≥ 1 +

∫
R(q − q0)−, where the

minus sign denotes negative part. Thus
∫
J
q ≥ 1 as soon as |J | ≥ B so

that the final claim follows with CR =
√

1 +B. �

Remark. If q − q0 ∈ L1(R) for some constant q0 > 0 we obtain from
the lemma that ∣∣∣ ∫

R
(q − q0)|u|2

∣∣∣ ≤ C2
R

∫
R
|q − q0| ‖u‖2.

Since the lemma in particular shows that point evaluations are uni-
formly bounded linear forms in H1(R) we have a similar inequality for
u ∈ H1(R) with ‖u‖ replaced by the norm of H1(R). Because∫

R
(|u′|2 + q|u|2) =

∫
R
(q − q0)|u|2 +

∫
R
(|u′|2 + q0|u|2)

it follows that replacing q by q0 gives a norm which is equivalent to
the norm of H1(R), and also equivalent to ‖ · ‖. Thus in this case
H1 = H1(R) as equivalently normed spaces. In particular, we even
have u(x) = o(1) as x→ ±∞ in this case.

A crucial property of our Hilbert space is that compactly supported
elements are dense. It will be useful later on to have an explicit con-
struction of compactly supported approximations of elements in H1.
To this end we define functions ϕn, continuous with support [−2n, 2n],
identically equal to 1 in [−n, n], and linear in [−2n,−n] and [n, 2n].

Lemma 2.2. If u ∈ H1 then so is ϕju and ‖u− ϕju‖ → 0 as j →∞.

Proof. We must show that (u−ϕju)′ → 0 in L2(R) and (u−ϕju)2q → 0
in L1(R). The second statement is an immediate consequence of the
dominated convergence theorem. To prove the first statement we have

((1− ϕj)u)′ = (1− ϕj)u′ − ϕ′ju,
where the first term tends to 0 in L2, again by the dominated conver-
gence theorem, and the second term is zero except when j < |x| < 2j.
According to Lemma 2.1 ϕ′ju = ±u/j = o(1/

√
j) in these intervals.

Thus its L2-norm is o(1). �
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The following simple proposition will occasionally be useful.

Proposition 2.3. Suppose q is locally integrable and non-negative.
Then a non-trivial solution of −f ′′ + qf = 0 which has a zero can
have no other zeros, nor can its derivative vanish anywhere.

Proof. Suppose f(a) = 0 and that either f or f ′ vanishes in b 6= a. An
integration by parts then shows that∫ b

a

(|f ′|2 + q|f |2) = 0.

Since q ≥ 0 this shows that f is constant between a and b, and thus
vanishes there, and hence everywhere. �

2.2. A selfadjoint relation.
We are interested in investigating equations of the form

−u′′ + qu = wg (2.2)

where (u, g) are pairs in a certain subspace T1 ofH1⊕H1. Suppose now
that u, g, v ∈ H1. If v is compactly supported, u′ is locally absolutely
continuous, and (u, g) satisfies (2.2) an integration by parts yields

〈u, v〉 =

∫
R
wgv.

Therefore we investigate the functional u 7→
∫
R uv on H1 defined for

any fixed function v in the set of compactly supported functions in
L1(R), which we denote by L0. Using Lemma 2.1 one shows that
this functional is, in fact, continuous1. Thus, by Riesz’ representation
theorem, there exists, for any such v, a v∗ ∈ H1 so that

∫
R uv = 〈u, v∗〉.

The relationship between v and v∗ is linear, i.e., there exists an operator
G : L0 → H1 such that Gv = v∗ and 〈u,Gv〉 =

∫
R uv.

Since, for any x ∈ R, the map u 7→ u(x) is a bounded linear func-
tional on H1 there is a function g0(x, ·) ∈ H1 such that

u(x) = 〈u, g0(x, ·)〉.

Hence

(Gv)(x) = 〈Gv, g0(x, ·)〉 =

∫
R
vg0(x, ·).

We can now define the set T1 mentioned above.

T1 = {(u, g) ∈ H1 ⊕H1 : 〈u, v〉 = 〈g,G(wv)〉 for all v ∈ L0 ∩H1}.

1It is clear that the functional is bounded also if v is a compactly supported
measure, or even a compactly supported element of H−1(R) since H1 ⊂ H1

loc(R).
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We remind the reader about the following facts on linear relations
(see, e.g., [4]). A (closed) linear subset E of H1⊕H1 is called a (closed)
linear relation on H1. The adjoint E∗ of E is defined as

E∗ = {(u∗, v∗) ∈ H1 ⊕H1 : 〈u∗, v〉 = 〈v∗, u〉 for all (u, v) ∈ E}.
E is called symmetric if E ⊂ E∗ and self-adjoint if E = E∗. The
following facts hold: E∗ is closed, E∗∗ is the closure of E, and E ⊂ F
implies F ∗ ⊂ E∗.

Thus we see that T1 is the adjoint of the relation

Tc = {(G(wv), v) : v ∈ L0 ∩H1},
which clearly is symmetric if w is realvalued.

One can now show that T1 is a differential relation. More precisely,
the following statement holds.

Proposition 2.4. We have (u, g) ∈ T1 if and only if u and g ∈ H1, u′

is locally absolutely continuous, and −u′′ + qu = wg.

Proof. If (u, g) ∈ T1, then for any ϕ ∈ C1
0(R) we have∫

R
(u′ϕ′ + quϕ) =

∫
R
wgϕ

which after an integration by parts gives∫
R

(
u′(x)−

∫ x

a

(qu− wg)
)
ϕ′ = 0.

It follows from du Bois Reymond’s lemma that u′(x)−
∫ x
a

(qu−wg) is
constant. Thus u′ is locally absolutely continuous and differentiation
gives −u′′ + qu = wg.

The converse is an immediate consequence of integration by parts.
�

Proposition 2.5. The dimension of Dλ = {(u, λu) ∈ T1} is zero when-
ever Imλ 6= 0 or λ = 0.

Proof. The definition of T1 shows that (u, 0) ∈ T1 if and only if 〈u, v〉 =
0 for all compactly supported elements v ∈ H1. Since these elements
are dense in H1 by Lemma 2.2 it follows that we must have u = 0.

Now suppose (u, λu) ∈ T1 and let ϕj be the functions introduced in
Lemma 2.2. We then obtain

〈ϕju, u〉 = 〈G(wϕju), λu〉 = λ

∫
R
wϕj|u|2.

Multiplying by λ and taking imaginary part we obtain Im
(
λ〈ϕju, u〉

)
=

0. Now ϕju→ u as j →∞ so we obtain Imλ‖u‖2 = 0. Thus u = 0. �
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Corollary 2.6. T1 is a self-adjoint relation.

Proof. Let T0 = T ∗1 be the closure of Tc. Theorem 1.4 in [4] established
a simple generalization of the von Neumann formula for symmetric
operators, i.e., T1 = T0 uDλ uDλ as a direct sum, for any non-real λ.
Since Dλ = {0} we have T1 = T ∗1 . �

Let H+ be the set of locally absolutely continuous functions u for
which |u′|2 + q|u|2 is integrable over any interval bounded from below,
and H− the set for which this expression is integrable on any interval
bounded from above. Of course H+∩H− = H1. If u solves −u′′+qu =
λwu for some λ ∈ C, then |u′|2 +q|u|2 is always locally integrable, so in
this case belonging to H± is just a restriction at ∞ respectively −∞.

Proposition 2.7. Suppose Imλ 6= 0 or λ = 0. Then the set of solu-
tions of equation (1.1) in H+ as well as the set of solutions in H− is
one-dimensional.

This is a special case of [5, Theorem 2.3], see also [8].

2.3. Operator and resolvent.
We now associate with the self-adjoint relation T1 a self-adjoint op-

erator T defined in a subspace H of H1 and study its spectral theory
following Bennewitz [4]. Thus we define H∞ = {g ∈ H1 : (0, g) ∈ T1},
which is clearly a closed subspace of H1, and H = H1 	 H∞. We
denote the orthogonal projections of H1 onto H and H∞ by ER and
E∞ respectively. Now, if (u, g) ∈ T1 then u ∈ H and (u,ERg) =
(u, g) − (0, E∞g) ∈ T1. Therefore we define the domain of T as DT =
{u ∈ H1 : ∃g ∈ H1 : (u, g) ∈ T1}, and Tu = ERg if (u, g) ∈ T1. By
Lemma 1.14 and Theorem 1.15 of [4] the domain DT is a dense linear
subset of H and

T1 ∩ (H⊕H) = {(u,ERg) : (u, g) ∈ T1}

is the graph of the self-adjoint operator T in H.
We may now apply the spectral theorem to T . Denote the elements

of the resolution of the identity for the operator T by Eω. We extend
the domain of the projection Eω to all of H1 by setting EωH∞ = 0.
In the present case it is an immediate consequence of Proposition 2.4
that the space H∞ consists of those elements g ∈ H1 for which wg = 0
almost everywhere. We have assumed that w is not identically equal to
zero in order to avoid the trivial case in which H∞ = H1 and H = {0}.
On the other hand, if w is supported everywhere, then H = H1.

Let Rλ be the resolvent of T : H → H and extend the domain of Rλ

to all of H1 by setting RλH∞ = 0. It is easily verified that if g ∈ H1,
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then Rλg = u precisely if (u, λu+ g) ∈ T1 and that the extended resol-
vent, although no longer injective, still has the fundamental properties
(Rλ)

∗ = Rλ, ‖Rλ‖ ≤ 1/| Imλ| and Rλ −Rµ = (λ− µ)RλRµ.
Assume Imλ 6= 0 or λ = 0. Let ψ±(·, λ) be nontrivial solutions of

equation (1.1) so that ψ+(·, λ) is inH+ and ψ−(·, λ) is inH− (cf. Propo-
sition 2.7). Recall that the Wronskian [u, v] = uv′ − u′v of solutions u
and v to (1.1) is independent of x. Then define

g(x, y, λ) =
ψ−(min(x, y), λ)ψ+(max(x, y), λ)

[ψ+(·, λ), ψ−(·, λ)]
. (2.3)

Note that the Wronskian only vanishes on eigenvalues and that g does
not depend on the particular choice made for ψ±.

Proposition 2.8. The kernel g0(x, y) of the evaluation operator equals
g(x, y, 0) and is real for all x and y.

Proof. Both real and imaginary parts of ψ+(·, 0) are solutions in H+ of
(1.1) for λ = 0, and both can not be trivial. We may therefore assume
that ψ+(·, 0), and similarly ψ−(·, 0), are realvalued. Thus also g(x, y, 0)
is realvalued.

A straightforward computation now shows that g(·, ·, 0) has the prop-

erty that u(x) = 〈u, g(x, ·, 0)〉 = 〈u, g(x, ·, 0)〉 if u ∈ H1 is compactly
supported. The density of such functions gives the desired conclu-
sion. �

Theorem 2.9. When Imλ 6= 0 the resolvent Rλ of T is given by

(Rλu)(x) = 〈u,G(x, ·, λ)〉 = 〈u, g(x, ·, λ)〉/λ− u(x)/λ

where G(x, ·, λ) = (g(x, ·, λ) − g(x, ·, 0))/λ equals Rλg(x, ·, 0), so that
g(x, ·, λ) = λRλg(x, ·, 0) + g(x, ·, 0).

Proof. Fix x ∈ R and λ /∈ R and let F = G(x, ·, λ). Then F is
continuous at x. It is clearly in H+ ∩ H− = H1. Next, using that G
is constructed as a difference, one checks that F ′ is locally absolutely
continuous and that it satisfies −F ′′ + qF = w(λF + g(x, ·, 0)). Hence
(F, λF + g(x, ·, 0)) ∈ T1, or

G(x, ·, λ) = Rλg(x, ·, 0).

