INVERSE SPECTRAL AND SCATTERING THEORY FOR THE
HALF-LINE LEFT-DEFINITE STURM-LIOUVILLE PROBLEM

C. BENNEWITZ!, B. M. BROWN?}, AND R. WEIKARD?

Abstract. The problem of integrating the Camassa-Holm equation leads to the scattering and
inverse scattering problem for the Sturm-Liouville equation —u'’ + %u = Awu where w is a weight
function which may change sign but where the left hand side gives rise to a positive quadratic form
so that one is led to a left-definite spectral problem.

In this paper the spectral theory and a generalized Fourier transform associated with the equation
—u" + iu = Awu posed on a half-line are investigated. An inverse spectral theorem and an inverse
scattering theorem are established. A crucial ingredient of the proofs of these results is a theorem
of Paley-Wiener type which is shown to hold true. Additionally, the accumulation properties of
eigenvalues are investigated.
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1. Introduction. Standard Sturm-Liouville theory deals with the eigenvalue
problem

—(pu") + qu = \wu, (1.1)

together with appropriate boundary conditions, in the space L2, of functions square
integrable with respect to the weight w, i.e., the norm-square of the space is ||u|? =
[ |u]*w. A basic assumption for this to be possible is that w > 0. In some situations
of interest this is not the case, but instead one has p > 0, ¢ > 0. One may then use
as a norm-square the integral [(plu'|? + g|u|?), and a problem of this type is usually
called left-definite. A left-definite problem of current interest is the spectral problem
associated with the Camassa-Holm equation, which is of the form

—u” + Ju = Awu. (1.2)

The Camassa-Holm equation is an integrable system in a similar sense as the
Korteweg-de Vries (KdV) equation. It was first derived as an abstract bi-Hamiltonian
system by Fokas and Fuchssteiner [22]. Subsequently, it was shown by Camassa and
Holm [11] that it may serve as an integrable model for shallow water waves. In
that paper Camassa and Holm also showed that the solitons are peaked and called
them peakons (see also Fokas and Liu [21] and Johnson [23]). In contrast to the
KdV equation the Camassa-Holm equation may model breaking waves, i.e., smooth
initial data may develop singularities in finite time, cf. Constantin and Escher [15]
and Constantin [13] (see also Bressan and Constantin [10] for a way to resolve the
singularities due to wave breaking). This, however, happens only when w changes
sign and it is this fact which motivates us to consider equation (1.2) without the
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assumption that w is positive. The well developed theory of scattering and inverse
scattering for the Schrodinger equation is of crucial importance to the theory of the
KdV equation. In the same way scattering/inverse scattering theory for the equation
(1.2) is important for dealing with the Camassa-Holm equation. Unfortunately, no
such theory is available unless w > 0, and even then current theory requires more
smoothness of w than is convenient to assume, in view of the lack of smoothness for
the corresponding peakons.

The problem of inverse scattering for (1.2) is considerably more difficult than for
the Schrédinger equation, which may be viewed as a rather mild perturbation of the
equation —u” = Au. In case of (1.2) the perturbation is of the equation —u”—l—%u = Ju,
and thus changes the coefficient containing the eigenvalue parameter A\. It appears
that the methods used so far for dealing with the Schrodinger equation are no longer
applicable.

In this paper we will prove some uniqueness results for inverse spectral theory
and inverse scattering for the left-definite case which apply to (1.2) posed on a half-
line. One would also like to have results for the full-line but this appears to be more
difficult. One exception is the case of odd initial data for the Camassa-Holm equation
on the full-line because the problem can be reduced to one on a half-line. We mention
here that the half-line case was also investigated by Boutet de Monvel and Shepelsky
[8], [9] who employ Riemann-Hilbert techniques but assume that w is positive. Our
approach is via the inverse spectral theory for the left-definite problem, which also
is not very well developed. Even the spectral theory for left-definite problems is not
widely known (but see for example [1]), in the level of detail necessary for dealing with
the inverse problem. We will therefore start by presenting a reasonably comprehensive
spectral theory, then prove some uniqueness theorems for the inverse spectral problem,
and finally a uniqueness theorem for inverse half-line scattering.

Spectral theory for left-definite Sturm-Liouville problems seems to have been
initiated by Weyl [28], who called such problems polar. Later many authors have
dealt with more or less general left-definite problems. In particular we mention a
series of papers by Niessen, Schneider and their collaborators on singular left-definite
so called S-hermitian systems, see e.g. [26]. See also [1] and the references cited there.
For a more recent contribution, see Kong, Wu, and Zettl [24]. However, papers in
inverse spectral theory for left-definite problems are much more scarce; one example
is Binding, Browne, and Watson [7].

Because of the connection with the Camassa-Holm equation the inverse scattering
problem for (1.2) has attracted some attention. From the physical point of view the
full-line case where w decays at infinity and the periodic case are most interesting.
The former was treated by Fokas [20] and Constantin and various co-authors, for
example in [14], [16] and [17]. The latter was addressed by Constantin and McKean
[18], Constantin [12], and Vaninsky [27]. The full-line case with odd initial data
reduces to a half-line case but the half-line case is also of interest independently.

It will be convenient to deal only with the equation

—u" + qu = lwu. (1.3)

There is no loss of generality in doing this, since the change of variable ¢ = fom 1/p
will, as is readily seen, turn the equation (1.1) into an equation of this form.

The plan of the paper is as follows. In Section 2 we give a general spectral theory
for left-definite problems on intervals with at least one regular endpoint, modelled on
standard Titchmarsh-Weyl theory. One may extend this to intervals with two singular
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endpoints, in the same way as one can extend the right-definite theory, but since we
will have no use of it here we have abstained from this.

In Section 3 we deal with the generalised Fourier transform associated to a left-
definite problem. To simplify the discussion we have restricted ourselves to one case,
when so called finite functions are dense in the Hilbert space associated to the equa-
tion. There are no fundamental difficulties involved in dealing with the general situ-
ation, but again we have no need of it in the applications we are thinking of.

Section 4 discusses uniqueness of the inverse spectral problem. Unfortunately we
have neither a characterisation nor a reconstruction algorithm, but the fundamental
uniqueness theorem is quite general.

In Section 5 we prove a theorem of Paley-Wiener type which is crucial for our
approach to the inverse spectral theory, and Section 6 deals with the uniqueness
theorem for the half-line inverse scattering of a left-definite problem. Section 7 is
devoted to some results about the number of eigenvalues for a left-definite problem
under scattering conditions. Some elementary, but rather lengthy, calculations needed
in Section 4 have been relegated to an appendix.

2. Spectral theory. We shall consider the equation (1.3) on an interval [0, b)
and assume that ¢ and w are real-valued and integrable on compact subsets of [0, b),
that ¢ > 0, and that neither ¢ nor w vanish a.e. Let H; be the set of locally absolutely
continuous functions u defined in [0,b) such that v’ € L*(0,b) and qlu|*> € L(0,b).
As we shall see presently H; is a Hilbert space with scalar product

(u,v) = /Ob(u’v’+ quv)

and norm |ju|| = 4/(u,u). In order to show completeness of H; and discuss how to
find self-adjoint realisations corresponding to (1.3) we first note the following simple
result.

Lemma 2.1. For any a € [0,b) there exists a constant Cy such that

u(2)] < Callul (2.1)

for any x € [0,a] and any u € H;.

Proof. By the fundamental theorem of calculus and Cauchy-Schwarz’ inequality
lu(z)] < |u(y)|+|y—=|/2( fob |u’|2)1/2. If ¢ € [a, b) is such that [; ¢ > 0, multiplication
by ¢(y) and integrating with respect to y gives

c c c b 1/2
)l [ o< [Calul e o [R)"
0 0 0 0

Using Cauchy-Schwarz again we obtain (2.1) with C, = (C +1/ foc q)
Proposition 2.2. The space H; ts complete.

Proof. By (2.1) a Cauchy sequence uq,us, ... in H; converges locally uniformly
to a continuous function u. Furthermore, \/qu; and u converge in L?[0,b) to \/qu
and, say, v respectively. Now

1/2

uj(x)uj(m_/omu;.

Letting j — oo we obtain u(z) = u(0) + f; v. Thus u is absolutely continuous with
derivative v and u; converges to u in Hj.
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Denote the set of integrable functions with compact support in (0, b) by Lg. Then,
if w € Hy and v € Ly it follows that | [uv| < C, [|v||lu| if suppv C [0,a], so that
the linear form H; 3 u — [ uv is bounded. By Riesz’ representation theorem we may
therefore find a unique v* € H; so that [uv = (u,v*). Clearly v* depends linearly
on v, so we obtain a (bounded) operator Gy : Ly — Hj such that

b
(u,G0v>:/ uv for u € Hy, v € Lyg.
0

The operator Gy is central for the left-definite spectral theory of (1.3).
Proposition 2.3. The operator Gy is an integral operator Gou(z) = [wugo(x,-), it
is injective and its restriction to Ly N'Hy is symmetric with range dense in H;.
Proof. By (2.1) the map H; > u — u(z) is for each fixed € [0,b) a bounded
linear form, so there exists an element go(z,-) € Hy so that u(z) = (u, go(z,-)) for
u € Hi, and therefore Gov(z) = (Gov, go(z,-)) = fobvgo(:t,~) for any v € Ly. Thus
Gy is an integral operator with kernel go(z,y) (actually, as we shall see in Proposition
2.7, go is real-valued). If uw and v € Ly N 'Hy, then

b
(Gou,v) = (v, Gou) :/0 ut = (u, Gov),

so the restriction of Gy to Ly NH; is symmetric.

Let [¢,d] C (0,b) and u;j(z) = min(1, j(z—c), j(d—=z)) for x € [¢,d] and u;(z) =0
otherwise. Then u; € Lo NH; and tends boundedly to the characteristic function of
[c,d] as j — oo, so if Gov = 0 it follows from 0 = (Gyv,u;) = [va; that fcdv =0
for all [¢,d] C (0,b). Thus v = 0 a.e. so that Gy is injective. On the other hand,
if w € H; is orthogonal to Gov for all v € Lo N Hy, we may put v = u;, so that
0 = (u, Gou,;) — fcd u. It follows that u = 0 so the range of G restricted to Ly N Hy
is dense and the proof is complete.

