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INVERSE SPECTRAL AND SCATTERING THEORY FOR THE
HALF-LINE LEFT-DEFINITE STURM-LIOUVILLE PROBLEM

C. BENNEWITZ† , B. M. BROWN‡ , AND R. WEIKARD§

Abstract. The problem of integrating the Camassa-Holm equation leads to the scattering and
inverse scattering problem for the Sturm-Liouville equation −u′′ + 1

4
u = λwu where w is a weight

function which may change sign but where the left hand side gives rise to a positive quadratic form
so that one is led to a left-definite spectral problem.

In this paper the spectral theory and a generalized Fourier transform associated with the equation
−u′′ + 1

4
u = λwu posed on a half-line are investigated. An inverse spectral theorem and an inverse

scattering theorem are established. A crucial ingredient of the proofs of these results is a theorem
of Paley-Wiener type which is shown to hold true. Additionally, the accumulation properties of
eigenvalues are investigated.

AMS subject classifications. 37K15, 34A55, 34B24, 34L25, 35Q53

1. Introduction. Standard Sturm-Liouville theory deals with the eigenvalue
problem

−(pu′)′ + qu = λwu, (1.1)

together with appropriate boundary conditions, in the space L2
w of functions square

integrable with respect to the weight w, i.e., the norm-square of the space is ‖u‖2 =∫
|u|2w. A basic assumption for this to be possible is that w ≥ 0. In some situations

of interest this is not the case, but instead one has p > 0, q ≥ 0. One may then use
as a norm-square the integral

∫
(p|u′|2 + q|u|2), and a problem of this type is usually

called left-definite. A left-definite problem of current interest is the spectral problem
associated with the Camassa-Holm equation, which is of the form

−u′′ + 1
4u = λwu. (1.2)

The Camassa-Holm equation is an integrable system in a similar sense as the
Korteweg-de Vries (KdV) equation. It was first derived as an abstract bi-Hamiltonian
system by Fokas and Fuchssteiner [22]. Subsequently, it was shown by Camassa and
Holm [11] that it may serve as an integrable model for shallow water waves. In
that paper Camassa and Holm also showed that the solitons are peaked and called
them peakons (see also Fokas and Liu [21] and Johnson [23]). In contrast to the
KdV equation the Camassa-Holm equation may model breaking waves, i.e., smooth
initial data may develop singularities in finite time, cf. Constantin and Escher [15]
and Constantin [13] (see also Bressan and Constantin [10] for a way to resolve the
singularities due to wave breaking). This, however, happens only when w changes
sign and it is this fact which motivates us to consider equation (1.2) without the
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assumption that w is positive. The well developed theory of scattering and inverse
scattering for the Schrödinger equation is of crucial importance to the theory of the
KdV equation. In the same way scattering/inverse scattering theory for the equation
(1.2) is important for dealing with the Camassa-Holm equation. Unfortunately, no
such theory is available unless w ≥ 0, and even then current theory requires more
smoothness of w than is convenient to assume, in view of the lack of smoothness for
the corresponding peakons.

The problem of inverse scattering for (1.2) is considerably more difficult than for
the Schrödinger equation, which may be viewed as a rather mild perturbation of the
equation−u′′ = λu. In case of (1.2) the perturbation is of the equation−u′′+ 1

4u = λu,
and thus changes the coefficient containing the eigenvalue parameter λ. It appears
that the methods used so far for dealing with the Schrödinger equation are no longer
applicable.

In this paper we will prove some uniqueness results for inverse spectral theory
and inverse scattering for the left-definite case which apply to (1.2) posed on a half-
line. One would also like to have results for the full-line but this appears to be more
difficult. One exception is the case of odd initial data for the Camassa-Holm equation
on the full-line because the problem can be reduced to one on a half-line. We mention
here that the half-line case was also investigated by Boutet de Monvel and Shepelsky
[8], [9] who employ Riemann-Hilbert techniques but assume that w is positive. Our
approach is via the inverse spectral theory for the left-definite problem, which also
is not very well developed. Even the spectral theory for left-definite problems is not
widely known (but see for example [1]), in the level of detail necessary for dealing with
the inverse problem. We will therefore start by presenting a reasonably comprehensive
spectral theory, then prove some uniqueness theorems for the inverse spectral problem,
and finally a uniqueness theorem for inverse half-line scattering.