Since g(x, y, 0), q and w are realvalued, also (F , λF + g(x, ·, 0)) ∈ T1,

i.e., G(x, ·, λ) = Rλg(x, ·, 0). The proof is finished upon noticing that
(Rλu)(x) = 〈Rλu, g(x, ·, 0)〉 = 〈u,Rλg(x, ·, 0)〉 since the adjoint of Rλ

is Rλ. �
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3. Direct scattering

In this section we discuss the direct scattering process associated
with the operator T . The results presented in Sections 3.1, 3.3 are
completely analogous (with similar proofs) to corresponding results for
the one-dimensional Schrödinger equation. We lay them out in order
to provide easy reference and set notation. In Section 3.2 we discuss
the growth of the Jost solutions as functions of k. This growth is
considerably more complicated when w is allowed to deviate from 1 as
compared to the case where w = 1. We believe the results in Section
3.2 to be new. In Section 3.4 we discuss the eigenvalues of T . Finally,
in Section 3.5 we treat the connection between spectral measures and
transmission coefficients. Deift and Trubowitz allude to this connection
for the Schrödinger equation in [20] but, to the best of our knowledge,
it has not been expounded in the literature yet.

3.1. Jost solutions.
In one-dimensional scattering theory the Jost solutions f± are fun-

damental. Their definition and existence is the subject of the following
lemma.

Lemma 3.1. Suppose q − q0 and w − 1 are integrable. If k is in
C+ \ {0}, there exist solutions f±(·, k) of (1.1) with λ = k2 + q0 having
the following properties:

(1) f±(x, k) ∼ e±ikx and f ′±(x, k) ∼ ±ike±ikx as x tends to ±∞,

(2) f±(x, ·), f ′±(x, ·) are analytic in C+ and continuous in C+ \{0}.
If in addition the first moment of q − q0w is finite, then (1) and the

continuity in (2) hold for k ∈ C+.

Proof. This is standard (see, for instance, Deift and Trubowitz [20]).
One introduces g+(x, k) = f+(x, k)e−ikx which satisfies the differential
equation g′′+ + 2ikg′+ = (q − λw + k2)g+ and the integral equation

g+(x, k) = 1 +

∫ ∞
x

e2ik(t−x) − 1

2ik
Q(t, k)g+(t, k)dt (3.1)

where
Q(·, k) = q − λw + k2 = q − q0w + k2(1− w) (3.2)

is integrable. One then solves the integral equation by successive ap-
proximations from its desired initial values g+(∞) = 1, g′+(∞) = 0

using the estimate |e2ik(t−x) − 1| ≤ 2 for t ≥ x.
If the first moment of q − q0w is finite, we may make use of the

estimate |e2ik(t−x) − 1| ≤ 2|k|(t − x) which holds when t ≥ x and
Im(k) ≥ 0. This allows once more to use successive approximation to



INVERSE SCATTERING THEORY FOR A LEFT-DEFINITE PROBLEM 13

show the existence and continuity of f+(x, ·) and f ′+(x, ·) in C+. For
k = 0 (3.1) is then replaced by

g+(x, 0) = 1 +

∫ ∞
x

(t− x)(q(t)− q0w(t))g+(t, 0)dt. (3.3)

The proofs for f− are completely analogous. �

In the sequel we shall always assume that λ and k ∈ C+ are connected
via λ = q0 + k2. Later the following estimates will be useful.

Lemma 3.2. For Im k ≥ 0, k 6= 0 the following estimates hold:

|g±(x, k)| ≤ exp
(
‖q − q0w‖1/|k|+ |k|‖w − 1‖1

)
, (3.4)

|[f+(·, k), f−(·, k)]| ≤ 2|k| exp
(
‖q − q0w‖1/|k|+ |k|‖w − 1‖1

)
, (3.5)

where ‖ · ‖1 is the norm of L1(R).

Proof. Applying Gronwall’s inequality to (3.1) we obtain

|g+(x, k)| ≤ exp
(
|k|−1

∫ ∞
x

|Q|
)
.

Differentiating (3.1) and inserting the estimate of g+ this gives

|g′+(x, k) + ikg+(x, k)| ≤ |k| exp
(
|k|−1

∫ ∞
x

|Q|
)
.

Similarly estimates for g− give (3.4) and (3.5) since

[f+, f−] = g+(g′− − ikg−)− (g′+ + ikg+)g−. (3.6)

�

3.2. High energy asymptotics of Jost functions.
For small δ > 0 define the set

S(δ) = {k ∈ C : Im k ≥ 1, δ ≤ |Re k|/|k| ≤ 1− δ}.

We shall examine the asymptotic behavior of f±(x, k) and f ′±(x, k) as
k tends to infinity in S(δ). We note that, if w− 1 is integrable, the set

where w is negative has finite Lebesgue measure. Also |1 −
√
|w|| ≤

|1−w| pointwise. In the following theorem we interpret
√
w as ±i

√
|w|

when ±Re(k) > 0 and w < 0, and use the ordinary square root when
w ≥ 0. It follows that 1−

√
w is integrable.
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Theorem 3.3. Suppose q− q0 and w− 1 are integrable. For δ > 0 we
have

f+(x, k) = exp(ik(x+

∫ ∞
x

(1−
√
w)) + o(|k|)),

f ′+(x, k) = exp(ik(x+

∫ ∞
x

(1−
√
w)) + o(|k|)),

f−(x, k) = exp(−ik(x−
∫ x

−∞
(1−

√
w)) + o(|k|)),

f ′−(x, k) = exp(−ik(x−
∫ x

−∞
(1−

√
w)) + o(|k|)),

[f+(·, k), f−(·, k)] = exp(ik

∫ ∞
−∞

(1−
√
w) + o(|k|))

as k →∞ in Sδ if
√
w is interpreted as mentioned above.

Proof. Recall that λ = k2 + q0 and let

m+(x, λ) = f ′+(x, k)/(λf+(x, k))

be the (left definite) Dirichlet m-function for the interval [x,∞), see our

paper [3]. According to Theorem 4.2 of [6] m+(x, λ) ∼ w(x)/
√
−λw(x)

(using the principal branch of the square root) for every Lebesgue point
x of w for which w(x) 6= 0. Also, if x is a Lebesgue point of w with
w(x) = 0, then km+(x, λ) tends to zero. Thus λm+(·, λ)/(ik) con-
verges pointwise almost everywhere to

√
w (using the square root as

defined above) as k tends to infinity in S(δ). Recalling the definition
of Q from (3.2), we see that k−2Q(·, k)/(1 + λm(·, λ)/(ik)) tends to
(1− w)/(1 +

√
w) = 1−

√
w almost everywhere.

Now, for k ∈ Sδ we have firstly that |k−2Q(·, k)| ≤ |1−w|+ |q−q0w|
which is integrable. Secondly, since both λ 7→ ik/λ and m+(x, ·) are
Nevanlinna functions their imaginary parts are of the same sign. This
implies

1

|1 + λm+(·, λ)/(ik)|
≤ |k/λ|
| Im(ik/λ)|

=
|kλ|

|Re k|(|k|2 + q0)
≤ |k|
|Re k|

≤ 1

δ
. (3.7)

Thus k−2Q(·, k)/(1 + λm+(·, λ)/(ik)) has a bound in L1(R) indepen-
dent of k ∈ Sδ. For any interval I the dominated convergence theorem
therefore implies that

lim
Sδ3k→∞

∫
I

k−2Q

1 + λm+(·, λ)/(ik)
=

∫
I

(1−
√
w). (3.8)
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Since g′+ + 2ikg+ = (λm+ + ik)g+ we have

g′+(x, k) + 2ikg+(x, k) = 2ik exp
(
ik

∫ ∞
x

k−2Q

1 + λm+(·, λ)/(ik)

)
as is easily verified. Now

f+(x, k) = eikxg+(x, k) =
eikx(g′+(x, k) + 2ikg+(x, k))

λm+ + ik
.

Here (λm+ + ik)−1 equals (−λ)−1 times a Nevanlinna function so by
Proposition 1.5 this factor is certainly eo(|k|) as k →∞ in Sδ proving our
first assertion. The second follows in the same way from the fact that
f ′+(x, k)/f+(x, k) = λm+(x, k). Of course, we may deal analogously
with f− and f ′− so that only our last assertion remains to be proven.

By (3.6) and using that as x → −∞ we have g−(x, k) → 1 and
g′−(x, k)→ 0, while (3.4) shows that g+(x, k) is bounded, we find that

[f+(·, k), f−(·, k)] = − lim
x→−∞

(g′+(x, k) + 2ikg+(x, k))

= −2ik exp
(
ik

∫ ∞
−∞

k−2Q

1 + λm(·, λ)/(ik)

)
. (3.9)

Our last claim now follows from (3.8). �

Corollary 3.4. Suppose q− q0 and w− 1 are integrable. For Re k 6= 0
and Im k ≥ 0 we have

|[f+(·, k), f−(·, k)]| ≥ 2|k| exp
(
− 1

|Re k|

∫ ∞
−∞
|Q|
)

≥ 2|k| exp
(
− |k|
|Re k|(‖q − q0w‖1/|k|+ |k|‖w − 1‖1)

)
.

Proof. This follows immediately from (3.9) and (3.7) noting that these
relationships hold as long as Im k ≥ 0 and Re k 6= 0. �

3.3. Transmission and reflection coefficients.
For real k 6= 0 the functions f−(·, k) and f−(·,−k) = f−(·, k) form a

basis of solutions as do the functions f+(·, k) and f+(·,−k) = f+(·, k).
Indeed, the asymptotic behavior of f± shows that [f+, f+] = [f−, f−] =
2ik. From the identity [f, g][r, s] = [f, r][g, s]− [f, s][g, r] we obtain

|[f−, f+]|2 = 4k2 + |[f−, f+]|2 > 0.

Hence f+ and f− also form a basis of solutions so that we may find
coefficients T±(k), R±(k) satisfying{

T−f− = R+f+ + f+

T+f+ = R−f− + f−.
(3.10)
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Taking the Wronskian with f+ in the first and f− in the second equation
shows that T+ = T−, which we will denote by T from now on. It also
shows that

[f+, f−] = −2ik/T(k),

1

2ik
[f+, f−] = R+(k)/T(k) = −(R−(k)/T(k)),

where the second line is obtained by taking the Wronskian with f+

in the first equation and f− in the second. Equation (3.9) becomes

|T|2 + |R+|2 = |T|2 + |R−|2 = 1. Also T(−k) = T(k) and R±(−k) =

R±(k).
The coefficient T is called the transmission coefficient while R± are

called reflection coefficients. They are primary data observed in a scat-
tering experiment. It is customary to collect them in the unitary matrix(

T R+

R− T

)
which is called the scattering matrix.

We shall later need the following theorem. The proof follows the one
by Klaus [24] for the case of the Schrödinger operator closely.

Theorem 3.5. Under Assumption 1.3 and if [f+, f−](0) = 0 we have
[f+, f−](k) ∼ −ik(α+1/α) as k → 0 in Im k ≥ 0, where α is determined
by f−(x, 0) = αf+(x, 0).

To prove the theorem we consider the solution u(x, k) of (1.1) with
the same initial data as f+(·, 0). Thus u(0, k) = a, u′(0, k) = b, where
a = f+(0, 0), b = f ′+(0, 0). Since u(x, 0) = f+(x, 0) = g+(x, 0) =
f−(x, 0)/α we obtain from (3.1) and the corresponding formula for f−
that

a = 1 +

∫ ∞
0

t(q(t)− q0w(t))u(t, 0) dt

= 1/α−
∫ 0

−∞
t(q(t)− q0w(t))u(t, 0) dt (3.11)

and

b = −
∫ ∞

0

(q − q0w)u(·, 0) =

∫ 0

−∞
(q − q0w)u(·, 0). (3.12)

The function u satisfies the integral equation

u(x, k) = a cos(kx) + b
sin(kx)

k
+

∫ x

0

sin k(x− t)
k

Q(t, k)u(t, k) dt,

(3.13)
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which for k = 0 takes the form

u(x, 0) = a+ bx+

∫ x

0

(x− t)(q(t)− q0w(t))u(t, 0) dt. (3.14)

We shall need to estimate the difference ∆u(x, k) = u(x, k)−u(x, 0).

Lemma 3.6. There is a constant C such that for k ∈ R we have
|∆u(x, k)| ≤ C min(1, |kx|)(|k|+ min(1, |kx|)).

Proof. We consider only the case x ≥ 0; the case x ≤ 0 is similar.
Splitting the first integral in (3.12) into integrals over (0, x) and (x,∞),
the second term is less than x−1

∫∞
x
|t(q − q0w)u(t, 0)|, so that bx =

−x
∫ x

0
(q − q0w)u(·, 0) + o(1) as x→∞.