We shall have to briefly use the theory of symmetric relations as presented in [1,
section 1], and define maximal and minimal relations corresponding to (1.3). We start
by setting

T, = {(Go(wv),v) | v € Lo N'H1}.

Then, since w is real-valued, T, is a symmetric relation in Hy, for

b
(Go(wu),v) = (v, Go(wu)) = /0 wut = (u, Go(wv)).

Proposition 2.3 implies that T, is the graph of a densely defined symmetric operator
in H; if suppw = [0,b), but at this point we do not want to exclude the possibility
of w vanishing on an open set. We define the minimal relation Ty as the closure (in
Hi & Hy) of Te., and the maximal relation Ty as the adjoint of this, i.e.,

T, = {(U,f) € Hi®H1 | <’LL,’U> = <f, Go(w’U)> for all v € L OH1}

We must show that T3 is a differential relation.
Proposition 2.4. We have (u, f) € Ty if and only if v and f € Hy, v’ is locally
absolutely continuous, and —u" + qu = wf.
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Proof. First note that if v and f € H;, then the definition of Gy shows that

b
(u,v) = (f, Go(wv)) = /0 (u'v' + quv — wfv) (2.2)

for any v € Lo N'H;. If in addition «’ is locally absolutely continuous and satisfies
—u" 4+ qu = wf integrating by parts gives

b
(1.0) = (F-Gofwn)) = [ (= + qu=wfj7 =0

This proves one direction of the proposition.

In proving the other direction the assumption is that the quantity (2.2) is zero.
But since C§°(0,b) C H; this means that the distributional derivative of v’ is qu—w f
so that v’ is locally absolutely continuous and u satisfies the differential equation.

To give a proof without the use of distribution theory we prove a variant of the
classical du Bois Reymond lemma. If v € Ly N H; integration by parts in (2.2) gives

/ - / “qu—wf) - CYT =0 (2.3)

for any constant C. Now let [c,d] C (0,b) and choose C to be C = - fcd{u’ -
Jo (qu—wf)}. Put v(y) =0 for y & [c,d] and

Yy T
= () — — - C}d
o) = [ W@~ [ fau—w)-Cyis
for y € [¢,d]. Then v € Lo NH; and (2.3) gives

/Cd|u'—/ow<qu—wf>—0|2=o

so that v’ — foz (qu—wf) is constant in [e, d]. Thus v’ is locally absolutely continuous,
and differentiation gives —u" + qu = wf.

Let Dy = {(u, Au) € T1} and let Dy be the projection of Dy onto its first com-
ponents, i.e., u € Dy means that v € H; and u satisfies —u” + qu = Awu. We then
have

Ty =Ty +Dx+ Dy

as a direct sum, for any non-real X\. Here dim D) = dim D) is constant in each of the
upper and lower half-planes, and these dimensions will be called the deficiency indices
of Ty. See [1, Theorem 1.4] for this simple generalisation of the von Neumann formula
for symmetric operators and its consequences. It is clear that dim Dy < 2, and that
dim Dy = dim D}, since u € Dy if and only if v € D). Thus deficiency indices are
always equal, and there are always self-adjoint extensions of Ty, which will at the
same time be restrictions of 77, and therefore realisations of (1.3). It is of course of
interest to have criteria in terms of the coefficients ¢ and w for different values of the
deficiency indices dim Dy. In surprising contrast to the right-definite case, we have
the following simple and explicit criteria.

Theorem 2.5. Suppose ImA # 0 and let W be an anti-derivative of w. Then
dim Dy =2 if b < 0o and ¢+ W? € L'[0,b). Otherwise dim Dy =1 for Im X\ # 0.
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The theorem is a special case of [2, Theorem 2.3]. See also [5]. In the right-definite
case a simple variation of constants argument shows that if dim D) = 2 for one real
or non-real value of A, then this holds for all A € C. A similar argument shows that
this remains true in the left-definite case, with the exception that it is possible that
dim Dy = 2 even if dim D) < 2 for all A # 0. This is to be expected, since Dy does
not depend on the choice of w. We characterise dim Dy completely in the following
theorem, which also brings out the significance of the space Dy. We use the expression
finite function in H; to denote a function which vanishes near b.

Theorem 2.6.

1. The set Dy is the orthogonal complement in Hi of LoN’H1 and has dimension
1 or 2.

2. dim Dy = 2 if and only if b < 0o and q € L*[0,b).

3. If b < oo and q € L*[0,b), then v and v’ have finite limits at b for all v € Dy,
and these limits uniquely determine v.

4. If b < 0o and q € L[0,b), then every u € Hy has a limit at b which is a
bounded linear form on H;. L

5. If dimDg = 1 and Dy > v # 0, then v(0)v/(0) < 0 and u(z)v'(x) — 0 as
x — b for any u € Hy.

6. Finite functions are dense in ‘Hy if and only if dim Dy = 1.

Most of this is also a special case of the results of [2] respectively [5], but we give
a simple proof, an elaboration of which can also prove Theorem 2.5.

Proof. We have u € Dq precisely if (u,0) € Ty, which holds precisely if (u,v) =
(u,v) — (0, Go(wwv)) = 0 for all v € Ly N Hy, proving the first claim. Since there are
elements v € H; with v(0) # 0, and since u(0) = 0 for every u € Lo N H; it follows
from (2.1) for = 0 that dim Dy > 1 and we have proved (1).

If b is finite and ¢ integrable standard existence and uniqueness theorems show
that all solutions of —v” + gv = 0 are continuously differentiable with absolutely
continuous derivative in [0, 0], and thus in M1, and that they are uniquely determined
by the values of v and v’ at b. In this case the proof of Lemma 2.1 clearly also works
for a = b, so we have proved (3), (4) and one direction of (2).

Now let u € H; and v € Dy. Integration by parts gives

/()i(ulv + quv) + u(0)v'(0) = u(z)v' (). (2.4)

Thus u(z)v'(z) has a limit at b. If this is not 0, then (u(x)v’(z))~" is bounded close
to b. Therefore u'/u = u'v’/(uv’) is integrable near b, so that u has a non-zero limit
at b. Since g|u|? is integrable it follows that ¢ € L'(0,b). Similarly, v /v' = qu/v’ =
quii/(v'u) is integrable near b, so v’ has a non-zero limit at b. Since |v/|? is integrable
it follows that b is finite.

Now, setting u = v #Z 0 in (2.4) the integral is increasing, > 0 and not constant,
so if v(0)v’(0) > 0, then v(x)v’(z) can not tend to 0 at b. However, if dim Dy = 2
we may choose v € Dy with v/(0) = 0, so it follows that ¢ € L'(0,b) and b finite,
completing the proof of (2).

On the other hand, if dim Dy = 1 then u(x)v’(x) must tend to zero for any u € H;.
In particular, for u = v one therefore has v(0)v’(0) < 0 for any non-zero v € Dy which
proves (5).

Finally, if u € H; is finite and v € Dy integration by parts shows that (u,v) =
—u(0)v’(0), so the orthogonal complement of the finite functions consists of those
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v € Dy for which v'(0) = 0. According to (5) this implies v = 0 if dim Dy = 1 and
the proof is complete.

It is now possible to give a detailed description of the kernel gg.

Proposition 2.7. The kernel go(x,y) is real-valued and symmetric in z,y. As a
function of y it satisfies (1.3) with A = 0 fory # x, and there are real-valued functions
Yo and o which solve (1.3) with A\ = 0, such that if u € Hy, then

1. o € Hy, ¥4(0) =1 and Y{(z)u(z) — 0 as x — b,

2. 900(0) = _17 906(0) = 07

3. go($7 y) = %o (min(:Ly y))¢0(max($a y))

Proof. The existence of the solution (g is not in question, and if a solution with the
properties of 1y exists, it is easy to verify that the kernel @q(min(z, y))wo(max(x,y))
has the properties required of go(z,y).

The existence of 1 follows from Theorem 2.6. Indeed, if dim Dy = 2, the element
v € Dy with v(b) = 1, v/(b) = 0 is real-valued and must have v(0)v'(0) < 0 by (2.4),
so v'(0) # 0, and an appropriate multiple will have the properties required of .

On the other hand, if dim Dy = 1, any non-zero v € Dy satisfies v(0)v’(0) < 0
so v'(0) # 0, and an appropriate multiple will satisfy the requirements for 1. Note
that this solution is real-valued, since its real and imaginary parts also are in Dy, and
are thus proportional, and the initial condition guarantees that the imaginary part
vanishes.

Now let T be a self-adjoint restriction of 77 and assume that (u, f) and (v,g) € T.
Integrating by parts we then obtain

/(M?+m@%—/(f7+qﬁU=W?—f?M§ (2.5)
0 0

As  — b this vanishes, since the left hand side tends to (u,g) — (f,v). Thus the
condition for symmetry is that

S YL
(g~ f)]y =0.
Comparing this with (/v — u?)‘g = 0, which is the similar condition in the right-
definite case, we see that only exceptionally would self-adjoint boundary conditions
in the left-definite case also be self-adjoint boundary conditions in the right-definite
case.

Separated boundary conditions are those that make u'g — fv’ vanish at each
end-point separately, and are thus at 0 of the form

f(0)cosa +u/(0) sina = 0, (2.6)

for some « € [0, 7). Again comparing with the right-definite case, where the condition
is u(0) cosa + v/ (0) sin = 0, the conditions coincide only in the case o = 7/2, the
Neumann boundary condition. However, for eigenfunctions, where f = Au, it is clear
that also a = 0, the Dirichlet boundary condition, give the same spectra outside of
A=0.

We shall not need a detailed description of self-adjoint boundary conditions at a
singular endpoint. However, one may always impose the condition (2.6) at 0. It is
easy to see that the corresponding restriction of 77 has a symmetric adjoint, which
is a strict extension of Ty. If the deficiency indices of Ty equal 1, this is sufficient
to obtain a self-adjoint restriction 7" of 77, and all selfadjoint realisations are of this
form. Otherwise, a condition needs to be imposed also at b. From (2.5) it follows
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immediately that every (u,f) € T satisfying such a condition at b must satisfy
Im(u'(x)f(z)) — 0 as x — b.