Spectral theory for left-definite Sturm-Liouville problems seems to have been
initiated by Weyl [28], who called such problems polar. Later many authors have
dealt with more or less general left-definite problems. In particular we mention a
series of papers by Niessen, Schneider and their collaborators on singular left-definite
so called S-hermitian systems, see e.g. [26]. See also [1] and the references cited there.
For a more recent contribution, see Kong, Wu, and Zettl [24]. However, papers in
inverse spectral theory for left-definite problems are much more scarce; one example
is Binding, Browne, and Watson [7].

Because of the connection with the Camassa-Holm equation the inverse scattering
problem for (1.2) has attracted some attention. From the physical point of view the
full-line case where w decays at infinity and the periodic case are most interesting.
The former was treated by Fokas [20] and Constantin and various co-authors, for
example in [14], [16] and [17]. The latter was addressed by Constantin and McKean
[18], Constantin [12], and Vaninsky [27]. The full-line case with odd initial data
reduces to a half-line case but the half-line case is also of interest independently.

It will be convenient to deal only with the equation

−u′′ + qu = λwu. (1.3)

There is no loss of generality in doing this, since the change of variable t =
∫ x

0
1/p

will, as is readily seen, turn the equation (1.1) into an equation of this form.
The plan of the paper is as follows. In Section 2 we give a general spectral theory

for left-definite problems on intervals with at least one regular endpoint, modelled on
standard Titchmarsh-Weyl theory. One may extend this to intervals with two singular
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endpoints, in the same way as one can extend the right-definite theory, but since we
will have no use of it here we have abstained from this.

In Section 3 we deal with the generalised Fourier transform associated to a left-
definite problem. To simplify the discussion we have restricted ourselves to one case,
when so called finite functions are dense in the Hilbert space associated to the equa-
tion. There are no fundamental difficulties involved in dealing with the general situ-
ation, but again we have no need of it in the applications we are thinking of.

Section 4 discusses uniqueness of the inverse spectral problem. Unfortunately we
have neither a characterisation nor a reconstruction algorithm, but the fundamental
uniqueness theorem is quite general.

In Section 5 we prove a theorem of Paley-Wiener type which is crucial for our
approach to the inverse spectral theory, and Section 6 deals with the uniqueness
theorem for the half-line inverse scattering of a left-definite problem. Section 7 is
devoted to some results about the number of eigenvalues for a left-definite problem
under scattering conditions. Some elementary, but rather lengthy, calculations needed
in Section 4 have been relegated to an appendix.

2. Spectral theory. We shall consider the equation (1.3) on an interval [0, b)
and assume that q and w are real-valued and integrable on compact subsets of [0, b),
that q ≥ 0, and that neither q nor w vanish a.e. Let H1 be the set of locally absolutely
continuous functions u defined in [0, b) such that u′ ∈ L2(0, b) and q|u|2 ∈ L1(0, b).
As we shall see presently H1 is a Hilbert space with scalar product

〈u, v〉 =
∫ b

0

(u′v′ + quv)

and norm ‖u‖ =
√
〈u, u〉. In order to show completeness of H1 and discuss how to

find self-adjoint realisations corresponding to (1.3) we first note the following simple
result.
Lemma 2.1. For any a ∈ [0, b) there exists a constant Ca such that

|u(x)| ≤ Ca‖u‖ (2.1)

for any x ∈ [0, a] and any u ∈ H1.
Proof. By the fundamental theorem of calculus and Cauchy-Schwarz’ inequality

|u(x)| ≤ |u(y)|+|y−x|1/2
( ∫ b

0
|u′|2

)1/2. If c ∈ [a, b) is such that
∫ c

0
q > 0, multiplication

by q(y) and integrating with respect to y gives

|u(x)|
∫ c

0

q ≤
∫ c

0

q|u|+ c1/2
∫ c

0

q
(∫ b

0

|u′|2
)1/2

.