Using this when expressing ∆u by the help of (3.13) and (3.14) we
find a constant A such that

|∆u(x, k)| ≤ Amin(1, |kx|)(|k|+ min(1, |kx|))

+ min(1, |kx|)
∫ x

0

(|k||1− w|+ |q − q0w|/|k|)|∆u|.

Here we use that 1 − cos kx and 1 − sin kx/kx may be estimated by
min(2, (kx)2) and | sin kx| by min(1, |kx|). With s(x) = x− (sin kx)/k
we also use |s(x)− s(x− t)| = t|s′(ξ)| = t|1− cos kξ| ≤ tmin(2, (kx)2).
Setting v(x, k) = |∆u(x, k)/min(1, |kx|)| we now obtain

v(x, k) ≤ A(|k|+ min(1, |kx|)) +

∫ x

0

(|k||1−w|+ |t(q− q0w)|)v(t, k) dt,

so that the claim finally follows from Gronwall’s inequality.
�

Proof of Theorem 3.5. Choosing f = f+(·, k), g = f−(·, k), r = u(·, k),
and s = ax− b in the identity

[f, g][r, s] = [f, r][g, s]− [g, r][f, s]

and evaluating it at x = 0 gives

[f+(·, k), f−(·, k)] =
(
α[f+(·, k), u(·, k)]− [f−(·, k), u(·, k)]

)
(1 + o(1))

after dividing by [r, s] = a2 + b2 6= 0 and using the continuity of f±(0, ·)
and f ′±(0, ·) at k = 0.

The expressions [f±(·, k), u(·, k)] do not depend on x and may there-
fore be obtained by taking the limit at plus or minus infinity. Since
f ′+(x, k)/f+(x, k) → ik as x tends to ∞ and since u(·, k) and f+(·, k)
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are bounded we get

[f+(·, k), u(·, k)] = lim
x→∞

f+(x, k)(u′(x, k)− iku(x, k))

= lim
x→∞

eikx(u′(x, k)− iku(x, k))

and similarly

[f−(·, k), u(·, k)] = lim
x→−∞

e−ikx(u′(x, k) + iku(x, k)).

We will show below that

lim
x→∞

eikx(u′(x, k)− iku(x, k)) = −ik(1 + o(1)) (3.15)

as k → 0 in R. Similarly

lim
x→−∞

e−ikx(u′(x, k) + iku(x, k)) = ik/α (1 + o(1)) (3.16)

as k → 0 in R. Thus

[f+(·, k), f−(·, k)] = −(α + 1/α)ik(1 + o(1))

as k → 0 in R. However, if Im k > 0 we still have [f+, f−] bounded as
k → 0 so the Phragmén-Lindelöf principle (see, e.g., 5.63 in Titchmarsh
[29]) shows that the same asymptotic formula is valid even for k → 0
in Im k ≥ 0, which was to be shown.

It remains to calculate the limits (3.15) and (3.16). We will deal only
with the first; the second is treated similarly.

From (3.13), using (3.11) and (3.12), we obtain

eikx(u′(x, k)− iku(x, k)) = −ika+ b+

∫ x

0

eiktQ(t, k)u(t, k) dt

→ −ik +

∫ ∞
0

(
eiktQ(t, k)u(t, k)− (ikt+ 1)(q − q0w)(t)u(t, 0) dt

)
as x→∞. We shall estimate the last integral. It equals∫ ∞

0

eiktQ(t, k)∆u(t, k) dt+ k2

∫ ∞
0

eikt(1− w(t))u(t, 0) dt

+ k

∫ ∞
0

eikt − ikt− 1

kt
t(q − q0w)(t)u(t, 0) dt.

The second term is clearly O(|k|2) as k → 0. In the last integral the
first factor is bounded by 2, so that dominated convergence shows the
corresponding term to be o(|k|) as k → 0.

By Lemma 3.6 the integrand of the first term may be estimated by

C|k|(|k||1− w(t)|+ |t(q − q0w)(t)|)(|k|+ min(1, |kt|),
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and the integral of this is o(|k|) as k → 0 by dominated convergence.
�

Remark. The theorem shows that the transmission coefficient T(k) is
continuous at 0, tending to some real value in [−1, 1] at k = 0. One may
similarly show continuity at 0 for the reflection coefficients, analogously
to what is done in Klaus [24], but we will not need this.

3.4. Eigenvalues.
If k 6= 0 is real then the asymptotics of f+(·, k) show that the real

and imaginary parts are linearly independent solutions of (1.1), and
that no linear combination of them can be in H1. Hence there are no
eigenvalues in (q0,∞).

We showed in Proposition 2.5 that q0 is not an eigenvalue if it is equal
to 0. The example w(x) = 1 and q(x) = 2x2(x2 + 5)/(x2 + 1)2 shows
that q0 may well be an eigenvalue if q0 > 0 since u(x) = 1/(x2 + 1)
defines an eigenfunction for this case.

If q0 > 0 and f ∈ H1 is a solution of f ′′ = (q−q0w)f , then according
to Lemma 2.1 f is bounded, so that f ′′ is integrable. Thus f ′ has
limits at ±∞ which must be 0 since f ′ ∈ L2(R). Two solutions in H1

therefore have Wronskian zero, so they are linearly dependent. If q0 is
an eigenvalue it is therefore simple.

If in addition the first moment of q− q0w is finite, then f must be a
multiple of f+(·, 0), which is asymptotically equal to 1 at∞. Thus it is
not in H1, so in this case q0 is not an eigenvalue. Moreover, eigenvalues
will not accumulate2 at q0, the proof of which follows the one for the
half-line case, see part (3) of Theorem 7.1 in our paper [3].

Now suppose λ < q0 so Im k > 0. Then f+(x, k) is asymptotic to
eikx so it is non-zero for all large x, say x ≥ a. Thus for x > a another
solution is f+(x, k)

∫ x
a

(f+(·, k))−2 which is easily seen to be asymptotic

to − 1
2ik
e−ikx at infinity. Thus the only linear combination of these

solutions in H+ are multiples of f+(·, k), so that all eigenvalues are
simple. Moreover, an adaptation of the proof of Theorem 7.1 part
(2) in [3] for the half-line case shows that there will be no negative
eigenvalues if w ≥ 0, but infinitely many negative eigenvalues which
accumulate at negative infinity if w is negative on a set of positive
measure.

Given k ∈ C+ the functions f±(·, k) are eigenfunctions associated
with the eigenvalue k2 + q0 precisely if the Wronskian [f+(·, k), f−(·, k)]
is zero, and k2 + q0 must then be real, i.e., k is necessarily purely
imaginary. Thus, all zeros of the Wronskian in C+ are purely imaginary.

2If q0 = 0 this is true even if the first moment of q is not finite.



20 C. BENNEWITZ, B. M. BROWN, R. WEIKARD

Moreover, since zeros of analytic functions are isolated the eigenvalues
below q0 may accumulate only at q0 or negative infinity.

The function k 7→ [f+(·, k), f−(·, k)] is analytic in C+ and continuous
in C+ \ {0}. According to Proposition 1.6 it is uniquely determined
by its values on the real axis. Thus T, initially defined on R \ {0},
has a unique meromorphic extension to the upper half-plane, and all
eigenvalues, except possibly q0, are determined by the poles of T in C+.

We collect these results in the following theorem.

Theorem 3.7. Suppose q − q0 and w − 1 are integrable. Then the
eigenvalues of T all lie in the interval (−∞, q0]. They are all simple
and can not accumulate at any point inside the interval (−∞, q0).

There are infinitely many negative eigenvalues if w is negative on a
set of positive measure, otherwise none. The number λ = k2 + q0 < q0

is an eigenvalue of T if and only if k is a pole of T.
Zero it is not an eigenvalue, nor will eigenvalues accumulate at 0 if

q0 = 0. The same conclusion holds if q0 > 0 but the first moment of
q − q0w is finite.

3.5. Eigenfunction expansion.
Let γ be an axis-parallel rectangle cutting out an open interval I

from R. Assume that the endpoints of I are different from q0 and any
of the eigenvalues of T . When u, v ∈ H1 we get from the spectral
theorem and the special case v = g0(x, ·) that

〈EIu, v〉 = − 1

2πi

∮
γ

〈Rλu, v〉 dλ,

EIu(x) = − 1

2πi

∮
γ

Rλu(x) dλ,

where ω 7→ Eω denotes the spectral decomposition of T . Now suppose
u ∈ H1 has compact support and define

û±(k) = 〈u, f±(·, k)〉
when Im k ≥ 0, k 6= 0.

Integration by parts shows that û±(k) = λ
∫
uwf±(·, k), and hence

û± vanishes at k = i
√
q0, corresponding to λ = 0 (at least if q0 6= 0 or

q0 = 0 and q has a finite first moment), is analytic in C+ and continuous
in C+ \ {0}. We also define û+(0) when q0 is an eigenvalue by setting

û+(0) = 〈u, f0〉
where f0 is a realvalued and normalized eigenfunction.

Remark. As long as Im k > 0 or k ≥ 0 the equation λ = q0 + k2 gives
a one-to-one correspondence between λ and k, so we can view either
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of these variables as a function of the other. These are clearly analytic
for Im k > 0 respectively λ /∈ [q0,∞).

In the rest of this section and the next we will always think of k
as the function of λ defined in this way. We may therefore think of
T (really T ◦ k) as a function of λ, meromorphic outside [q0,∞) and
with continuous limits as λ approaches (q0,∞) from above or below.
Similarly for f± and û± if u ∈ H1 has compact support.

If Im k > 0 then f+(·, k) is in H+ and f−(·, k) is in H−. Therefore,
if λ is not an eigenvalue and not in [q0,∞), we will choose ψ+(x, λ) =
f+(x, k) and ψ−(x, λ) = f−(x, k) in (2.3), the main ingredient of Green’s
function. Thus, if u ∈ H1, Im k > 0, and Re k 6= 0, Theorem 2.9 implies
that

(Rλu)(x) = −T(k)

2ikλ
(f+(x, k)〈u, f−(·, k)〉x

+ f−(x, k)〈u, f+(·, k)〉x)−
u(x)

λ
(3.17)

where 〈u, v〉x and 〈u, v〉x are the integrals of u′v′ + quv over (−∞, x)
and (x,∞) respectively. If u has compact support we may write (3.17)
as

(Rλu)(x) = −T(k)

2ikλ
û+(k)f−(x, k) + (〈u, ϕ(·, x, λ)〉x − u(x))/λ. (3.18)

where

ϕ(y, x, λ) =
T(k)

2ik
(f−(x, k)f+(y, k)− f+(x, k)f−(y, k)).

It is easily verified that the function ϕ(·, x, λ) solves −ϕ′′ + qϕ = λwϕ
and satisfies the initial conditions ϕ(x, x, λ) = 0 and ϕ′(x, x, λ) = 1
so that ϕ(y, x, ·) and ϕ′(y, x, ·) are entire functions, locally uniformly
in (x, y). Integration by parts shows that the last two terms in (3.18)
together equal

∫ x
−∞ uwϕ(·, x, λ). This expression, together with its x-

derivative, is an entire function of λ locally uniformly in x. Conse-
quently we arrive at the following expressions

EIu(x) = − 1

2π

∮
γ

û+(k)f−(x, k)
T(k)

2kλ
dλ, (3.19)

〈EIu, v〉 = − 1

2π

∮
γ

û+(k)v̂−(−k)
T(k)

2kλ
dλ, (3.20)

if also v has compact support.
Suppose now that I is to the left of q0. Then all singularities inside

γ occur where T has a pole (recall that λ = 0 is not an eigenvalue



22 C. BENNEWITZ, B. M. BROWN, R. WEIKARD

and that û+ vanishes for λ = 0 if q0 > 0). To find the corresponding
residues let λ = λn + iν where λn is an eigenvalue, so that

−iν〈Rλf+(·, kn), f−(·, kn)〉 = 〈f+(·, kn), f−(·, kn)〉.

Setting u = f+(·, kn) in (3.17) and taking an inner product with v =
f−(·, kn) gives then

iνT(k) = 2ikλn
〈f+(·, kn), f−(·, kn)〉
〈h(·, k), f−(·, kn)〉

where

h(x, k) = f+(x, k)〈f+(·, kn), f−(·, k)〉x + f−(x, k)〈f+(·, kn), f+(·, k)〉x.