Assuming now that we have a self-adjoint relation 7', the spectral theorem looks
as follows ([1, Theorem 1.15]). Consider the set Hoo = {u € Hy | (0,u) € T}. Then
Hoo is a subspace of Hy, and setting H = Hy © Hoo the domain Dy of T (i.e., the
set of first components of T) is a dense subset of H, and T NH @& H is the graph
of a self-adjoint operator in H. We will denote this operator by T as well, and may
now apply the usual spectral theorem to T'. If the resolution of the identity for the
operator T is {F}}iecr, we extend the domain of the projection F; to all of H; by
setting EyHoo = 0. Clearly one may view Ho, as an eigenspace for the relation T
belonging to the eigenvalue oo, so adjoining the orthogonal projection onto H, to
{E:}+er gives a resolution of the identity in H; for the relation T'. In the present case
one may give a rather complete description of Ho.

Proposition 2.8. The space Hy, consists of those elements g € Hy for which wg =0
a.e., and for which (0, g) satisfies the boundary conditions that define T. In particular,
ifwg=0 a.e. and g € LoN"Hy, then g € Hoo-

Proof. Now g € H, means that (0,g) € T, which therefore satisfies the boundary
conditions defining T'. In particular, 0 = (g, Go(wf)) — (0, f) = (g, Go(wf)) = [ gfw
for any f € Lo NH1. It follows, as in the proof of Proposition 2.3, that wg = 0 a.e.

Conversely, if (0,g) satisfies the boundary conditions and gw = 0 a.e., then if
(u, f) € T an integration by parts gives

<u,g> - <fﬂ0> Zilirt(ulﬁ—fo)‘g =0,

i.e., (0,g9) € T, so the proof is complete.

We remark that if an endpoint is regular, then the boundary condition implied by
u € Hoo are in most cases the vanishing of u in that endpoint. For separated boundary
conditions an exception occurs when the boundary condition is of Neumann type, (i.e.,
when oo = /2 in (2.6)). If we have Neumann conditions at both ends, or at one end
when deficiency indices equal 1, there are no boundary conditions for elements of H .

We will base our derivation of the expansion theorem for the operator T on a
detailed description of the resolvent Ry = (T'— A)~!. Thus R) is defined on H, but
we extend its domain to H; by setting RyHoo = 0. The range of R is of course
Dy, which is a dense set in H. Using the kernel gy for the evaluation operator on
H; introduced in the proof of Proposition 2.3, we have Ryu(z) = (Ryu, go(z,-)) =
(u, Rxgo(z,-)), since the adjoint of Ry is Ry. Thus we may view G(z,-, \) = Ryxgo(z, )
as Green’s function for our operator; note, however, that G is not the kernel of a
standard integral operator. It will turn out to be convenient to introduce the kernel
9(x,y,A) = G(z,y,\) + go(x,y)/A, so that we obtain

Ryu(z) = (u, g(z, -, A)) —u(@)/A. (2.7)

Note that G(x,-,\) € H but this is not true of g(x,-,\) unless Ho, = {0}. We shall
need a precise description of g(x,y, \). To do this we must introduce solutions of (1.3)
satisfying initial conditions at 0, so let ¢(x, A), 6(z, A) be solutions of (1.3) for A # 0
satisfying

{)\cp(O, A) = —sina {)\0(0, A) = cosa (2.8)

¢'(0,A) = cos 6'(0,\) =sina
This means that ¢ satisfies the boundary condition (2.6) and 6 another similar bound-
ary condition at 0. We have the following theorem.
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Theorem 2.9. Suppose T is a selfadjoint realisation of (1.3) given by (2.6) and, if
needed, an appropriate condition at b. Then there exists a function m(\) defined for
Im X # 0, the Titchmarsh-Weyl m-function for T, depending only on A and such that
P(z,A) = 0(z, \) + m(N)p(x, N), called the Weyl solution for T, is in Hi and satisfies
the boundary condition at b, if any. Furthermore

g(ma Y, >‘) = tp(min(aj, y)7 A)w(max(‘x’ y)7 >‘)

Proof. For non-real A neither ¢ nor # can be in H; and satisfy the boundary
condition at b, since that would make A a non-real eigenvalue for a selfadjoint problem.
Thus there is a solution (x,A) = 0(z, A) + m(A)p(z,A) in H; which also satisfies
the boundary condition at b, since if dim D(A\) = 2 one linear, homogeneous condition
still leaves a one-dimensional space, whereas if dim D(A) = 1 no boundary condition
is imposed at b.

Define, for fixed x and A ¢ R the function

F(y) = (min(z, y), \)¢(max(z, y), A) — A" go(z,y).

Since (-, \) and v are in H; so is F. We claim that F € Dr. In fact, one easily
checks that F’ is locally absolutely continuous and that F satisfies —F" + qF =
AF +wgo(z,-). Tt is also easy to check that F' satisfies the boundary condition (2.6).

Finally, for y > = the function F' is a linear combination of ¥ (-, A) and vg. The
former satisfies the boundary condition at b by construction, and )y satisfies the
boundary condition at b by Theorem 2.6(5), since if (u, f) € T, then ¥} f — Ou/ =
Yo f — 0 at b. All this means that F = Rygo(z,) = Rxgo(z,-) = G(z,-,\) so that
g(x,y, \) is as claimed.

Theorem 2.10. The function m is analytic outside R, it maps the upper half plane
into itself, and satisfies m(\) = m(X\).

Proof. Since Ry is analytic outside R in the strong operator topology Ryu(x) is,
by (2.1), pointwise analytic. It follows that g(z, -, A) is weakly analytic for each z, and
thus, again by (2.1), g(x,y,\) is analytic outside R for each x and y. Since p(z, \)
and 0(z, \) also are analytic and since an integration by parts shows that they are
non-zero for z > 0 and A ¢ R, it follows that m(\) is analytic in C\ R.

If (v, g) defines a boundary condition at b, then so does either its real part or
its imaginary part, which is easily seen. Therefore, since ¢ (z, \) satisfies (1.3) and

the boundary condition at b, so does v(z, \), and is thus a multiple of 1 (x, \). Now
oz, X) = p(x, ), O(z, X) = 0(z, \) and ¢(x, ) = 0(z,A) + m(A)p(z, A) so it follows
that m(A) = m(\).

Integrating by parts we have

ImA/OI(W/(.,)\)P +al(, AP) = Tm(9 (-, A ) -

Since 1) satisfies a boundary condition at b, the integrated term vanishes as * — b.
At 0 the integrated term evaluates to —Imm()), so we obtain

lv(-, N|I? = Tmm(\)/Im . (2.9)

Thus m maps the upper and lower half-planes into themselves.
A function with the properties of m is a so called Nevanlinna or Herglotz function,
and has a unique representation

1 t
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where A € R, B > 0, and dp is a positive measure with fR ‘f’jr(g < 00. We will call the
measure dp the spectral measure for T, for reasons that will become clear presently.
We finally note the following proposition.
Proposition 2.11. Unless « = 7/2 and 0 ¢ supp w the functions g and ¥ (-, \) are
mn H.
Proof. Suppose g € Ho,. An integration by parts then gives

<gv ’lr/)> = —Q(O)W,

where ¥ = 1y or ¥(-,A). The boundary condition at 0 requires g(0) = 0 unless
a = 7/2, and even then ¢(0) = 0 unless w = 0 in a neighbourhood of 0.

3. The Fourier transform. We shall call functions that vanish near b finite
and from now on make the following simplifying assumption.
Assumption 3.1. Assume that finite functions are dense in H;.

According to Theorem 2.6 this means exactly that either ¢ ¢ L1(0,b) or else b =
oo. Note that, according to Theorem 2.5, the assumption implies that the deficiency
indices of 77 equal 1.

The spectral measure introduced in the previous section gives rise to a Hilbert
space Lf) with scalar product (4,v), = fix;o v dp. We shall define a generalised
Fourier transform F : H; — Lﬁ with the following properties.

Theorem 3.2.

1. The map u — fob(u’go’(-,t) + quep(-,t)), defined for finite u € Hy, extends by
continuity to a map F : Hy — Li called the generalised Fourier transform.
The image of u € Hy is denoted by F(u) or 4. We write this as u(t) =
(u, (-, t)) although the integral in general does not converge pointwise.

2. The mapping F : H1 — Lf) has kernel Hoo and is unitary between H and Lf)
so0 that Parseval’s formula (u,v) = (4,0), holds if at least one of u and v is
n H.

3. If u € Dr, then F(Tu)(t) = tu(t). Conversely, if i and ti(t) are in L3, then
fﬁl(ﬁ) € Dr.

4. Suppose a # 0 in (2.6). Then ¢(x,-) € Lf, for each x and ffooo tp(z, ) dp =
(G, p(x,-)), converges in H, and hence locally uniformly in x, for 4 € Lf,.
This is the adjoint of F : Hy — Lf) and thus the inverse of F restricted to 'H.
If M is a Borel set in R, then

Epyu(z) = /M ap(z, ) dp. (3.1)

If a = 0 the same is true, except that we must replace o(-,t) for t = 0 by
the function g of Proposition 2.7. Note that 1y is the eigenfunction for the
etgenvalue 0 in this case.
We first consider the Fourier transform for finite functions u € Hy, for every
A € C setting

It is clear that @ is an entire function, since integration by parts shows that

b
(X)) = (u, (-, \)) = /0 ude(-, N)w — u(0) cos a,

and by (2.8) Ap(x, ) is an entire function of A, locally uniformly in z.
10



Lemma 3.3. For finite u and v € H; we have t and v € LIQ). If EA is the spectral
projection for T' associated with an interval A, then (Eau,v) = fA A dp.

Proof. We have (Ryu,v) = 4(A)0(A\)m(A) + g(A), where g is entire, as is easily
verified by direct calculation. Integrating around a rectangle v with corners at ¢ £ 1

and d & ¢ we therefore have f,y(RAu, vy dA = f,y w(A)D(A\)m(X) d\ whenever one of the

integrals exists. By the spectral theorem the first integral equals fv fR % dA,

so if the integral is absolutely convergent changing the order of integration gives
—2mi(E¢,q)u,v) if ¢ and d are points of continuity for (Eju, v).
Similarly, using the Nevanlinna representation (2.10), the other integral equals

—2mi fcd @(t)0(t) dp(t) if it is absolutely convergent and ¢, d are points of continuity
for p.