We note that h(x, kn) = f+(x, kn)〈f+(·, kn), f−(·, kn)〉 so that T ◦ k has
a simple pole at λ = λn with residue

Resλn T ◦ k =
2iknλn

〈f+(·, kn), f−(·, kn)〉
(3.21)

Equation (3.19) now gives

EIu(x) =
∑
λn∈I

û+(kn)f−(x, kn)

〈f+(·, kn), f−(·, kn)〉

=
∑
λn∈I

û−(kn)f−(x, kn)

‖f−(·, kn)‖2
=
∑
λn∈I

û+(kn)f+(x, kn)

‖f+(·, kn)‖2
.

and (3.20) implies

〈EIu, v〉 =
∑
λn∈I

û+(kn)v̂−(kn)

〈f+(·, kn), f−(·, kn)〉

=
∑
λn∈I

û−(kn)v̂−(kn)

‖f−(·, kn)‖2
=
∑
λn∈I

û+(kn)v̂+(kn)

‖f+(·, kn)‖2
.

This persists3 if the right endpoint of I approaches q0.
Now suppose that I lies to the right of q0. Here we may move the top

and bottom of γ towards R with no change of the integral because of
analyticity, and since the integrand has continuous limits from above
and below in I we may shrink the height to zero. In this way we obtain

3Since the left hand side has a finite limit. The right hand side has positive
terms for u = v so the series is absolutely convergent.
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by dominated convergence

EIu(x) =

∫
I

(û+(k)f−(x, k)T(k) + û+(−k)f−(x,−k)T(−k))
dλ

4πkλ
,

〈EIu, v〉 =

∫
I

(û+(k)v̂−(−k)T(k) + û+(−k)v̂−(k)T(−k))
dλ

4πkλ
.

The scattering relations give û+(−k) = T(k)û−(k) −R+(k)û+(k) and
a similar formula for v̂−(−k) so that

EIu(x) =
1

2π

∫
I

(û+(k)f+(x, k) + û−(k)f−(x, k))|T(k)|2 dλ
2kλ

,

〈EIu, v〉 =
1

2π

∫
I

(û+(k)v̂+(k) + û−(k)v̂−(k))|T(k)|2 dλ
2kλ

.

Again, this formula holds even if the left endpoint of I is q0.
Finally, if q0 ∈ I we split γ = γ1 + γ2 + γ3 by introducing two

new vertical sides at Reλ = q0 ± ε, γ1 being the leftmost and γ3 the
rightmost rectangle. The corresponding intervals are denoted I1, I2, I3

(where again the endpoints of each interval avoid q0 and the eigenvalues
of T ). We have

− 1

2πi

∮
γ2

Rλu(x) dλ→ E{q0}u(x),

− 1

2πi

∮
γ2

〈Rλu, v〉 dλ→ 〈E{q0}u, v〉

as ε ↓ 0, which is zero unless q0 is an eigenvalue, in which case E{q0} is
the projection onto the one-dimensional eigenspace. The contributions
from I1 and I3, determined above may be added to obtain EIu(x)
respectively 〈EIu, v〉.

We may now also expand I to all of R to get the following Parseval
relation for compactly supported functions u, v ∈ H1:

〈ERu, v〉 =
∑
λn<q0

û+(kn)v̂+(kn)

‖f+(·, kn)‖2
+ 〈E{q0}u, v〉

+

∫
(q0,∞)

(û+(k)v̂+(k) + û−(k)v̂−(k))
|T(k)|2

4πkλ
dλ.
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We also have the inversion formula for compactly supported u ∈ H1:

ERu(x) =
∑
λn<q0

û+(kn)f+(x, kn)

‖f+(·, kn)‖2
+ E{q0}u(x)

+

∫
(q0,∞)

(û+(k)f+(x, k) + û−(k)f−(x, k))
|T(k)|2

4πkλ
dλ.

4. The Jost transform

The results of the previous section will be the key for the construc-
tion of a generalized Fourier transform which we shall call the Jost
transform. Let L be the union of the positive imaginary k-axis and
the nonnegative real axis. We recall that any λ ∈ R corresponds to a
unique k ∈ L via λ = q0 + k2, so we may think of k ∈ L as a function
of λ. In the following we will always tacitly assume that λ = k2 + q0.
Similarly, for the real variable t we will, without further ado, use s to
denote the root of t− q0 in L.

For the discussion below recall that the eigenvalues of T which are
smaller than q0 are given by λn = k2

n + q0 with purely imaginary num-
bers kn ∈ L.

In the following we consider C2 as a space of rows and denote the
first and second components of its elements with subscripts + and −,
respectively. Let L2

J be the set of functions û : L → C2 for which the
quadratic form associated with

〈û, v̂〉J =
∑
λn<q0

û+(kn)v̂+(kn)

‖f+(·, kn)‖2
+ û+(0)v̂+(0)

+

∫
(q0,∞)

(û+(s)v̂+(s) + û−(s)v̂−(s))
|T(s)|2

4πst
dt (4.1)

is finite (Recall that we always have t = q0 + s2 with s ∈ L). The
term containing û+(0) should be dropped unless q0 is an eigenvalue.
More precisely, in L2

J we identify, as usual, any two functions û and
v̂ for which 〈û − v̂, û − v̂〉J = 0. Thus an element (û+, û−) ∈ L2

J is
determined a.e. on (0,∞), and û+ is also determined on all kn ∈ L
where λn = q0 +k2

n is an eigenvalue, including at 0 if q0 is an eigenvalue.
Apart from this û is undetermined.

The space L2
J can be thought of as a direct sum of three weighted

L2-spaces, each associated with one of the three summands on the right
hand side of (4.1) and is thus a Hilbert space with inner product given
by 〈·, ·〉J . We denote the associated norm by ‖ · ‖J .
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Define
F (x, k) = (f+(x, k), f−(x, k)).

Then, for a compactly supported function u ∈ H1, introduce the
map J u : L→ C2 by setting

(J u)(k) = 〈u, F (·, k)〉.
If q0 is an eigenvalue this is not defined for k = 0, and then we define
(J u)+(0) = 〈u, f0〉 and F+(·, 0) = f0.

The considerations in the previous section prove the following state-
ment.

Lemma 4.1. For compactly supported u and v ∈ H1 we have J u and
J v ∈ L2

J . If EI is the spectral projection for T associated with the
interval I then we have the pointwise expansion

EIu(x) = 〈χI(t)J u(s), F (x, s)〉J ,
and the Parseval-type formula

〈EIu, v〉 = 〈χI(t)J u(s),J v(s)〉J .
In particular, 〈ERu, v〉 = 〈J u,J v〉J .

Since compactly supported functions are dense in H1 the Jost trans-
form extends to a map J : H1 → L2

J . More precisely the following
theorem holds.

Theorem 4.2. Assume q and w satisfy Assumption 1.2. Then the
following statements are true.

(1) The map u 7→ J u, defined for compactly supported u ∈ H1,
extends by continuity to a map J : H1 → L2

J called the Jost
transform.

(2) The mapping J : H1 → L2
J has kernel H∞ and 〈Eωu, v〉 =

〈χω(t)J u(s),J v(s)〉J for all Borel sets ω ⊂ R. In particular
Parseval’s formula 〈u, v〉 = 〈J u,J v〉J holds if at least one of u
and v is in H.

(3) The mapping J : H → L2
J is unitary.

(4) For fixed x ∈ R the function F (x, ·) is in L2
J . Moreover, if

û ∈ L2
J then x 7→ 〈û, F (x, ·)〉J represents an element u of H.

This map û 7→ u is the adjoint of J : H1 → L2
J and thus the

inverse of J restricted to H.
(5) If u ∈ DT , then J (Tu)(k) = λ(J u)(k). Conversely, if û and

k 7→ λû(k) are in L2
J , then J ∗(û) ∈ DT .

Remark. It is clear from the theorem that T has absolutely continuous
spectrum covering [q0,∞) and eigenvalues at λn and possibly q0, but
no other spectrum.
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Proof of Theorem 4.2, parts (1) and (2). Let un be a sequence of com-
pactly supported functions inH1 converging to a given element u ∈ H1,
e.g., un = uϕn with the ϕn introduced in Lemma 2.2. By Parseval’s
formula (Lemma 4.1) the sequence J un is Cauchy and hence conver-
gent. The limit is clearly independent of the chosen sequence un and
is, by definition, J u. This proves the first statement.

The Parseval type formula of Lemma 4.1 now extends by continuity
to all u, v ∈ H1, and then in standard fashion to the case when I is
replaced by an arbitrary Borel set. This proves (2). �

Before we prove part (3) of Theorem 4.2 we need to establish Lemma
4.3 below for which we rely on the following notation. For any two
elements û and v̂ of L2

J , we define the left-continuous function Ξû,v̂ by
setting

Ξû,v̂(λ) =
∑
λn<λ

û+(kn)v̂+(kn)

‖f+(·, kn)‖2

if λ ≤ q0 and

Ξû,v̂(λ) = Ξû,v̂(q0) + û+(0)v̂+(0) +

∫ λ

q0

û(s)v̂(s)∗
|T(s)|2

4πst
dt

if λ > q0. The term containing û+(0) should be dropped unless q0

is an eigenvalue. Ξû,v̂ is a function of bounded variation (with total
variation at most ‖û‖J ‖v̂‖J ) and thus gives rise to a complex measure
on R. Note that Ξû,v̂(t) = 〈E(−∞,t)u, v〉 if û = J u and v̂ = J v.

Lemma 4.3. The Jost transform of Rλu is s 7→ (J u)(s)/(t− λ) pro-
vided4 that Im(λ) 6= 0.

Proof. By the spectral theorem we have 〈Rλu, v〉 =
∫
R
d〈E(−∞,t)u,v〉

t−λ and
since 〈E(−∞,t)u, v〉 = ΞJ u,J v(t) one gets

〈Rλu, v〉 = 〈J u/(t− λ),J v〉J .

In particular,

〈Rλu,Rλu〉 = 〈J u/(t− λ),JRλu〉J . (4.2)

We also have Rλ − Rλ = (λ − λ)RλRλ and 〈Rλu,Rλu〉 = 〈RλRλu, u〉
so that we may write

〈Rλu,Rλu〉 =
1

λ− λ
(〈Rλu, u〉 − 〈Rλu, u〉) = ‖J u/(t− λ)‖2

J . (4.3)

4By continuity this extends to all λ outside the spectrum of T .
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Equations (4.2) and (4.3) and Parseval’s formula applied to the ex-
pansion of ‖J u/(t − λ) − J (Rλu)‖2

J yields zero, thus proving the
lemma. �

It is now easy to prove that J is surjective.

Lemma 4.4. The Jost transform H1 → L2
J is surjective and its re-

striction to H is unitary.

Proof. Suppose that û ∈ L2
J is orthogonal to all Jost transforms v̂.

Since v̂(s)/(t− λ) is also a transform for any non-real λ, we have

〈û, v̂/(t− λ)〉J = 0

for all non-real λ. Thus the Stieltjes transform of the measure dΞû,v̂ is
zero, so by the uniqueness of the Stieltjes transform it follows that this
measure is the zero measure, i.e., Ξû,v̂ is a constant function. We need
to prove that this implies that û is the zero element of L2

J .
We first consider the eigenvalues. Choosing v as an eigenfunction

associated with λn, say f+(·, kn), we get v̂+(kn) = ‖f+(·, kn)‖2 > 0.
Hence û+(kn) = 0. It follows in the same way that û+(0) = 0 if q0 is
an eigenvalue.

Since T(s) 6= 0 for s ∈ R \ {0} we have ûv̂∗ = 0 a.e. in (0,∞) (with
respect to Lebesgue measure) for any given fixed compactly supported
function v ∈ H1 and v̂ = J v. Thus there is a set N of zero measure
such that ûv̂∗ = 0 outside N whenever

v = vj = min{1, j(x− a)+, j(b− x)+}

where j ∈ N, a, b ∈ Q, a < b, and the superscript + denotes the positive
part of a function. For any fixed s 6∈ N we get, after an integration by
parts, v̂±(s) = t

∫
Rwvf±(·, s) so that

û(s)v̂j(s)∗ = t

∫
R
wvjy = 0

where y(s) = û+(s)f+(·, s) + û−(s)f−(·, s). Letting j go to infinity

the dominated convergence theorem shows that
∫ b
a
wy = 0 and hence

that y = 0 on the support of w. Since y is a solution to a linear and
homogeneous differential equation it follows that y is identically equal
to zero. Now f±(·, s) are linearly independent for real s 6= 0, so we
obtain û(s) = 0 for a.a. s. �

Proof of Theorem 4.2, part (4). If I is a compact interval not contain-
ing q0 and u ∈ H1 we have

EIu(x) = 〈EIu, g0(x, ·)〉 = 〈χI(t)J u(s),J (g0(x, ·))(s)〉J ,
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and if u ∈ H1 is compactly supported Lemma 4.1 gives

EIu(x) = 〈χI(t)J u(s), F (x, s)〉J .

Clearly χI(t)F (x, s) is in L2
J , so the second formula holds in general for

compact intervals not containing q0 by the density in H1 of compactly
supported elements. Comparing the two formulas and using that J
is surjective we therefore obtain J (g0(x, ·)) = F (x, ·) which completes
the proof, except if q0 is an eigenvalue when a similar calculation shows
J (g0(x, ·))+(0) = f0(x). �

Remark. Since we have J (g0(x, ·)) = F (x, ·) we obtain from Theo-
rem 2.9 and Lemma 4.3 that J (G(x, ·, λ))(s) = F (x, s)/(t − λ) and
J (g(x, ·, λ)(s) = λF (x, s)/(t− λ) + F (x, s) = tF (x, s)/(t− λ).

Finally, we turn to the remaining part (5) of Theorem 4.2.

Lemma 4.5. If u ∈ DT then J (Tu)(k) = λ(J u)(k). Conversely, if û
and k 7→ λû(k) are in L2

J , then J ∗(û) is in DT .

Proof. We have u ∈ DT if and only if for some non-real λ and some
v ∈ H1 we have u = Rλ(v − λu). Taking transforms we get u ∈ DT if
and only if u ∈ H and û(s) = (v̂(s) − λû(s))/(t − λ) or tû(s) = v̂(s)
for some v̂ ∈ L2

J . �

The proof of Theorem 4.2 is now complete. We conclude this sec-
tion by presenting the inversion formula in a different form. Suppose
(û+, û−) ∈ L2

J . We may write Theorem 4.2(4) as

u(x) =
∑
n

û+(kn)f−(x, kn)

〈f+(·, kn), f−(·, kn)〉
+ û+(0)f0(x)

+

∫ ∞
0

(û+(s)f+(x, s) + û−(s)f−(x, s))
|T(s)|2

2πt
ds

where the sum is taken over all n for which λn = k2
n+q0 is an eigenvalue

below q0 and the term containing û+(0) should be dropped unless q0

is an eigenvalue. The scattering relations (3.10) between f±(·, k) and

f±(·, k) = f±(·,−k) translate into

T(k)û∓(k) = R±(k)û±(k) + û±(−k) (4.4)

for real k 6= 0. Thus, recalling from (3.21) that

iλn〈f+(·, kn), f−(·, kn)〉−1 =
1

2kn
Resλn T ◦ k = Reskn T,
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and that TR− + TR+ = 0, we may express the inverse transform by

u(x) =
∑
n

û+(kn)f−(x, kn)
Reskn T

iλn
+ û+(0)f0(x)

+
1

2π
−
∫ ∞
−∞

û+(s)f−(x, s)
T(s)

t
ds (4.5)

where −
∫∞
−∞ f(s) ds =

∫∞
0

(f(s) + f(−s)) ds denotes a principal value
integral and the term containing û+(0) should be dropped unless q0 is
an eigenvalue.

5. A Paley-Wiener theorem for the Jost transform

In this section we shall prove a Paley-Wiener theorem for the Jost
transform, i.e., we relate support properties of u ∈ H to growth proper-
ties of û = J u. In this section and in Section 6 we shall always assume
Assumption 1.3. In particular q0 is not an eigenvalue and terms con-
taining û+(0) will be dropped from formulas where they previously
occurred.

We shall require the following definition.

Definition 5.1. An element (û+, û−) ∈ L2
J is said to be in the class

C(a, b) if it has an extension to the closed upper half k-plane with the
following properties:

(1) û± are analytic in Im k > 0, continuous in Im k ≥ 0 and û±(k)/λ
is continuous at λ = 0, i.e., at k = i

√
q0.

(2) If λn = q0 + k2
n is an eigenvalue we have û−(kn) = αnû+(kn)

where f−(·, kn) = αnf+(·, kn).
(3) For k ∈ R \ {0} we have

û±(−k) = T(k)û∓(k)−R±(k)û±(k)

(4) There is a constant c1 such that |û±(k)| ≤ ec1|k| for large k with
Im k ≥ 0.

(5) û+(k) = o(|λf+(a, k)|) and û−(k) = o(|λf−(b, k)|) as k2 tends
to infinity on the imaginary axis.

Remark. The requirement (3) involves some redundancy; if the formula
is true for the upper sign it will automatically be true for the lower sign
and vice versa by the standard scattering relations. Alternatively, if
both formulas are true for k > 0, then they are true in general.

We shall also find the following definition useful.

Definition 5.2.
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(1) A gap in the support5 of a function w is a component of the
complement of suppw.

(2) For a ∈ R we define a− = a−(w) and a+ = a+(w) as a− = a+ =
a unless a is in the closure of a gap of suppw, in which case
(a−, a+) is that gap.

Since w − 1 is integrable it follows that the complement of suppw
has finite measure, in particular every gap in the support of w is an
open interval of finite length. We can now state our main theorem.

Theorem 5.3. Suppose q and w satisfy Assumption 1.3 and that a < b.
Then û ∈ C(a, b) if the support of u ∈ H1 is contained in [a, b].

Conversely, if û ∈ C(a, b) then the support of u = J ∗û ∈ H is
contained in [a−, b+].

The replacement of a and b by a− respectively b+ in the last state-
ment is partly explained by the following lemma.

Lemma 5.4. Let (a, b) be a gap in the support of w. Then the re-
striction of any u ∈ H to [a, b] is a solution of −u′′ + qu = 0 uniquely
determined by u(a) and u(b).

Proof. Any ϕ ∈ C1
0(a, b) is in H∞, so we have 0 =

∫ b
a
(u′ϕ′ + quϕ). As

in the proof of Proposition 2.4 it follows that u′ is locally absolutely
continuous and −u′′ + qu = 0 there.

That a solution of −u′′ + qu = 0 is determined by its values in two
different points is an immediate consequence of the fact that, according
to Proposition 2.3, no non-trivial solution can have two different zeros.

�

It follows that the support of u ∈ H can not begin or end inside a
gap of suppw.

Proof of Theorem 5.3. Assume first that suppu ⊂ [a, b]. An integra-
tion by parts gives

û±(k) = λ

∫ b

a

uwf±(·, k),

which immediately gives an extension of the domain of û to C+ with
properties (1) and (2) of Definition 5.2. Property (3) follows from
the scattering relations (3.10) and (4) follows from the estimate (3.4).

Finally, we have f+(x, k) = λf+(a, k) f+(x,k)
λf+(a,k)

where we denote the last

factor by ψ[a,∞)(x, λ), since this is the Weyl solution for the left definite

5This refers to the essential support of w, i.e., the support in the sense of
distributions.
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Dirichlet problem on [a,∞) for the equation (1.1) (see [3]). Thus we
have

û+(k) = λf+(a, k)〈u, ψ[a,∞)(·, λ)〉.
It is shown in our paper [3] that if q 6≡ 0 in (a,∞), then ψ[a,∞)(·, λ)→ 0
in the appropriate Hilbert space as k2 →∞ along the imaginary axis.
This proves (5).

An extra argument is needed in the case q0 = 0, in which case we
may have q ≡ 0 in [a,∞), so that we do not have a genuine left defi-
nite problem on [a,∞). We note that in this case ψ[a,∞) may also be
considered the Weyl solution for a modified equation where q is the
Dirac measure at a, which does give a genuine left definite problem.
The scalar product with u is unchanged since u vanishes in (−∞, a].
Although the case when q is a measure is not explicitly considered in
[3], it is easy to see that the results remain the same.

Assume now that û ∈ C(a, b) and define the auxiliary functions

A±(x, λ) = (Rλu)(x) +
T(k)

2ikλ
û±(k)f∓(x, k). (5.1)

We show in the appendix that A+ for fixed x is entire of order at
most 1/2 as a function of λ, and that it tends to zero as λ − q0 → ∞
along iR if x < a. The Phragmén-Lindelöf theorem then shows that
A+(x, ·) is bounded if x < a and thus, by Liouville’s theorem, it is
constant. The limit along iR being zero we obtain A+(x, λ) = 0 for
x < a.

Applying the differential equation to A+ shows that wu = 0 in
(−∞, a), so that u(x) = 0 except in gaps of suppw if x ≤ a. Since
u vanishes at the endpoints of any gaps contained in (−∞, a) it fol-
lows by Lemma 5.4 that u vanishes in all such gaps. We conclude that
suppu ⊂ [a−,∞).

Similar calculations involving A− show that suppu ⊂ (−∞, b+], so
that the final conclusion is suppu ⊂ [a−, b+]. �

6. Uniqueness of the inverse scattering problem

Let Op(q0) be the class of self-adjoint operators, as defined in Sec-
tion 2, associated with coefficients satisfying Assumption 1.3 with a
given nonnegative number q0. We will consider two operators in Op(q0)

which we denote by T and T̆ . If some entity is associated with T then
there is a corresponding entity associated with T̆ and we will use the
accent ˘ on the latter one for distinction. In particular, while the co-
efficients q and w are associated with T the coefficients q̆ and w̆ are
associated with T̆ and T̆ is an operator in H̆ rather than in H. To
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avoid cumbersome notation we use ‖ · ‖ to denote the norm of either

H1 or H̆1. It will always be clear from the context which is meant.
Similar conventions will be used when we later consider an operator T̃ .

The definition of the norm of L2
J requires knowledge of the constant

q0 which defines the relation between λ and k, the absolute value |T(k)|
for k ∈ R+ of the transmission coefficient, the eigenvalues λn = q0 + k2

n

and the numbers ‖f+(·, kn)‖, n = 1, 2, . . . . The latter numbers we call
the norming constants of T .

Remark. Recall that the eigenvalues of T are determined by the poles
of the transmission coefficient T, which are all simple.

If T is known the equation (3.21) shows that if one of ‖f+(·, kn)‖,
‖f−(·, kn)‖ or the proportionality constant αn in f−(·, kn) = αnf+(·, kn)
is known, then the two others are determined. Knowing T it is therefore
immaterial whether we consider the numbers ‖f+(·, kn)‖, ‖f−(·, kn)‖ or
αn as norming constants, and we will use whichever is most convenient
in each case.

6.1. Statement of results.
The main result of this section is the following theorem.

Theorem 6.1. Suppose T and T̆ in Op(q0) have the same scattering
matrices and norming constants. Then there is a strictly increasing and
continuously differentiable function s : R→ R such that r = 1/

√
s′ and

r′ are locally absolutely continuous. Moreover, s(x) − x and r(x) − 1
tend to zero as x→ ±∞ and

q̆ ◦ s = r3(−r′′ + qr),

w̆ ◦ s = r4w.

Conversely, if the operators T and T̆ have coefficients related in this
way, then they have the same scattering matrix and norming constants.

It is to be expected that one can not uniquely recover the two coeffi-
cients q and w from the scattering data. The following corollaries show
how the conclusion may be improved with some a priori information
on the coefficients.

Corollary 6.2. Suppose T and T̆ in Op(q0) have the same scattering
matrix and norming constants, and that |w̆| = |w|. Then w̆ = w and
q̆ = q on the support of w. In particular, if supp(w) = R or if q = q̆ in

all gaps of suppw, then T = T̆ .

Corollary 6.3. Suppose T and T̆ in Op(q0) have the same scattering

matrix and norming constants, and that q̆ = q. Then T = T̆ , i.e.,
w̆ = w.
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Recall that for the one-dimensional Schrödinger equation it is cus-
tomary to use only the reflection coefficient R+, the location of the
eigenvalues (only finitely many in this case) and the norming constants
‖f+(·, kn)‖ as data.

Since |R+|2 + |T|2 = 1 the absolute value of T(k) for real k 6= 0 is
determined if R+ is known, and the poles of T are determined by the
eigenvalues. In the Schrödinger case it is also known that T(k)→ 1 as
k →∞ in the closed upper half plane, and altogether this determines
T, and therefore the full scattering matrix, uniquely.