The absolute convergence of the double integrals is ensured if (E;u, v) respectively
p are differentiable at ¢ and d as is easily seen. For more details of the identical
calculation carried out for the right-definite case, see [6, Lemmas 14.3, 14.4].

As functions of bounded variation (Fu,v) and p are both differentiable a.e., so
the second claim of the lemma is true if the endpoints of A belong to this dense set
of points, and so in general by continuity. In particular, letting ¢ — —oo, d — o0
through such points it follows that (Egu,u) = (i,a),, so that 4,0 € L2.

Since finite functions are dense in H;, and since Er has kernel H., we now obtain
Theorem 3.2 (1) by continuity and also (2) except for the surjectivity of F. To prove
this we need the following lemmas.

Lemma 3.4. The transform of Ryu is a(t)/(t — \).

Proof. According to the spectral theorem we have (Ryu,v) = fR d(Eruv)

7 and by

Lemma 3.3 we have (Eu,v) = fjoo @0 dp so that

a(t) =
(Ryu,v) = / ; ( ))\v(t) dp(t).
R l—
We also have Ry — Ry = (A — A\)RxRy and (Ryu, Ryu) = (RxRyu,u) so

(Bxas By = ({0 — (s ) = | 25 2

Expanding ||% — F(Ryu)||? and using Parseval’s formula and the above yields 0,
thus proving the lemma.

Lemma 3.5. The operator T has eigenvalue 0 if and only if « = 0, in which case the
eigenfunction is ¥y, and for any u € Hy we then have 4(0) = —u(0).

Furthermore, the measure dp has mass at 0 ({0} is not a nullset with respect to
dp) precisely if o = 0. In this case 1y = X{oy/p{0}, where x {0y is the characteristic
function of the singleton {0} and p{0} the spectral measure of this set.

Proof. According to Theorem 2.6 the only non-trivial solutions of (1.3) for A =0
in H; are multiples of a solution u for which u/(0)u(0) < 0, so that u'(0) # 0. These
solutions satisfy the boundary condition (2.6) precisely if & = 0, which proves the first
claim. If w is any finite function integrating by parts gives @(0) = (u, ¢(+,0)) = —u(0).
This holds in general by continuity, 4(0) being a bounded linear form on H; by (2.1),
and 4(0) on Li since dp has mass at 0, as we shall see presently.

Now u € D and Tu = 0 precisely if u + ARyu = 0, and the Fourier transform

of u+ ARyu is (14 25)a(t) = ttﬁf?. If this is 0, then & = 0 a.e. with respect to dp
11




except possibly at t = 0. Thus, if & = 0, then {0} can not be a nullset with respect to
dp. Tt also follows that 1y is a multiple of the characteristic function of the set {0}.
On the other hand, since dim D) = 1, Weyl solutions for different « are proportional
so it immediately follows that

_ YN(0,A) _ sina+ma(A)cosa
m0(>\) - )\'(/J(O,)\) - CoSar — ma()\) sina’ (32)

where m,, denotes the m-function associated with the boundary condition parameter
a. Now my(iv) — oo as v | 0, as a consequence of the mass at 0, so that m,(iv) —
cot a for ae # 0. For o # 0 the spectral measure therefore has no mass at 0.

It only remains to prove the formula for z/AJO. By Parseval’s formula (note that g €
H by Proposition 2.11) we have ¢o(0) = —(0) = [l = [[vll} = [120(0)[*p{0}.
Hence —¢(0) = o(0) = 1/p{0}.

It is now easy to prove that F is surjective.
Lemma 3.6. The Fourier transform H — LIQ) 1s surjective.

Proof. Suppose that 4 € Li is orthogonal to all Fourier transforms ¢. Since

o(t)/(t — A) is also a transform, for any non-real A, we have [~ a(t)o(t)dp(t) =0
for all non-real A\. Thus the Stieltjes transform of the measure 40 dp is 0, so by the
uniqueness of the Stieltjes transform it follows that this measure is the zero measure.

Now, if v is the transform of a finite function in Hy, then it is an entire function,
so to prove that ¢ is outside the support of udp it is enough to show that there is
such a © for which 9(t) # 0. If t # 0 and 9(¢t) = 0 for all compactly supported
v € Hy, then as in the proof of Proposition 2.4 it follows that ¢(-,¢) satisfies (1.3)
both for A = 0 and A = ¢, so that ¢(-,f)w = 0 a.e., which is not possible since it
implies that ¢(-,t) = 0 in a set of positive Lebesgue measure. It therefore follows that
4 dp vanishes outside 0. But according to Lemma 3.5 this proves that the measure is
zero, unless o = 0. However, also in this case & = 0 since otherwise 4 would be the
transform of an eigenfunction.

We next turn to Theorem 3.2 (3).

Lemma 3.7. Ifu € Dr then F(Tu)(t) = tu(t). Conversely, if i and ta(t) are in L2,
then F~(a) € Dr.

Proof. We have u € Dr if and only if for some v € H; we have u = Ry (v — Au),
i.e., if and only if 4(t) = (0(t) — Ma(t))/(t — A) or ta(t) = o(t) for some 0 € L2.

We obtain the following corollary which will be useful later on.

Corollary 3.8. If u € Dy, then 4 is integrable with respect to dp.

Proof. The functions ta(t), 4 and 1/(t — i) are all in L2, so that a(t) = (ta(t) —
1a(t))/(t — i) is integrable with respect to dp.

To finish the proof of Theorem 3.2 it only remains to consider the inverse trans-
form.

Lemma 3.9. If a # 0 the integral (4, ¢(z,-)), converges in H and locally uniformly
for every 4 € L%. If 4 = F(u) for some u € Hy, then the integral is the orthogonal
projection of u onto H.

If o = 0 the same statement is true if one replaces ¢(-,0) by 1o in the integral.
Remark 3.10. A simple integration by parts shows that every finite function is or-
thogonal to ¢p. Now suppose o = 0 and let 8y = ¢(+,0) so that 6y solves (1.3) for
A = 0 with initial data 65(0) = 0, 6{(0) = 1. Then, when calculating the Fourier
transform at 0 we may replace p(-,0) by any function 6y + Apg for A constant, with
no change to the Fourier transform.
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In particular we may choose A = —19(0) = 1/p{0}, according to Lemma 3.5, so
that 0y + Apg = 9. This might seem a more natural choice of kernel for the Fourier
transform, in view of the fact that it must be used for the inverse transform, and that
1 is an eigenfunction to the eigenvalue 0, but would thus not actually change the
Fourier transform.

Proof. [Proof of Lemma 3.9] We have u(z) = (u, go(z,-)) = (4, e(z,-)), for u e H
where e(z,t) = F(go(z,-))(t). If u € H; we instead get the projection of u onto
H, so that the integral operator @ +— (u,e(z,-)), is the adjoint of F. We must
prove that e(z,t) = p(x,t), so suppose @ has compact support and consider @(x) =
(G, o(x,-)), which satisfies the equation —u" + qi = w(x)(4, te(x,-)),, differentiating
under the integral sign. Since 4 has compact support u € Dp, so that —u"” + qu =
w(z)(ta(t), e(x,t)),. Thus u; = u — @ satisfies —uf + qui = w(x)(tu(t),e(z,t) —
(p(l‘, t)>P'

Now, if v is finite, then

(i v) = / / a(t) (@' (- 07 + g (-, YD) dp(t) = (@, 0), = (u,),

since the double integral is absolutely convergent. Hence w; is orthogonal to all finite
v so it satisfies —uf + qu; = 0. It follows that w(x)(tu(t),e(x,t) — ¢(z,t)), = 0
a.e., so that (ta(t),e(z,t) — ¢(z,t)), = 0 on a set of positive measure. But this
function also satisfies (1.3) for A = 0, as is seen by replacing 4 by t4(t) in the previous
calculations. It follows that t(e(x,t) — ¢(x,t)) = 0 for a.a. t with respect to dp, so
that e(x,t) = p(x,t) except possibly if t =0 and o = 0.

However, 0 is an eigenvalue for o« = 0 and the eigenfunction vy has transform
X{o0y/p{0} according to Lemma 3.5, so we must choose e(x,0) = vo(z).

The proof of Theorem 3.2 is now complete if we note that from (Fyu,v) = ffoo )
follows that the transform of Fiu is 4 multiplied by the characteristic function of
(—o00,t]. The formula Eyu(z) = [,, ip(z,-)dp therefore follows from the inversion
formula.

In Lemma 3.5 we calculated the Fourier transform of 1y in the case a = 0. We
shall need to find a few more Fourier transforms.

Lemma 3.11. If A\ ¢ R the Fourier transform of ¥(-,\) is ¥(t,\) = 1/(t — N).
Furthermore, the Fourier transform of v equals 1o(t) = sina/t for o # 0 and 1/p{0}
times the characteristic function of the set {0} for ao=0.

Proof. We have already calculated vy for @ = 0 in Lemma 3.5. If & # 0 we note
that ¥o(x) = —go(0, z) so its Fourier transform is —e(0,t) = —¢(0,t) = sin /.
According to (2.7), Theorem 2.9 and Lemma 3.9, for u € H we have

— sin (i, (-, N)), = Ap(0, X) (u, (-, \))

te(0,t), . . 1
) )p = —sina(i(t), m>p

so that we have ¢¥(t,\) = 1/(t — A\) if & # 0. If & = 0 we assume @ has compact
support so that we may differentiate u(xz) = (u,e(z,-)), under the integral sign to
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obtain

(@, (-, N)p = ¢ (0, X)(u, (-, \)) = (Rxu)'(0)

), PR N 1
= (el (0,0), = {a(t), 2, = (alt) =)

Thus, also in this case we obtain ¢(t, \) = 1/(t — \).
Corollary 3.12. Suppose u € H. Then (u,¥(-,t\)) — 0 as t — oo, locally uniformly
for X ¢ R. By (2.1) this means that ¥(x,t\) — 0 as t — oo, locally uniformly in x
and A ¢ R.

In fact, unless 0 ¢ suppw and o = 7/2 we have Y(-,t\) — 0 in H, locally
uniformly in A ¢ R as t — oo.

Proof. We have (u, (-, A)) = (@, (-, A)p. With the extra assumptions Proposition
2.11 shows that ¥(-, A) € H so that ||¢p(, N)|| = ||1ﬁ(-,)\)||p.