According to Theorem 3.3 we do not have this simple behavior of T
at infinity in the present case. In the next theorem, where w+ and w−

denote the positive and negative parts respectively of the function w,
we show to what extent T is determined by the location of its poles
and its absolute value on the real axis.

Theorem 6.4. Suppose the operators T and T̆ have transmission coef-
ficients with the same poles and satisfy |T(k)| = |T̆(k)| for real k 6= 0.

Then
∫∞
−∞(
√
w− −

√
w̆−) = 0 and T(k) = eiαkT̆(k) for all k ∈ C+,

where

α =

∫ ∞
−∞

(
√
w+ −

√
w̆+) =

∫ ∞
−∞

(
√
|w| −

√
|w̆|).

We also have a sort of converse of this theorem.

Theorem 6.5. Suppose T ∈ Op(q0) with transmission coefficient T.
Then, given any α ∈ R, there is another operator T̃ ∈ Op(q0) with

transmission coefficient T̃(k) = eiαkT(k).
We may even find continuously differentiable functions σ and ρ with

σ strictly increasing and ρ′ locally absolutely continuous, ρ = 1/
√
σ′,

σ(x) − x → 0 and ρ(±x) → 1 as x → ∞ while σ(x) − x → −α as
x→ −∞, and such that if the coefficients of T̃ are given by

q̃ ◦ σ = ρ3(−ρ′′ + qρ),

w̃ ◦ σ = ρ4w,

then T̃ ∈ Op(q0), R̃+ = R+, T̃(k) = eiαkT(k), R̃−(k) = e2iαkR−(k)

and the norming constants satisfy ‖f+(·, kn)‖ = ‖f̃+(·, kn)‖.
Thus, in addition to |T(k)| for real k and the eigenvalues we must

know
∫
R(1−

√
w+) for T to be determined. Nevertheless, we have the

following corollary of Theorem 6.1.

Corollary 6.6. Suppose R+ = R̆+, that T and T̆ in Op(q0) have the

same eigenvalues and that ‖f+(·, kn)‖ = ‖f̆+(·, kn)‖ for all eigenvalues
λn = q0 + k2

n. Then there is a strictly increasing and continuously
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differentiable function s : R→ R such that r = 1/
√
s′ and r′ are locally

absolutely continuous. Moreover, s(x)− x and r(±x)− 1 tend to zero

as x→∞, s(x)− x→
∫
R(
√
w+ −

√
w̆+) as x→ −∞ and

q̆ ◦ s = r3(−r′′ + qr),

w̆ ◦ s = r4w.

Conversely, if the coefficients of the operators T and T̆ are related
in this way, then R+ = R̆+, T and T̆ have the same eigenvalues and

‖f+(·, kn)‖ = ‖f̆+(·, kn)‖ for all eigenvalues λn = q0 + k2
n.

Note that if we additionally assume that
∫
R(
√
w+ −

√
w̆+) = 0 we

are back to Theorem 6.1. A corresponding result is of course valid if
we suppose R̆− = R−, that T and T̆ have the same eigenvalues and

that the norming constants satisfy ‖f−(·, kn)‖ = ‖f̆−(·, kn)‖.

6.2. Proofs.
We begin with the easy direction of Theorem 6.1.

Proof of the converse part of Theorem 6.1. To prove this let f(x, k) =

r(x)f̆+(s(x), k). Thus e−ikxf(x, k) is asymptotic to r(x)eik(s(x)−x) which
is asymptotic to 1 as x → ∞. Furthermore it is easily verified that f
satisfies −f ′′ + qf = λf so that f = f+.

Similarly one shows that r(x)f̆−(s(x), k) = f−(x, k). It follows that
the two equations have the same scattering matrix and thus also the
same eigenvalues. If λn = q0 + k2

n is such an eigenvalue and f̆−(·, kn) =

αnf̆+(·, kn) it follows that f−(·, kn) = αnf+(·, kn) so that the two equa-
tions also have the same norming constants. �

We next prove Theorem 6.4.

Proof of Theorem 6.4. The function T/T̆ = [f̆+, f̆−]/[f+, f−] is analytic
without zeros in C+ and continuous in C+, continuity at 0 following

from Theorem 3.5. In addition |T/T̆| = 1 on R, so that we may define

F (k) = log(T(k)/T̆(k)).

Then ReF is continuous in C+, vanishes on R and F is analytic in
C+. Thus Proposition 1.6 shows that F extends to an entire function.

Now, the estimate (3.5) applied to [f̆+(·, k), f̆−(·, k)] and Theorem A.1
together with Lemma A.4 show that the entire function eF is of order
≤ 1. It follows that F is a polynomial of degree ≤ 1. Thus we have
F (k) = iαk + iβ for some constants α, β. For real k this is purely
imaginary, so these constants are both real. For purely imaginary k
the coefficients T(k) and T̆(k) are real so we have eiβ = ±1.
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The functions f±(·, i√q0) (note that k = i
√
q0 corresponds to λ = 0)

are strictly positive near ±∞ and f ′±(·, i√q0) → 0 there. From the
differential equation f ′′±(·, i√q0) = qf±(·, i√q0) we find that f±(·, i√q0)
are convex wherever they are positive. This shows that f±(·, i√q0) > 0
and ∓f ′±(·, i√q0) ≥ 0 throughout R. Since 0 is not an eigenvalue we
obtain

[f+(·, i√q0), f−(·, i√q0)] > 0,

so that T(i
√
q0)/T̆(i

√
q0) is positive and hence eiβ = 1.

Finally, according to Theorem 3.3 we have

T(k) = exp(−ik
∫ ∞
−∞

(1−
√
w) + o(|k|))

as k → ∞ at least along some rays in C+ from which the value of α
given in the theorem and

∫∞
−∞(
√
w̆− −

√
w−) = 0 follow. �

To prove the hard direction of Theorem 6.1 we note that by as-
sumption the spaces L2

J and L2
J̆ are the same, so that the operator

U = J̆ ∗ ◦ J : H → H̆ is unitary. We shall prove that U is (the inverse
of) a Liouville transform. By this we mean a transform ŭ 7→ u given
by u(x) = r(x)ŭ(s(x)) for certain fixed functions r and s. If r : R→ C
is never zero and s : R → R is strictly increasing and surjective, then
the inverse of the map is also a Liouville transform of the same kind,
as is the composite of two such maps.

To carry out the proof we require some preparation, and begin by a
definition.

Definition 6.7.

(1) Let τ(x) = x+

∫ ∞
x

(1−
√
|w|) and τ̆(x) = x+

∫ ∞
x

(1−
√
|w̆|).

(2) Let α =

∫
R
(
√
|w| −

√
|w̆|).

It follows from Theorem 3.3 that as k2 → ∞ in iR we have the
formulas

log |f+(x, k)| = − |k|√
2
(τ(x) + o(1)),

log |f̆+(x, k)| = − |k|√
2
(τ̆(x) + o(1)),

log |f−(x, k)| = |k|√
2

(
τ(x)−

∫
R
(1−

√
|w|) + o(1)

)
,

log |f̆−(x, k)| = |k|√
2

(
τ̆(x) + α−

∫
R
(1−

√
|w|) + o(1)

)
.

(6.1)



36 C. BENNEWITZ, B. M. BROWN, R. WEIKARD

Note that if T = T̆, then according to Theorem 6.4 we have α = 0. We
will need the following simple technical lemma.

Lemma 6.8. Suppose u ∈ H1 has compact support in [a,∞). Given
ε > 0 we may then find uε ∈ H1 with compact support in (a,∞) such
that ‖u− uε‖ < ε. A similar statement is true if suppu ⊂ (−∞, a].

Proof. For δ > 0 we replace u in the interval [a, a + δ] by zero and in
the interval [a+ δ, a+ 2δ] by a linear function with value 0 at a+ δ and
u(a+ 2δ) at a+ 2δ.

The modified function ũ vanishes in [a, a+δ], is (x−a−δ)u(a+2δ)/δ
in [a+ δ, a+ 2δ] and then equals u. Furthermore u(a) = 0 so

|u(a+ 2δ)|2 =
∣∣∣ ∫ a+2δ

a

u′
∣∣∣2 ≤ 2δ

∫ a+2δ

a

(|u′|2 + q|u|2) = o(δ)

as δ → 0. The modification ũ− u therefore has norm-square∫ a+2δ

a

(|u′ − ũ′|2 + q|u− ũ|2)

≤ 2

∫ a+2δ

a

(|u′|2 + q|u|2) + 2

∫ a+2δ

a+δ

(|ũ′|2 + q|ũ|2).

The first term is o(1), and so is the second since it is equal to

2
∣∣∣u(a+ 2δ)

δ

∣∣∣2(δ +

∫ a+2δ

a+δ

q|x− a− δ|2
)
≤
(

1 + δ

∫ a+2δ

a+δ

q
)
o(1).

Thus the norm of the modification is arbitrarily small if δ is sufficiently
small, and the modified function has support in (a,∞).

The second statement is proved similarly. �

We now prove a lemma establishing a connection between the sup-
ports of u and Uu.

Lemma 6.9. Suppose u ∈ H has compact support in [a,∞) and sup-
pose τ(a) = τ̆(ă). Then suppUu ⊂ [ă−(w̆),∞). If a = a+(w) we even
have suppUu ⊂ [ă+(w̆),∞).

Similarly, if suppu ⊂ (−∞, a] we have suppUu ⊂ (−∞, ă+(w̆)], and
if a = a−(w) we even have suppUu ⊂ (−∞, ă−(w̆)].

Proof. We have f+(a, k) = o(|f̆+(ă−−ε, k)|) for every ε > 0 by (6.1) so
that, by the Paley-Wiener theorem 5.3, the support of Uu is contained
in [ă− − ε,∞) for every ε > 0 and thus in [ă−,∞).

Now, if a = a+ Lemma 6.8 shows that we may, given ε > 0, find a
compactly supported uε ∈ H1 with suppuε ⊂ (a+,∞) and ‖u−uε‖ < ε.

Again by (6.1) f+(a + δ, k) = o(|f̆+(ă+, k)|) for every δ > 0, and since



INVERSE SCATTERING THEORY FOR A LEFT-DEFINITE PROBLEM 37

(a+ δ)− ≥ a+ we have suppUuε ⊂ [ă+,∞) which implies Uuε(ă+) = 0.

Since U : H1 → H̆ and point evaluations are continuous it follows that
ŭ = Uu vanishes at ă+ and therefore throughout [ă−, ă+], so supp ŭ ⊂
[ă+,∞).

The proof of the second part of the lemma is similar. �

The next lemma establishes the existence of the Liouville transform
outside gaps of suppw.

Lemma 6.10. Suppose τ(a) = τ̆(ă). Then a−(w) = a+(w) if and only
if ă−(w̆) = ă+(w̆). Furthermore, the equation τ(a) = τ̆(ă) defines a
strictly increasing and surjective function s : suppw 3 a 7→ ă ∈ supp w̆
such that there exists a non-vanishing function r defined in suppw with
the property u = rŭ ◦ s in suppw for every u ∈ H, where ŭ = Uu.

Proof. Suppose a− = a+ and let v ∈ H have compact support with
v(a) = 1. We may then for any compactly supported u ∈ H write
u = u(a)v + u+ + u− where u± ∈ H have compact supports with
suppu+ ⊂ [a,∞), suppu− ⊂ (−∞, a]. According to Lemma 6.9 we
then have

supp ŭ+ ⊂ [ă+,∞) and supp ŭ− ⊂ (−∞, ă−],

so that the restriction of ŭ to [ă−, ă+] is u(a)v̆. By the density of
compactly supported elements in H this remains true for all u ∈ H, so
these restrictions span a one-dimensional space. But if ă− < ă+ this
contradicts the fact that U is surjective, since then the corresponding
space must have dimension two. Together with similar considerations
involving U−1 this proves the first claim and the statement about s
except at endpoints of gaps. It is also clear, again since U is surjective,
that v̆(s(a)) 6= 0 because not all elements of H̆ vanish in s(a). We
therefore set r(a) = v̆(s(a)).