It follows immediately by dominated convergence from Lemma 3.11 that the
claims are true.
Remark 3.13. All of the theory of Sections 2 and 3 extends with no essential change
to the case when w is just a measure, or even an element of ngcl (0,b).

4. Uniqueness of the inverse problem. We shall here deal with the following
question: To what extent is the operator T, i.e., the interval [0,b), the coefficients q
and w, and the boundary condition parameter o determined by the spectral measure
dp? To answer this question we introduce the concept of a Liouville transform as
a map v — u given by u(x) = f(x)v(g(x)), where f and g are fixed functions. We
suppose that g is strictly increasing and continuous, and that f is never 0. It is then
easy to see that the inverse of a Liouville transform is also a Liouville transform, as
is the composition of two Liouville transforms.

Now consider another relation 7" of the same type as T, with Hilbert space 7:[1,

interval [O,Zu)), boundary condition parameter ¢, and coefficients ¢ and w. We will
assume, as we do for H;, that finite functions are dense in Hj.
Theorem 4.1. Suppose that o« = &, or 0 < o = 7/2 —& < 7/2, or 7/2 < a =
37/2 — & < 7 and that there is a continuously differentiable bijection g from [0,b)
to [0,5) with the following properties: g, ¢', and g" are locally absolutely continuous,
g' >0, g(0)=g"(0) =0, ¢'(0) = (sind/sina)® ifa #0# &, ¢(0) =1 ifa=a =0,
and the coefficients of T and T satisfy G(g(z)) = (—f(x)f"(z) +q(z) f(x)?)/g'(z) and
w(g(x)) = w(z)/g' (x)* where f(z) = g'(x)~"/>.

Then the spectral measures associated with T and T are identical.

Proof. The functions g and f give rise to Liouville transform £ from functions
defined on [0,b) to functions defined on [0,b), in particular to a transform from H;
to Hi. We will first show that this latter transform is unitary. To that end assume
that % and ¥ are in H; and that at least one of them is a finite function. Obviously
Lu and Lo are locally absolutely continuous. Furthermore we obtain after a partial
integration



This proves firstly that L4 € H; whenever @ is a finite function in H, and secondly
that £ is an isometry from the finite functions in ﬁl onto the finite functions in H;j.
As an isometry L can be extended to a unitary operator from Hy to Hi.

Next, a straightforward computation, using that 2f'¢g’ + fg’’ = 0, shows that
—u" + qu = wr if u = L&, r = LF, and —u” + gu = @F. In particular, (4,7) € T
implies that (£, £7) € T and £4(-, \) must be a multiple of (-, A).

Also, since @(-, A) satisfies the differential equation —i” + g = Mt the func-
tion L£&(+, A) satisfies —u” 4+ qu = Awu. Our assumptions on a, &, ¢’(0), and ¢”(0)
imply that f(0) = sina/sin& = cos &/ cosa and that f/(0) = 0. Therefore we find
LB ))(0) = AF(0)p(0,) = —sina and (£5(, \))'(0) = #(0,1)/£(0) = cosa
which shows that ¢(-, A) = L&(+, A). The situation is a little more complicated for the
relationship between 6 and 0 where one finds that

LO(-,A) = 0(-, \) + (tan & — tan o) p(-, A).
By the linearity of £ we have
LP(N) = 0(-, ) + (tan & — tan o + 1) (-, A) = (-, A).

This proves that m + tan & = m + tan « and hence that p = p.

In the rest of this section we will make the following additional assumption about
(1.3).

Assumption 4.2. The coefficients w and @ satisfy supp w = [0, b), supp & = [0, 5)

Note that this does not mean that w # 0 a.e.; w could vanish on a nowhere dense
set of strictly positive measure. However, it does mean that H., = {0}, H = H;.
Remark 4.3. One may also allow w to be an arbitrary measure. However, then in
the definition of the function h below, and in the statement of Lemma 5.1, w should
be replaced by the density of the absolutely continuous part of the measure w, and
Assumption 4.2 will have to be made on this density. If this is done, the results in the
rest of the paper are still true, mutatis mutandis, with essentlally the same proofs.

Now define the functions h(z) = [, \/Jw[ on [0,b) and e = [y /W] on [0 ,b)
respectively. By Assumption 4. 2 these are strictly increasing, locally absolutely con-
tinuous functions.

Our main theorem is the following.

Theorem 4.4. Suppose that T and T have the same spectral measure dp. Then there
is a unitary Liouville transform U taking T into T', in the sense that Hou—UueH
through u(z) = f(x)Uu(g(z)) and UT = TU. Here g(x) = h™' o h(z) and f(z) =
(g'(x)) V2.

The functions f and g are continuously differentiable, f is strictly positive and f’
is locally absolutely continuous with f'(0) = 0. Also o = &, in which case f(0) =1, or
else0<a=7/2—a<7w/20rm/2 < a=37/2—a& < 7, in which case f(0) = |tan a.

The relations between the coefficients are w(g(x)) = w(z)/(g'(x))? and ¢(g(x)) =
(— () + a(@) F(@))/(f (@) (2))?).

It is clear from Theorem 4.1 that Theorem 4.4 is optimal in the sense that it is
not possible to deduce more about the relation between T' and T from the equality of
their spectral measures than is done in Theorem 4.4. Sufficient additional information,
however, will imply that T and T are identical. We give two corollaries of this type.
Corollary 4.5. Suppose T and T have the same spectral measure and that |w| = ||
in [0, min(b, 5)) Then T =T, ie.,b=b, a=¢&, ¢=§ and w = .

Proof. The assumptions together with Theorem 4.4 show that g(z) = z so that
b= b, and that f(z) =1, so that T and T are identical.
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Note that only the absolute value of w need be known, so that all information
about sign changes in w is encoded in the spectral measure. Also note that if |w| = ||
only in [0,a) where 0 < a < min(b, l;) we still have o = & and ¢ = ¢, w = w in [0, a).
Corollary 4.6. Suppose T' and T have the same spectml measure, that ¢ = ¢ on
[0, min(b, b)) and that either b =15 ora =& Then T =T, ie, b=b, a=d&, =g
and w = 1.

We will postpone the proof and first prove Theorem 4.4. To do this we will use a
theorem of Paley-Wiener type. For its statement it will be convenient to introduce a
special class of entire functions.

Definition 4.7. Let A be the set of entire functions @ of order < 1/2 which satisfy

a
limsupt ™ In |a(t?\)] < / Re v —Aw (4.1)
t—o0o 0

for some a € (0,b) and all A € C\ R. Here the branch of the square root is that with
a positive real part.

Theorem 4.8. Let @ be the generalised Fourier transform of u € H. Then 4 has at
most one entire continuation in A, and if supsuppu = a < b such a continuation is
given by

i) = / "W () + quip(-, \)

in which case (4.1) holds with equality for all X\ € C.

Conversely, if 4 has an entire continuation of order < 1/2 satisfying (4.1) for A
on at least two different rays from the origin, then suppu C [0, al.

We will postpone the proof of Theorem 4.8 to the next section and instead turn

to the proof of Theorem 4.4.
Lemma 4.9. Let g : [0,b) — [0,b) be increasing and g(0) = 0. Suppose U : Hy — Hy
is linear with the properties that (Uu)(0) = 0 if u(0) = 0, that suppUu C [0, g(x)] if
suppu C [0,z], and that suppUu C [g(m),l;) if suppu C [z,b). Then there erists a
function f such that (Uu)(g(x)) = f(x)u(z) for all u € H.

Proof. Fix x € [0,b). Suppose u, v € H; and that u(z) = v(zx). We will first show
that (U(u —v)(g(z)) = 0. If x = 0 this is by assumption.

For & > 0 we define! u_ = x[g 4)(u—v) and uy = X[z 5)(u—v). These are elements
of H. Thus suppUu_ C [0,¢g(x)] and suppUuy C [g(z),b) so that the functions Uu
vanish in g(z). Adding them gives U(u — v)(g(x)) = 0 as desired.

It follows that the value of Uu at g(x) only depends on the value of u at x. Thus,
for each fixed = € [0,b), the map u(z) — Uu(g(x)) is well-defined and linear on C, so
we may find f(x) so that Uu(g(z)) = f(x)u(x).

We will also need the following lemma.

Lemma 4.10. Putm(z,\) = ¢'(z, \)/(Ap(x, N)). Then m(z, ) — 0 and dm(x,\) —
oo for every x € [0,b) as A — oo along any non-real ray starting from the origin.

Proof. First note that m(x,\) is the m-function for (1.3) on the interval [z,b),
with the Dirichlet boundary condition (o« = 0) at x. The first claim is then an
immediate consequence of [3, Theorem 3.6].

To prove the second claim, first assume that ¢ does not have compact support,
so that it does not vanish identically on [z,b). Now note that, according to (3.2),
m(A) = —1/m(x, A) is the m-function for the Neumann boundary condition (a = m/2)

Ly denotes the characteristic function of an interval I
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at x, so we need to show this to be o(|A|). Now, in the Nevanlinna representation
(2.10) it is easy to see that the integral is always o(|A|), so we simply need to prove
that B = 0 in the representation of m. Denote the corresponding Weyl solution by 15
and the spectral measure by dp. Using (2.9) and Lemma 3.11 we obtain

56Ny = Tpas =B+ [

= B+ [0 V)2

However, by Proposition 2.11, Parseval’s formula is correct for 1/;, so that B =0 and
we are done in the case when ¢ does not have compact support.

Now suppose ¢ vanishes identically in [z,b). Consider an auxiliary equation for
which ¢ does not have compact support, but which has the same coefficients as (1.3)
up to some point ¢, x < ¢ < b. For this equation the above proof of the lemma is
valid. Moreover, let 6 and ¢ denote functions analogous to 8 and ¢ for a = 0, but
with initial data given in the point z. In view of (2.9) both the original m(z, ) and
the corresponding function for the auxiliary equation are in the “Weyl disk’ defined

by
~ Imm
/ 10" +m¢'|? I T

so their distance is bounded by the diameter of the disk, which is exponentially small
as A becomes large (see [3, Theorem 6.3] for this result). Since m(x, \) is a non-trivial
Nevanlinna function it can not tend to 0 faster than a multiple of 1/|A| for large
|A|, so that asymptotically m(x, \) is the same as the corresponding function for the
auxiliary equation. Thus the lemma is actually valid in all cases.

Proof. [Proof of Theorem 4.4] Note first that by Lemma 3.5 we must have either
a—a—Oorelseoz;éO;éa

Let H respectively H denote the Hilbert spaces and JF respectively F the gener—
alised Fourier transforms associated with the two equations, and put U= FloF:
H — H, which is unitary since the target space is Li for both F and F. By Lemma
3.11 we have Uy = 1/70 if a = @, and if a # 0 # & we have Uy = :ﬁg Uo. Since
(u,1ho) = —u(0) it follows that

u(0) = —(u, o) = —(Uu,Urpo) = 81néuu(0)’ (4.2)

where the quotient of the sines is to be read as 1 for « = & = 0. In particular,
Uu(0) = 0 if and only if u(0) = 0.

Now, applying Theorem 4.8 for the rays generated by =+i, it is clear that if a €
(0, b) and v € H, then sup supp u = a if sup supp Yu = a, where h(a) = h( ), provided
there is such an a € (0,b)? (see [4, p.29] for more details). This will certainly be the
case if @ is sufficiently close to 0. Suppose for some & € (0,b) we have h(b) < h(a).
Then, since compactly Supported functions are dense in H, the range of &/ would be
orthogonal to all elements of H with supports in (a, b) contradicting the fact that U
is unitary.

A similar reasoning applied to &/ ~! shows that the mapping

v

g:[0,b)>a—ael0,b)

2Note that Re vEiw = /[w|/2
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is bijective, and that sup suppUu = a if sup supp u = a. It follows that supsuppu = a
if and only if sup supp Uu = g(a).

We also have inf suppu = a if and only if inf suppUu = g(a). To see this, note
that what we have already proved implies that if infsuppu = a > 0, then Uu is
orthogonal to all elements of H with support in [0, ¢g(a)]. This means that in this
interval Yu is a multiple of ¢g. However, since u(0) = 0 we also have Uu(0) = 0, so
that the multiple is 0, and thus inf suppUu > g(a). A similar reasoning applied to
U~ proves the other direction.

We have now verified that I/ and 2/ ~! both have the properties required in Lemma
4.9. This implies that there is a non-vanishing function f so that

u(x) = f(x)Uu(g(w)). (4.3)

We must have f real-valued since F and F —! and thus U, map real-valued functions
to real-valued functions. We note that (4.2) implies that f(0) = 1if a = & =0
and f(0) = :Eg > 0if @ # 0 # & Now choose Uu = 1 in a neighbourhood of
g(x). We then have u = f in a neighbourhood of z. Since u € H is locally absolutely
continuous, so is f. This also implies that f is strictly positive, since it can not change
sign and f(0) > 0. Similarly, choosing U« linear in a neighbourhood of g(z) it follows
that also g is locally absolutely continuous.

According to Lemma 3.11 U (-, A) = (-, A), so we have ¢(z, ) = f(z)ib(g(x), \).
Taking the logarithmic derivative we obtain

VN _ f@) e 9 g() )
by - ) T )&<g<x>,x>'

Here the left member and the coefficient for ¢'(z) are locally absolutely continuous,
and the coefficient for ¢’(x) is not independent of A by Lemma 4.10. It follows that
g and f’ are locally absolutely continuous, and differentiating, using the differential
equations, we obtain

—f7 b q—(g)dog - Aw— (¢

og) - P9 ()N
2 d(g(),N)
Here the right member is o(|\|) according to Lemma 4.10 so the coefficient of A to the

left vanishes. On the other hand, the right member is not independent of A unless
(f%9’)" = 0, so that we obtain

o o 1 e
qog—if(g,y( " +af),

wog=(g)  w,

f2g/:C

for some constant C. Evaluating (4.3) and its derivative at 0 for u = 9 (-, A) elementary
calculations now show?® that C' = 1 and f’(0) = 0. One also deduces that either o = &
orelse 0 <a=mn/2—-ad<m/20r /2 < a=31/2—& < w. In these calculations
one uses that 7 is not a Mobius transform, which is clear since this would give a
transform space of dimension 1. This can only happen if w, and dp, is a point mass.

3See Appendix
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Finally we have to prove Corollary 4.6

Proof. [Proof of Corollary 4.6] The function f = —¢q solves —f" + qf = 0 with
initial data f(0) = 1, f’(0) = 0. Since ¢ > 0 this solution is strictly positive on [0, b), so
we may put g(x) = fom 1/f2. The pair of functions f, § gives us a Liouville transform
Fy mapping [0,b) onto some interval [0, ¢) and [0, 5) onto [0, ¢), and transforming the
equations into —uj = Awoug and —iy = Mgty respectively. Thus FoFF, L where
F' is the Liouville transform of Theorem 4.4, transforms one of these equations into
the other.

Being a composition of Liouville transforms this is itself a Liouville transform
given, say, by wuo(x) = fi(z)ig(g1(z)). By construction we obtain f1(0) = f(0),
f1(0) = 0 and f2g} = 1. Since both potentials are identically 0 it follows that f;’ = 0.
This means that f1 = f(0) and g1(z) = z/(f(0))%.

If o = & then by Theorem 4.4 f(0) = 1 so that FyFF, ' is the identity, implying
that also F' is the identity. Similarly, if b = b then ¢ = ¢ so that f(0) = 1, unless
¢ = ¢ = 0o. We will show that c is always finite, and then it again follows that F is
the identity.

Now ¢ = fob 1/f2, so we need to show that this integral is finite. Put H = f’f
which will be strictly positive sufficiently close to b by (2.4).

Differentiating H' = (f)2+ f"f = ()2 4+ qf? > (f)?. Thus 1/f2 = (f')?/H? <
H'/H? so that f; 1/f? < 1/H(d) < oo if d is sufficiently close to b. This completes
the proof.

5. The Paley-Wiener theorem. The proof of Theorem 4.8 relies on the fol-
lowing lemma, which is taken from [3, Theorem 6.1, Corollary 6.2].
Lemma 5.1. The following asymptotic formulas hold, locally uniformly for A € C\R
and x > 0. The square root refers to the branch with positive real part.

lim ¢! Ing(x, t2)) = / V—=Aw,
0

t—oo
tlim 7 n(z, t°N) = —/ vV —=Aw.
— 00 0

The next lemma implies the simple direction of Theorem 4.8.
Lemma 5.2. Suppose u € H and suppu C [0,a]. Then 4(\) is entire of order < 1/2
and 4(X) = o(| ¢(a + ,N)|) for every € > 0 as A — oo along any non-real ray
originating at the origin.

Proof. For finite u we have (u, p(-,\)) = —u(0) cos a + fob ule(-, N)w. Now write

A(\) = —u(0) cos a + Ap(a + £, \) /O wp(, Nw/p(a+ 2, A).

The function ¢(z,\)/p(a + €, ) tends to zero uniformly for x € [0,a] and Ap(a +
g,\) — oo according to Lemma 5.1 as A — oo along a non-real ray. The lemma
follows.

The hard direction of Theorem 4.8 follows from the next lemma.
Lemma 5.3. Suppose u € H, that @ has an entire continuation of order < 1/2 and
that @(X\) = O(1/|¢(a, N)|) as A — oo along two different non-real rays originating at
the origin. Then suppu C [0,a] and G(X) = (u, p(-, N)).

Proof. Let € > 0 and consider F(\) = (Ryu,v) — w(A){((-, A),v), where v =
Go(wf) and f € H has compact support in (a +&,b). In particular v € Dy. We shall
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show that F' has an entire continuation of order < 1/2 which tends to 0 along the
given rays. By Phragmén-Lindel6f’s principle it follows that F' is bounded everywhere
and is therefore constant by Liouville’s theorem, thus actually identically 0.

Now F()\) = fob(R,\u —a(A)Y(-, N)) fw so, arguing like in the proof of Proposition
2.3, it follows that Ryu—a(\)9(-, A) has support in [0, a+¢]. Applying the differential
equation it follows that also w has support in [0, a+¢]. Since ¢ > 0 is arbitrary, in fact
u has support in [0, a]. For > a the formula (2.7) gives Ryu(z) = ¥(x, A)(u, p(-, \))
so that ¥(z, \)(G(X) — (u, (-, A))) = 0. The lemma follows from this.

To prove that F' is entire, Parseval’s formula and Lemma 3.11 show that

Fupi/mgﬂlﬁﬁmw@@y

et

It is obvious that this is an entire function, at least if we can bound the integrand
properly. To do this and see that the order is at most 1/2, note that for |t — A| < 1
we may estimate the integrand by supj, <q [@'(A + 2)|[0(¢)[. For [t — A| > 1 we may
estimate the integrand by |a(t)0(t)| + |a(N\)||0(¢)]. Hence we have locally uniformly
dominated convergence of the integral and

IFMNSWMMH+SWHWM+@%HMMD/mWW@

|z]<1 —o0

which is the required estimate, the integral being finite by Corollary 3.8 and @ and
therefore 4’ being of order < 1/2.

Finally, to show that F' tends to 0 along the rays, we first note that i (x, \) /¢ (a, \)
converges to 0 uniformly for z € [a + €,b), according to Lemma 5.1. Assuming f has

compact support in [a + €,b) we obtain fobw(~,)\)?w = o(|¢p(a, N)|). Since Ry — 0
strongly as Im A — oo, it follows that F' tends to 0 along the given rays. This finishes
the proof.

Theorem 4.8 is a simple consequence of these lemmas.