It remains to consider the case when a is an endpoint of a gap,
say a = a−. We may as before write u = u(a)v + u+ + u−, and
then obtain, using Lemma 6.9, that ŭ(ă−) = u(a)v̆(ă−), so that we
define s(a−) = ă− and r(a−) = v̆(ă−). Similarly, if a = a+ we define
s(a+) = ă+ and r(a+) = v̆(ă+) which completes the proof. �

Lemma 6.10 is the most important step in the proof of Theorem 6.1.
Note that gaps in suppw correspond to gaps in the domain of s while
gaps in supp w̆ correspond to gaps in the range of s, and that these
gaps are in a one-to-one correspondence.

It remains to define the Liouville transform in each gap.



38 C. BENNEWITZ, B. M. BROWN, R. WEIKARD

Lemma 6.11. Suppose (a−, a+) is a gap in suppw. Then there is a
Liouville transform mapping restrictions to [s(a−), s(a+)] of elements

ŭ ∈ H̆ to the restrictions to [a−, a+] of the pre-images u = U−1ŭ.

Proof. Let ϕ and θ be solutions of −f ′′ + qf = 0 with ϕ(a−) = 1,
ϕ(a+) = 0 and θ(a−) = 0, θ(a+) = 1. Such solutions exist, are a
basis for the solutions and have no zeros or zeros of their derivatives
in (a−, a+) as shown in Proposition 2.3. Thus ϕ′ < 0 and θ′ > 0
throughout [a−, a+] so that [ϕ, θ] > 0.

Now let ϕ̆ and θ̆ be the analogous solutions of −f ′′ + q̆f = 0 in
[s(a−), s(a+)]. It is clear that ϕ̆/r(a−) and θ̆/r(a+) are images under
U of ϕ and θ respectively, in the following sense: Any element of H
whose restriction to [a−, a+] is ϕ is mapped to an element of H̆ whose
restriction to [s(a−), s(a+)] is ϕ̆/r(a−), and similar for θ.

If we extend ϕ by 0 in [a+,∞) and θ by 0 in (−∞, a−], the images will
have analogous properties. The scalar product of these extensions of ϕ
and θ is

∫ a+
a−

(ϕ′θ′+qϕθ) = ϕ′(a+) < 0. Since U is unitary this is equal to

(r(a−)r(a+))−1
∫ s(a+)

s(a−)
(ϕ̆′θ̆′ + q̆ϕ̆θ̆) = (r(a−)r(a+))−1ϕ̆′(s(a+)), which is

therefore negative. Thus we have r(a−)r(a+) > 0 or r(a−)/r(a+) > 0.
We now need to define s and r so that r(x)ϕ̆(s(x))/r(a−) = ϕ(x)

and r(x)θ̆(s(x))/r(a+) = θ(x) for x ∈ [a−, a+]. The requirements are
equivalent to the equations

r(a−)θ̆(s(x))/(ϕ̆(s(x))r(a+)) = θ(x)/ϕ(x)

r(x) = r(a−)ϕ(x)/ϕ̆(s(x)).

Now, we saw above that [ϕ, θ] > 0, and similarly [ϕ̆, θ̆] > 0. Differen-
tiating we obtain (θ/ϕ)′ = [ϕ, θ]/ϕ2 > 0, so θ/ϕ is strictly increasing

with range [0,∞], and so is θ̆/ϕ̆. Since also r(a−)/r(a+) > 0 the first
equation defines s uniquely as a strictly increasing function mapping
[a−, a+] onto [s(a−), s(a+)], so that r is uniquely defined by the second
equation. �

We can now finish the proof of Theorem 6.1.

Proof of hard direction of Theorem 6.1. We have already defined s and
r everywhere, and it only remains to prove the regularity and asymp-
totic properties of r and s, and the formulas for the coefficients.

The function s is strictly increasing and maps R onto R and is there-
fore continuous. We have a Liouville transform such that u = rŭ ◦ s,
where ŭ = Uu, for every u ∈ H. Thus, for every û ∈ L2

J ,

〈û, F (x, ·)〉J = u(x) = r(x)ŭ(s(x)) = r(x)〈û, F̆ (s(x), ·)〉J .
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It follows that F (·, k) = rF̆ (s(·), k), first for k > 0 and then by unique
analytic continuation (Proposition 1.6) in general. Now f+(·, i√q0) and

f̆+(·, i√q0) are positive, so that r is realvalued and strictly positive.

The function s is continuous and strictly increasing so f̆±(s(x), i
√
q0)

are continuous, of locally bounded variation and never vanish. Thus
also r is continuous, of locally bounded variation and never vanishes.

Since T = T̆, i.e. [f+, f−] = [f̆+, f̆−], a simple calculation shows that
the measure r2ds is Lebesgue measure. Thus s is locally absolutely
continuous and r2s′ = 1. Since r = f+(·, i√q0)/f̆+(s(·), i√q0) also r is
locally absolutely continuous.

Differentiating f+(x, k) = r(x)f̆(s(x), k) gives

f ′+(x, k) = r(x)s′(x)f̆ ′+(s(x), k) + r′(x)f̆+(s(x), k)

= (r(x))−1f̆ ′+(s(x), k) + r′(x)f̆+(s(x), k).

Here the left hand side and the first term to the right are locally ab-
solutely continuous, as is f̆+(s(x), k). It follows that also r′ is locally
absolutely continuous. Differentiating again we obtain

(q − λw)f+ = f ′′+ = (r−1f̆ ′+ ◦ s+ r′f̆+ ◦ s)′

= r−1s′f̆ ′′+ ◦ s+ (−r′r−2 + r′s′)f̆ ′+ ◦ s+ r′′f̆+ ◦ s

= (r−3(q̆ ◦ s− λw̆ ◦ s) + r′′)f̆+ ◦ s
= (r−4(q̆ ◦ s− λw̆ ◦ s) + r′′/r)f+.

Since this is true for many λ we obtain

q̆ ◦ s = r3(−r′′ + qr), w̆ ◦ s = r4w.

We also have

e±ikx ∼ f±(x, k) = r(x)f̆±(s(x), k) ∼ r(x)e±iks(x)

as x → ±∞, so that r(x)e±ik(s(x)−x) → 1 as x → ±∞. Since this is
true for many k we find that s(x)− x→ 0 and r(x)→ 1 as x→ ±∞.
This finishes the proof. �

We now turn to the corollaries.

Proof of Corollary 6.2. By assumption τ = τ̆ so that s(x) = x and
thus r = 1 on suppw from which the claim immediately follows. �

Proof of Corollary 6.3. For λ = 0, i.e., for k = i
√
q0 the functions

f±(·, i√q0) and f̆±(·, i√q0) are realvalued, satisfy the same equation
and have the same asymptotic behavior at ±∞ and are therefore
equal. But, by the proof of Theorem 6.1, we also have f±(x, i

√
q0) =
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r(x)f̆±(s(x), i
√
q0). Thus, setting E = f−(·, i√q0)/f+(·, i√q0), we get

E(s(x)) = E(x). NowE ′ = [f+(·, i√q0), f−(·, i√q0)]/f+(·, i√q0)2 where
the Wronskian is constant and, since λ = 0 is not an eigenvalue, non-
zero. Thus E is strictly monotone. It follows that s(x) = x and
therefore r = 1 and w̆ = w. �

Proof of Theorem 6.5. We consider the operator T̃ defined as in the
statement of the theorem, where we additionally require of ρ that 1−ρ
and (1 + |x|)ρ′′(x) are integrable, in order that T̃ ∈ Op(q0). We may
for example choose

σ(x) = x− α(1− 2
π

arctan(βx))/2,

where β > 0 and sufficiently small.
Now suppose f = ρf̃+(σ(·), k). It is then easily verified that f satis-

fies −f ′′ + qf = λwf and

e−ikxf(x) ∼ ρ(x)eik(σ(x)−x) ∼ 1

as x → ∞, so that f+(·, k) = ρf̃+(σ(·), k). Similarly we find that

f−(·, k) = eiαkρf̃−(σ(·), k). It follows that the scattering matrix of T̃ is

given by R̃+ = R+, T̃(k) = eiαkT(k) and R̃−(k) = e2iαkR−(k).

If λn = q0 + k2
n and f−(·, kn) = αnf+(·, kn) we obtain f̃−(·, kn) =

e−iαknαnf̃+(·, kn), and since T̃(k) = eiαkT(k) we have

〈f+(·, kn), f−(·, kn)〉 = eiαkn〈f̃+(·, kn), f̃−(·, kn)〉
because of (3.21). Thus

‖f̃+(·, kn)‖2 =
eiαkn

αn
〈f̃+(·, kn), f̃−(·, kn)〉

=
1

αn
〈f+(·, kn), f−(·, kn)〉 = ‖f+(·, kn)‖2.

�

Proof of Corollary 6.6. Assuming R̆+ = R+ we obtain |T̆(k)| = |T(k)|
for real k, and if the eigenvalues of T̆ and T are the same we see from
Theorem 6.4 that T(k) = eiαkT̆(k) where α =

∫
R(
√
w+ −

√
w̆+).

We now define the operator T̃ as in Theorem 6.5 so that R̃+ = R+,
T̃(k) = eiαkT(k) and ‖f̃+(·, kn)‖ = ‖f+(·, kn)‖. It follows that T̃ and T̆
have the same scattering matrix and norming constants.

Applying Theorem 6.1 we find a Liouville transform taking T̆ into
T̃ , and composing this with the transform constructed above, which
takes T̃ into T , we obtain a Liouville transform taking T̆ into T which
is easily seen to have the properties stated.
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The converse is proved by similar calculations as those in the proof
of Theorem 6.5. �

7. Application to the Camassa-Holm equation

The Camassa-Holm equation is

ψt − ψtxx − 2κψx + 3ψψx = 2ψxψxx + ψψxxx,

where κ is a constant which is either zero or can be normalized to one
by an appropriate scaling (setting ψ(x, t) = κψ̃(x, κt))6. Henceforth we
will assume κ = 1. If one introduces w = ψxx−ψ+κ the Camassa-Holm
equation may be written more concisely as

wt + 2ψxw + ψwx = 0 or ψwt + (ψ2w)x = 0. (7.1)

Associated with the Camassa-Holm equation is the left definite prob-
lem

−uxx + 1
4
u = λwu. (7.2)

We now assume that w solves the Camassa-Holm equation, which we
will consider on the whole real line, for solutions ψ which decay at
infinity. We will assume that the decay is such that w − 1 ∈ L1(R).
We are then in a position to discuss scattering for (7.2).

The Jost solutions of (7.2) will now also depend on time; thus the
transmission and reflection coefficients, as well as the eigenvalues and
the corresponding normalization constants all must be expected to de-
pend on t. The time evolution of all these quantities is given by the
following theorem; see Constantin [16].

Theorem 7.1. The evolution of scattering data for the equation (7.2)
when the weight w satisfies the Camassa-Holm equation is the following.

(i) T(k; t) = T(k; 0),

(ii) R+(k; t) = eikt/λR+(k; 0),

(iii) R−(k; t) = e−ikt/λR−(k; 0),

(iv) Eigenvalues are constants of the motion.

Moreover, if λn = k2
n + 1/4 is an eigenvalue and αn(t) the propor-

tionality constant in f−(·, kn; t) = αn(t)f+(·, kn; t), then we have the
following relationships.

(v) αn(t) = eiknt/λnαn(0),

(vi) ‖f+(·, kn; t)‖2 = e−iknt/λn‖f+(·, kn; 0)‖2,

6One may also scale κ to 0 by setting ψ(x, t) = ψ̃(x− κt, t) + κ, but note that if

ψ decays at infinity then ψ̃ does not, so this is not very useful.
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(vii) ‖f−(·, kn; t)‖2 = eiknt/λn‖f−(·, kn; 0)‖2.

The simplicity of the time evolution of the scattering data displayed
by this theorem is of great significance for the solution of the Cauchy
problem for the Camassa-Holm equation: Given an initial condition
w0 = w(·; 0) one investigates the scattering problem for the equation
(7.2) with w = w0. Next one evolves the scattering data as prescribed
by Theorem 7.1 and, given the new scattering data, one solves the
inverse scattering problem for equation (7.2) to obtain a w(·; t) which
is the solution of the Camassa-Holm equation (7.1) evaluated7 at time
t. The process is summarized in the following commutative diagram.

w(·; 0)
scattering−−−−−−−−−−→ scattering datay y

w(·; t) inverse scattering←−−−−−−−−−− evolved scattering data

Appendix A. Technical details

We will here show that the auxiliary function A+(x, λ) of (5.1) for
fixed x and under Assumption 1.3 is an entire function. We will also
estimate the growth of A+(x, ·) at infinity. In the process we will also
obtain estimates of [f+, f−] which are needed to prove Theorem 6.4.
Entirely similar considerations show analogous properties for A−(x, λ)
so we give no details here.

Thinking of x as fixed we shall throughout abbreviate A+(x, ·) by A.
We will need the following theorem.

Theorem A.1. Suppose f is analytic for |z| ≥ 1 and Rj is an increas-
ing sequence of numbers (larger than 1) tending to infinity such that
Rj+1/Rj remains bounded. Furthermore, suppose there are numbers n,
α ≥ 0, and C > 0 such that

| Im(z)f(z)| ≤ |z|n exp(C|z|α)

for all z lying on any of the circles |z| = Rj.
Then the following two statements are true:

(1) The entire part of f has growth order at most α.
(2) If α = 0, then the entire part of f is a polynomial of degree < n.

Proof. We have f(z) =
∑∞

k=−∞ akz
k with

ak =
1

2πi

∫
|z|=R

f(z)

zk+1
dz

7Note that given w there is only one decaying solution ψ of −ψ′′ + ψ = w − 1.



INVERSE SCATTERING THEORY FOR A LEFT-DEFINITE PROBLEM 43

and hence, using that 2i Im z = z − z = z −R2/z if |z| = R,

1

2πi

∫
|z|=R

2i Im(z)f(z)

zk
dz = ak−2 −R2ak.

This expression may be estimated with the aid of our assumption to
yield

|ak| ≤ R−2
j |ak−2|+ 2Rn−1−k

j exp(CRα
j ).

If α = 0 and k > n − 1 this shows that ak = 0 proving our second
claim.

Now suppose α > 0. After enlarging C we may assume that n = 1
and that Rj ≤ exp(CRα

j ). It follows then by induction that, for any
fixed k ∈ N, the inequality

|ak| ≤ (k + 1)BR−k exp(CRα) (A.1)

holds whenever R is any of the numbers Rj and where B is the largest
of the numbers 1, |a0|, and |a1|/2. If we choose j so that

Rα
j−1 ≤

k

Cα
≤ Rα

j ,

we have

|ak| ≤ (k + 1)BR−kj exp(CRα
j ) ≤ (k + 1)B

(
k

Cα

)−k/α
exp(βαk/α)

if β ≥ Rj/Rj−1. Since the growth order of an entire function is de-
termined through its Taylor coefficients by (see, e.g., Bieberbach [9],
Levin [26], or Markushevich [27])

lim sup
k→∞

k log k

− log |ak|
it follows that the growth order of the entire part of f is at most α. �

We now turn to the auxiliary function

A(λ) = A+(x, λ) = (Rλu)(x) +
T(k)

2ikλ
û+(k)f−(x, k).

Lemma A.2. Under Assumption 1.3 the auxiliary function A is entire.

Proof. Clearly A is analytic away from the real axis. We investigate the
intervals (−∞, q0) and [q0,∞) separately. Starting with the former we
note that A extends meromorphically to this interval and that possible
poles may occur only at the eigenvalues of T (which correspond to
the poles of T). Now consider any such eigenvalue λn = k2

n + q0 and
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recall that λn cannot be zero. According to Theorem 2.9 we have
(Rλu)(x) = −T(k)h(x, k)/(2ikλ)− u(x)/λ where λ = k2 + q0 and

h(x, k) = f+(x, k)〈u, f−(·, k)〉x + f−(x, k)〈u, f+(·, k)〉x.

Since f−(·, kn) = αnf+(·, kn) we see that h(x, kn) = f−(x, kn)û+(kn).
Thus A(λ) + u(x)/λ is a product of two factors one of which has a
simple pole at λn while the other has a zero there making the singularity
removable. Consequently A is analytic in C \ [q0,∞).

In the interval [q0,∞) the function A is a priori undefined. We shall
first show that A may be continued analytically across (q0,∞). In order
to see this we use Theorem 4.3 and the inverse transform (cf. equation
(4.5)) to obtain

Rλu(x) =
∑
n

−iû+(kn)f−(x, kn) Reskn T

λn(λn − λ)

+
1

2π
−
∫ ∞
−∞

û+(s)f−(x, s)T(s)

t(t− λ)
ds,

if Im(λ) 6= 0.
Now let J be a compact subinterval of (q0,∞), corresponding to two

intervals ±I in the k-plane; we have 0 /∈ I. We modify the path of
integration by replacing ±I by half-circles in the upper half plane. We
denote the resulting contour by γ. By the residue theorem the change
in the integral equals the negative of the second term in A if λ ∈ Λ, the
neighborhood of the interior of J corresponding to k below γ. Thus for
λ ∈ Λ

A(λ) =
∑
n

−iû+(kn)f−(x, kn) Reskn T

λn(λn − λ)
+ −
∫
γ

û+(s)f−(x, s)T(s)

2πt(t− λ)
ds,

which is clearly analytic in Λ. Thus A extends analytically to C\{q0}.
Finally we show that q0 is a removable singularity of A. To this end

consider the function f(z) = A(q0 + 1/z). We will show first that f
has, at worst, a simple pole at infinity by showing that (Im z)f(z) may
be bound by a multiple of |z|2 and then calling on Theorem A.1.

Calling on Lemma 2.1, we find that

|(Rλu)(x)| ≤ C{x}‖Rλ‖‖u‖ ≤ C{x}‖u‖/| Imλ|.

Setting λ = q0 + 1/z this shows that | Im(z)(Rλu)(x)| ≤ C{x}‖u‖|z|2
which gives an appropriate estimate for the first term of Im(z)f(z).

Looking now at the second term we find that û+(k)/λ, f−(x, k) and
[f+, f−](k) all have limits as λ → q0. If [f+, f−](0) 6= 0, the second
term of A is bounded near q0. If, however, [f+, f−](0) = 0, we know
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from Theorem 3.5 that [f+, f−](k)/k stays away from zero so that the
second term of Im(z)f(z) behaves like O(|z|3/2) = o(|z|2).

Now that we know that f has at worst a simple pole at infinity we
approach infinity along the imaginary axis where | Im(z)| = |z|. But
since q0 is not an eigenvalue we have in fact |(Rλu)(x)| = o(|z|) and
hence f(z) = o(|z|) as z → ∞ along iR so that the pole is actually
removable. �

To estimate the growth of A at infinity we need the following lemma,
which is Theorem 11 in Levin [26]. It relies on a result of Cartan [12]
pertaining to the analogous question for polynomials.

Lemma A.3. Let h be a holomorphic function in the disk |z| ≤ 2eR
with h(0) = 1 and let η be an arbitrary positive number not exceeding
3e/2. Then, inside the disk |z| ≤ R, but outside of a family of excluded
disks the sum of whose radii is not greater than 4ηR, we have

log |h(z)| ≥ −H(η) logMh(2eR)

where

H(η) = 2 + log(
3e

2η
)

and

Mh(2eR) = max{|h(z)| : |z| ≤ 2eR}.

We shall use the lemma to prove the following crucial fact.

Lemma A.4. There is a strictly increasing sequence of positive num-
bers rj and a positive number c0 such that rj+1/rj remains bounded
and

|[f+(·, k), f−(·, k)]| ≥ 2|k|e−2c0|k|

whenever k is on any of the semicircles of radius rj.

Proof. We shall use the abbreviation W (k) = [f+(·, k), f−(·, k)]. Corol-
lary 3.4 provides such an estimate as long as |Re k| ≥ δ|k| when δ is
a fixed positive number (smaller than 1) — even on all semicircles. It
remains to establish such a bound for k in the complementary sector
about the imaginary axis. From the possible presence of zeros of W on
the imaginary axis arises the necessity to restrict ourselves to certain
circles avoiding these points.

For δ = 1/25 (or smaller, but positive, if you like) let S ′δ be the
sector {k ∈ C : Im k > 0, |Re k| ≤ δ|k|}. Let k0 be any point on the
right boundary of this sector and kj = 2jk0. Let Bj(r) be the disk
|k − kj| ≤ r. We note that the disk Bj(4eδ|kj|) lies entirely above the
line Im k = |kj|/2 while the disk Bj(2δ|kj|) intersects the line Re k =
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−δ|k| (the left boundary of S ′δ) in the points −kj and −kj(1 − 4δ2).
The situation is sketched in Figure 1 except that there δ is chosen as
1/3 in order to be able to distinguish the intersection points on the left.

-0.4 -0.2 0.0 0.2 0.4 0.6

0.5

1.0

1.5

Figure 1. The disk B0(2δ|k0|) and the lines ±Re k =
δ|k| for δ = 1/3 and |k0| = 1

Define h(k) = W (k)/W (kj). The function h is analytic inBj(4eδ|kj|)
and satisfies h(kj) = 1. We also know from Lemma 3.2 and Corollary
3.4 that there is a number c′, independent of kj, such that

|h(k)| ≤ ec
′|kj |

as long as k ∈ Bj(4eδ|kj|). By Lemma A.3 we have for any η ∈ (0, 1)
that

log |h(k)| ≥ −(2− log η)c′|kj|
provided k ∈ Bj(2δ|kj|) but outside a family of excluded disks the sum
of whose diameters is not greater then 24eηδ|kj|. Thus, if we choose η
smaller than δ/(6e) and set c = (2 − log η)c′ we will be able to find a
number rj ∈ [(1− 4δ2)|kj|, |kj|] such that

|h(k)| ≥ e−c|kj | ≥ e−2c|k|

for |k| = rj and |Re k| ≤ δ|k|. Appealing again to Corollary 3.4 to
obtain a lower bound on |W (kj)| we obtain our claim by setting c0 =
c+ (‖w − 1‖1 + ‖q − q0w‖1)/δ. �

Lemma A.5. The entire part of the auxiliary function (5.1) has growth
order ≤ 1/2.

Proof. Instead of λ we shall use z = λ−q0 = k2 as our variable. In view
of Theorem A.1 it is sufficient to show that | Im(z)A(z+q0)| ≤ |k|2eC|k|
for all k lying on a sequence of semi-circles |k| = rj, Im k ≥ 0, where
rj is a strictly increasing sequence for which rj+1/rj remains bounded.
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First note that, since ‖Rλ‖ ≤ 1/| Im(λ)| and since, by Lemma 2.1,
the evaluation operator onH1 is a bounded linear form on the space, we
find that | Im(z)(Rz+q0u)(x)| remains bounded on any such sequence.
Hence we need to investigate the term T(k)û+(k)f−(x, k)/(2ikλ) =
−û+(k)f−(x, k)/(λW (k)), where W (k) = [f+(·, k), f−(·, k)].
|û+(k)| and |f−(x, k)| are each bounded by ec1|k| for some constant

c1 and |k| ≥ 1 either by assumption or else with the aid of the estimate
(3.4). For |W (k)|−1 use Lemma A.4 on the semicircles |k| = rj. Thus
the second term of the auxiliary function can not grow faster than
exponentially in k and applying now Theorem A.1 shows that the entire
part of A is of growth order at most 1/2. �

Lemma A.6. For any x < a the auxiliary function (5.1) tends to zero
as k2 →∞ in iR.

Proof. If x < a we have

A(λ) = (Rλu)(x)− g(x, a, λ)
û+(k)

λf+(a, k)

where g is the Green’s function introduced in (2.3) (with f± used as
ψ±). (Rλu)(x) tends to zero as λ − q0 tends to infinity in iR. Since,
by the spectral theorem, −λRλ similarly tends strongly to the identity
operator and since, from Theorem 2.9,

g(x, ·, λ) = λRλg(x, ·, 0) + g(x, ·, 0),

g(x, a, λ) tends to zero as does the term û+(k)/(λf+(a, k)) by assump-
tion. Thus A(λ)→ 0. �
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C.B: Department of Mathematics, Lund University, Box 118, SE-
221 00 Lund, Sweden

E-mail address: christer.bennewitz@math.lu.se

B.M.B: School of Computer Science, University of Wales, Cardiff,
PO Box 916, Cardiff CF2 3XF, U.K.

E-mail address: Malcolm.Brown@cs.cardiff.ac.uk

R.W: Department of Mathematics, University of Alabama at Birm-
ingham, Birmingham, AL 35226-1170, USA

E-mail address: rudi@math.uab.edu