Proof. [Proof of Theorem 4.8] If suppu C [0, a] it follows from Lemmas 5.2 and

5.1 that 4(A) = (u, (-, A)) is an entire continuation of @ of order < 1/2 such that

+

€
limsup ¢~ In|a@(t?\)| < tlim t'Injp(a+e,t2N)| = / Re vV —Aw

a
t—oo 0
for non-real A and all ¢ > 0.
On the other hand, suppose there is an entire continuation of @ of order < 1/2
and such that

a
limsup ¢t~ In|a(t2)\)| < / Re v —Aw
t—o0 0

for A on two different rays from the origin. If one or both of these are real, an
immediate application of the Phragmén-Lindelof principle shows this to be true for
all other rays as well, so we may assume them non-real. By Lemma 5.1 this implies
that a(\) = O(J1(a + &, )| 1) for large A on these rays if 0 < ¢ < b — a. Lemma 5.3
now shows that supp u C [0, a+ €] for small € > 0 and thus for € = 0. The uniqueness
of the continuation also follows from Lemma 5.3. If we have strict inequality on one
ray a simple argument using the Phragmén-Lindel6f principle (see [4, Lemma 3.6])
shows this to hold on all nearby rays as well, so that in fact supsuppu < a. The proof
is now complete.
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6. Inverse scattering on the half-line. In this section we will show that
scattering data for the half-line problem determines the coefficient w if ¢ is known.
We will of course have to assume that our equation is sufficiently close to a model
equation, which, as usual, has constant coefficients.

Thus we consider (1.3) on [0, c0) with the following additional assumption, which
will be in force throughout this section.

Assumption 6.1. There is a constant ¢ > 0 such that ¢(z) — ¢o and w(z) — 1 are
both in L*(0, 00).

Note that according to Theorems 2.5 and 2.6 finite functions are dense in H; and,
given the boundary condition (2.6), there is a unique selfadjoint realisation T of (1.3)
in Hl.

We will need the following standard result.

Proposition 6.2. For Imk > 0, k # 0 there exists a solution f(-,k) of (1.3) with
A = k% + qo having the following properties: (1) f(x,-) and f'(x,-) are analytic for
Imk > 0 and continuous for Imk >0, k # 0; (2) f(x, k) ~ e*® and f'(x, k) ~ ikek®
as T — o0.

This is standard. It is easily proved by first writing the equation for g(z, k) =
f(z, k)e= % as ¢" +2ikg’ = (¢—qo — (k> +qo)(w—1))g and then solving this equation
by successive approximations from its desired initial values g(o0) = 1, ¢’(c0) = 0 at
oo using the estimate [e2?#(=*) — 1| < 2. See, for instance, Deift and Trubowitz [19].

If Imk > 0 then f(-, k) € Hy. Thus, if A ¢ R (i.e., also Rek # 0) then

for some function F' defined in Imk > 0, Rek # 0.
Let [u,v] = w'v — uwv’ denote the Wronskian of the functions v and v and recall
that Wronskians of solutions to (1.3) are independent of z. Since

Ae(,A), FC R = F(R) (-, A), (-, )] = F(k) (6.1)

is analytic for Im(k) > 0 we find that F' is analytic and can be extended analytically
to the positive imaginary axis. Moreover, since [A¢(-, A), f(+,k)] is continuous in
Im(k) > 0, k # 0, the function F' extends continuously to the positive and negative
real line. The zeros of F' are located exactly where ¢ and f are linearly dependent,
i.e., when A = qo + k? is an eigenvalue. -

Equation (6.1) gives also that F(—k) = F(k) for real k # 0 and that F has no
zeros on either the positive or the negative real line since (-, A) is real for real A and
the real and imaginary parts of f(z,k) ~ ¢** are linearly independent.

For k > 0 and thus A = k% 4+ ¢y > qo define

wi('v )\) = 212%1/)(7 (:l:k + i6)2 + QO)
and
ma(N) = lim m((£k + i€)? + qo).

€E—

Since m(\) = m(X\) when X is not real we find that m. (\) = m_(\) when X is real.
Therefore
25k .
W =AMy (), V(5 A)] = my(A) =m_ () = 2iImmy (N)
21



when k£ > 0 so that A > gg. This in turn implies

)
|F(F)|?

7o' (\) = Imm(\ +40) =

for A > qo. Thus the restriction of F' to the positive real line determines the spec-
tral measure on the interval (qo,00). It follows from this that the spectrum of T is
absolutely continuous* in (go, o0).

In the interval (—o0, go), where A corresponds to the positive half of the imaginary
axis for k, the spectrum is discrete since F' is analytic there. There might also be
an eigenvalue for k = 0, A\ = go. Suppose A\ # 0 is an eigenvalue. Then (-, \) is
a corresponding eigenfunction, and its Fourier transform ¢(A) is a multiple of the
characteristic function of the set {A}. The inversion formula (3.1) gives ¢(x,\) =
SNz, \)p{A\}, where p{\} is the spectral measure of the set {A\}. Thus @$(\) =
1/p{A\}. Parseval’s formula gives ||¢(-, A)||? = [p(A)|?p{A} = 1/p{A}. On the interval
(—00, qo] we therefore know the spectral measure if we know all eigenvalues A and the
corresponding normalisation constants ||¢(-,A)||?. Similarly, if o = 0 then by Lemma
3.5 also A = 0 is an eigenvalue, and 1/p{0} is the normalisation constant for the
eigenfunction ¥y. We obtain the following theorem.

Theorem 6.3. Given the absolute value of the coefficient F(k) for positive k, all
eigenvalues, the corresponding normalisation constants, and either q or |w|, the coef-
ficients ¢ and w and the boundary value parameter o are uniquely determined.

Proof. We have already seen that the given data determine the spectral measure,
and may now apply Corollaries 4.5, 4.6 to draw the desired conclusion.

7. Eigenvalues. This section is devoted to the proof of the following theorem.
Part of the proof is an adaptation of Marchenko [25].
Theorem 7.1. Assume that q and w satisfy Assumption 6.1. Then
1. The eigenvalues of T are isolated and can accumulate only at qy or negative
infinity.
2. There will be infinitely many negative eigenvalues if and only if w is negative
on a set of positive measure.
If in addition we have fooo tlq(t) — qow(t)|dt < co we also have
3. Eigenvalues will not accumulate at qq.
4. qo 18 not an eigenvalue unless qo = 0 and o = 0.

To prove this we need the following strengthening of Proposition 6.2.
Proposition 7.2. Suppose q and w satisfy Assumption 6.1 and the integral fooo t|q(t)—
qow(t)|dt is finite. Then, for every x € [0, 00), the function f(z,-) and its z-derivative,
which were previously defined for Tm(k) > 0, k # 0 extend continuously to k = 0.

The additional assumption and the improved estimate

2R (t=7) _ 1| < min(2|k|¢, 2)

allow us to perform the successive approximations also near k = 0. The proposition
follows from this.

Proof. [Proof of Theorem 7.1] If u = k% 4+ qo < qo is an eigenvalue of T then,
since F' is analytic in the upper half plane, eigenvalues are isolated and hence cannot
accumulate at any point in (—o0, gp). This proves (1).

4For qo < s < t we have /: Imm(p + ie) dp — w(p(t) — p(s)) as € | 0. But the left hand side

converges to fst Imm(p + 20) dp so p is absolutely continuous.
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To prove the second statement we make first the assumption that go > 0 and
a # 0. By Lemma 3.5 zero is then not in the spectrum of T" so that the range of T is
‘H and we may define a bilinear form ) on H by setting

Qu,v) = / St dp(r).

Note that Q(u,v) = 0 if the supports of & and ¢ do not intersect, which happens,
for instance, if u and v are eigenvectors for different eigenvalues. Furthermore, by
Lemma 3.7 Q(u, Tv) = [, 4(t)o(t)dp(t) = (u,v). An integration by parts gives

/0 (u'v' + quv) = u(z)v'(z) — u(0)v'(0) + /o wulv

for u € H and v € Dp. Hence if v is in the range of T and wu is finite, or if v and v
are exponentially decaying eigenfunctions, then we obtain

Q(u,v) = /000 wu® + cot(a)u(0)v(0) (7.1)

taking into account the boundary condition satisfied by (T~ 1v,v).
Now assume that w > 0. If cot(a) > 0 there can be no negative eigenvalue since
Tv = v, A <0, ||[v]| # 0 would imply that

> 1 1
0< / wlof? + cot afo(0)? = £ Q(v,Tw) = (]l <0,
0

giving a contradiction. If cot & < 0 there can be at most one negative eigenvalue as
we shall show now. If there were two distinct negative eigenvalues \; and Ay with
associated eigenvectors v; and vg, we could assume that v;(0) = v2(0). This would
entail that

o0
0< / wlvy — v2|? = Q(v1 — v2,v1 — v2) = Q(v1,v1) + Q(v2,v2) < 0
0

since eigenfunctions decay exponentially so that we are allowed to employ equation
(7.1).

Next assume w < 0 on a set of positive Lebesgue measure. We shall show that
there are infinitely many negative eigenvalues. For any integer n one can choose
elements w1, ..., u, in H, compactly supported in (0, 00), such that Q(u;,u;) < 0 and
Q(uj,u) = 0if j # k. To achieve this one may for instance choose first bounded sets
Ay, ..., A, of positive measure and positive distances from zero and each other on
which w is negative. Then one lets u; be a suitable mollification of the characteristic
function of A;. Equation (7.1) now guarantees that they have the desired properties.

Thus Q(u,u) < 0 whenever u is in the linear span B of uq, ..., u,. Let P
be the orthogonal projection of B into the negative spectral subspace of H, i.e.,
Pu = F~Y(uy), where  is the characteristic function of (—oc,0). Suppose now that
n is larger than the number of negative eigenvalues. Then the kernel of P cannot be
trivial so that there is a nontrivial u € B such that @ is supported in [0, c0). Hence

1

0> Qu,u) = /R Zla®)Pdp(t) > 0.

Since this is impossible the number of negative eigenvalues must be infinite.
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If we only have go > 0, but still « # 0, then @ remains defined for functions u, v
with Fourier transforms bounded near 0, since in this case 1/t € L?) by Lemma 3.11.
But the Fourier transforms of eigenfunctions to non-zero eigenvalues are supported
away from 0, and the Fourier transform of a finite function is entire and thus locally
bounded. Also, u; is in the range of T. To see this, solve —y" + qy = wu,; with 0
initial data at a point to the right of suppu; which yields a finite function y. Adding
an appropriate multiple of 1y (Proposition 2.7) gives a function in Dp. Thus the
proof applies also in this case.

Allowing also a = 0 the form @ is still defined if @(t)9(¢)/t is continuous at 0.
This is the case if u and v are eigenfunctions to negative eigenvalues. Also, if u is a
finite function orthogonal to the eigenfunction vy, then @(0) = 0; so @ is defined for
such functions. This last condition is just one linear condition on the space B, so the
remainder can still have arbitrarily large dimension. All of the u; are in the range of
T, since the boundary condition now reads w;(0) = 0. Thus the proof applies also in
this case, and the proof of (2) is finished.

Now assume that fooo tlq(t) — qow(t)|dt is finite, and that, contrary to our claim,
there is a sequence p,, = k2 + qo < qo of eigenvalues converging to go. Since eigen-
functions are orthogonal and satisfy the boundary condition an integration by parts
shows

/0 T (k) T ) = — (0, k) FT0, o) cot (7.2)

if n # m. If @ = 0 the right hand side has to be replaced by zero.
Since [, t|q(t)—qow(t)|dt < oo, our construction of f shows that f(z,k) ~ e'** as
x — oo, uniformly for k& € i[0, 1]. This shows firstly that (7.2) is bounded as n and m
tend to infinity, secondly we may find a positive ¢ such that | f(x, k) — | < e~z /4
if > ¢, k €40, 1]. Simple estimates then show that
7 25
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if n and m are large. Since w — 1 is integrable this shows that the integral

/Oo Re( f(2, k) F (@ o))t — +00

as n, m tend to infinity. Now, since f(z, k) is uniformly continuous on [0, ¢] x [0, 1]
it follows that the integral over [0, c] is bounded, so the integral over [0, 00) tends to
infinity, contradicting the previously established boundedness and proving (3).
Finally, if go = 0 we already know gq is an eigenvalue if and only if @« = 0. On
the other hand, if gy > 0, then f(-,qo) is asymptotic to 1, and any other solution to
(1.3) is asymptotically linear, as is easily seen from the well-known reduction of order
method. Thus no such solution is in ‘H and there is no eigenfunction with eigenvalue
go. This proves (4).
Remark 7.3. If we allow w to be a general measure, then the negative part of w could
be a finite sum of Dirac measures. In this case one may in the same way show that
the number of negative eigenvalues is equal to the number of these Dirac measures if
a # 0, cota >0 and gg > 0, with suitable modifications in the other cases.

8. Appendix. Here we present some calculations which were omitted from the
proof of Theorem 4.4.
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For x = 0 the relation ¢ (z, \) = f(z)d(g(z),\) gives

cosa —m(A)sina = f(0){cos& — m(A\)sinda}, (8.1)
while (2, \) = F/(2)i(g(z), A) + F(@)g' (@) (g(z), A) for z = 0 gives
i = IO s — ) sindl + -8 fsind 4+ 1)) cos é
sina + m(\) cosa = 3 {cosa—m(/\)smoz}—kf(o){blnoz—km()\)c%oz}. (8.2)

From (8.1), (8.2) we obtain

f’)(\O) sina}{cos @ — m(\)sina} + Cfs(i(r]l)a

1={f(0)cosa + {sin & + m(A) cos a}

and

f'(0)
A

m(A\) = {—f(0)sina + cosa}{cos & — m(\) sin &}

Ccosa . . . .
W{sm &+ m(A) cos &},
which after rearranging gives
f'(0) . . Csinasinda
1—(f(0)cosa + smoz)cosoz—W
= m(A){—(f(0) cosa + 1) sin o) sin & + Csinacosd SH}(QO;OS a} (8.3)
and
(f(0)sina — 1'0) Cos &) cos (v — 70 CO;(CE))Sind
o . 1(0) . .  Ccosacosda
= m(MN{(f(0)sina — - cos a)sind + W} —m(\). (8.4)

In (8.3) the left member and the coefficient of m are linear in 1/, while 7h(\) is not
constant or a Mobius transform (this would give a one-dimensional transform space).
From (8.3) we therefore obtain

/ . . 5
) cosat QD inayeoss = 1 - omasing
f(0)
(f(0)cosa + A0 sina) sin & = M,
f(0)
which gives
/
f(0)cosa + f>(\0) sina = cos &

Csina

= sin a.

f(0)

From this it is (again) clear that sina = 0 if and only if sin@ = 0, so that we have
two cases.
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e a =& =0. We obtain f(0) = 1, and insertion in (8.4) shows that @ =
m(A) —Crn(X). The right member is (1 — C)m(\) since m(iv) and m(iv) — 0
as v — —+oo by Lemma 4.10, and m, m have the same spectral measure.
Again by Lemma 4.10 it follows that C = 1, and thus f’(0) = 0.

e a #0 # & We obtain f/(0) = 0, f(0) = Csina/sina and Csin(2a) =
sin(2¢). But we know that f(0) = sina/sind so that C = 1. Insertion in
(8.4) gives m(X) — () = cot o — cot ¢t.

Since sin(2a) = sin(2¢&) we have either a = d or 0 < a =7/2 — & < 7/2 or
/2 <a=3r/2—a<m. If a=a& weobtain f(0) =1 and m(A) = m(\). In
the other cases we obtain f(0) = |tan | and m(X) — m(\) = 2 cot(2a).

REFERENCES

[1] C. BENNEWITZ, Spectral theory for pairs of differential operators, Ark. Mat., 15 (1977), pp. 33—

61.

2] , A generalisation of Niessen’s limit-circle criterion, Proc. Roy. Soc. Edinburgh Sect. A,
78 (1977/78), pp. 81-90.

[3] , Spectral asymptotics for Sturm-Liouville equations, Proc. London Math. Soc. (3), 59
(1989), pp. 294-338.

[4] , A Paley- Wiener theorem with applications to inverse spectral theory, in Advances in

differential equations and mathematical physics (Birmingham, AL, 2002), vol. 327 of Con-
temp. Math., Amer. Math. Soc., Providence, RI, 2003, pp. 21-31.
[5] C. BENNEWITZ AND B. M. BROWN, A limit point criterion with applications to nonselfadjoint
equations, J. Comput. Appl. Math., 148 (2002), pp. 257-265. On the occasion of the 65th
birthday of Professor Michael Eastham.
[6] C. BENNEWITZ AND W. N. EVERITT, The Titchmarsh-Weyl eigenfunction expansion theorem
for Sturm-Liouville differential equations, in Sturm-Liouville theory, Birkh&user, Basel,
2005, pp. 137-171.
[7] P. A. BINDING, P. J. BROWNE, AND B. A. WATSON, Inverse spectral problems for left-definite
Sturm-Liouville equations with indefinite weight, J. Math. Anal. Appl., 271 (2002), pp. 383—
408.
[8] A. BOUTET DE MONVEL AND D. SHEPELSKY, The Camassa-Holm equation on the half-line, C.
R. Math. Acad. Sci. Paris, 341 (2005), pp. 611-616.
, The Camassa-Holm equation on the half-line: a Riemann-Hilbert approach, J. Geom.
Anal., 18 (2008), pp. 285-323.

[10] A. BRESSAN AND A. CONSTANTIN, Global conservative solutions of the Camassa-Holm equation,
Arch. Ration. Mech. Anal., 183 (2007), pp. 215-239.

[11] R. Camassa AND D. D. HoLM, An integrable shallow water equation with peaked solitons, Phys.
Rev. Lett., 71 (1993), pp. 1661-1664.

[12] A. CONSTANTIN, On the inverse spectral problem for the Camassa-Holm equation, J. Funct.
Anal., 155 (1998), pp. 352-363.

[13] , Existence of permanent and breaking waves for a shallow water equation: a geometric
approach, Ann. Inst. Fourier (Grenoble), 50 (2000), pp. 321-362.
(14] , On the scattering problem for the Camassa-Holm equation, R. Soc. Lond. Proc. Ser. A

Math. Phys. Eng. Sci., 457 (2001), pp. 953-970.
A. CONSTANTIN AND J. ESCHER, Wave breaking for nonlinear nonlocal shallow water equations,
Acta Math., 181 (1998), pp. 229-243.
[16] A. CONSTANTIN, V. S. GERDJIKOV, AND R. I. IVANOv, Inverse scattering transform for the
Camassa-Holm equation, Inverse Problems, 22 (2006), pp. 2197-2207.
A. CONSTANTIN AND J. LENELLS, On the inverse scattering approach to the Camassa-Holm
equation, J. Nonlinear Math. Phys., 10 (2003), pp. 252-255.
A. CONSTANTIN AND H. P. McKEAN, A shallow water equation on the circle, Comm. Pure
Appl. Math., 52 (1999), pp. 949-982.
. DEIrT AND E. TRUBOWITZ, Inverse scattering on the line, Comm. Pure Appl. Math., 32
(1979), pp. 121-251.
. S. Fokas, On a class of physically important integrable equations, Phys. D, 87 (1995),
pp. 145-150. The nonlinear Schrédinger equation (Chernogolovka, 1994).
. S. Fokas AND Q. M. Liu, Asymptotic integrability of water waves, Phys. Rev. Lett., 77
(1996), pp. 2347-2351.

™ =
o L
> U

)
=
>

26



27]

(28]

jun

. FUCHSSTEINER AND A. S. FOKAS, Symplectic structures, their Bdcklund transformations and
hereditary symmetries, Phys. D, 4 (1981/82), pp. 47—-66.

. S. JouNsoN, Camassa-Holm, Korteweg-de Vries and related models for water waves, J.
Fluid Mech., 455 (2002), pp. 63-82.

. Kong, H. Wu, AND A. ZETTL, Singular left-definite Sturm-Liouville problems, J. Differential
Equations, 206 (2004), pp. 1-29.

. A. MARCHENKO, Sturm-Liouville operators and applications, vol. 22 of Operator Theory:
Advances and Applications, Birkhduser Verlag, Basel, 1986. Translated from the Russian
by A. Iacob.

. D. NIESSEN AND A. SCHNEIDER, Spectral theory for left-definite singular systems of differ-
ential equations, in Spectral theory and asymptotics of differential equations (Proc. Conf.,
Scheveningen, 1973), North-Holland, Amsterdam, 1974, pp. 29-43. North—Holland Math.
Studies, Vol. 13.

. L. VANINSKY, Equations of Camassa-Holm type and Jacobi ellipsoidal coordinates, Comm.
Pure Appl. Math., 58 (2005), pp. 1149-1187.

. WEYL, Uber gewéhnliche lineare Differentialgleichungen mit singuldren Stellen und ihre
Eigenfunktionen (2. note)., Gott. Nachr., (1910), pp. 442-467.

27