Using Cauchy-Schwarz again we obtain (2.1) with Ca =
(
c+ 1/

∫ c
0
q
)1/2.

Proposition 2.2. The space H1 is complete.
Proof. By (2.1) a Cauchy sequence u1, u2, . . . in H1 converges locally uniformly

to a continuous function u. Furthermore,
√
quj and u′j converge in L2[0, b) to

√
qu

and, say, v respectively. Now

uj(x)− uj(0) =
∫ x

0

u′j .

Letting j → ∞ we obtain u(x) = u(0) +
∫ x

0
v. Thus u is absolutely continuous with

derivative v and uj converges to u in H1.
3



Denote the set of integrable functions with compact support in (0, b) by L0. Then,
if u ∈ H1 and v ∈ L0 it follows that |

∫
uv| ≤ Ca

∫
|v| ‖u‖ if supp v ⊂ [0, a], so that

the linear form H1 3 u 7→
∫
uv is bounded. By Riesz’ representation theorem we may

therefore find a unique v∗ ∈ H1 so that
∫
uv = 〈u, v∗〉. Clearly v∗ depends linearly

on v, so we obtain a (bounded) operator G0 : L0 → H1 such that

〈u,G0v〉 =
∫ b

0

uv for u ∈ H1, v ∈ L0.

The operator G0 is central for the left-definite spectral theory of (1.3).
Proposition 2.3. The operator G0 is an integral operator G0u(x) =

∫
u g0(x, ·), it

is injective and its restriction to L0 ∩H1 is symmetric with range dense in H1.
Proof. By (2.1) the map H1 3 u 7→ u(x) is for each fixed x ∈ [0, b) a bounded

linear form, so there exists an element g0(x, ·) ∈ H1 so that u(x) = 〈u, g0(x, ·)〉 for
u ∈ H1, and therefore G0v(x) = 〈G0v, g0(x, ·)〉 =

∫ b
0
v g0(x, ·) for any v ∈ L0. Thus

G0 is an integral operator with kernel g0(x, y) (actually, as we shall see in Proposition
2.7, g0 is real-valued). If u and v ∈ L0 ∩H1, then

〈G0u, v〉 = 〈v,G0u〉 =
∫ b

0

uv = 〈u,G0v〉,

so the restriction of G0 to L0 ∩H1 is symmetric.
Let [c, d] ⊂ (0, b) and uj(x) = min(1, j(x−c), j(d−x)) for x ∈ [c, d] and uj(x) = 0

otherwise. Then uj ∈ L0 ∩ H1 and tends boundedly to the characteristic function of
[c, d] as j → ∞, so if G0v = 0 it follows from 0 = 〈G0v, uj〉 =

∫
vuj that

∫ d
c
v = 0

for all [c, d] ⊂ (0, b). Thus v = 0 a.e. so that G0 is injective. On the other hand,
if u ∈ H1 is orthogonal to G0v for all v ∈ L0 ∩ H1, we may put v = uj , so that
0 = 〈u,G0uj〉 →

∫ d
c
u. It follows that u = 0 so the range of G0 restricted to L0 ∩ H1

is dense and the proof is complete.
We shall have to briefly use the theory of symmetric relations as presented in [1,

section 1], and define maximal and minimal relations corresponding to (1.3). We start
by setting

Tc = {(G0(wv), v) | v ∈ L0 ∩H1}.

Then, since w is real-valued, Tc is a symmetric relation in H1, for

〈G0(wu), v〉 = 〈v,G0(wu)〉 =
∫ b

0

wuv = 〈u,G0(wv)〉.

Proposition 2.3 implies that Tc is the graph of a densely defined symmetric operator
in H1 if suppw = [0, b), but at this point we do not want to exclude the possibility
of w vanishing on an open set. We define the minimal relation T0 as the closure (in
H1 ⊕H1) of Tc, and the maximal relation T1 as the adjoint of this, i.e.,

T1 = {(u, f) ∈ H1 ⊕H1 | 〈u, v〉 = 〈f,G0(wv)〉 for all v ∈ L0 ∩H1}.

We must show that T1 is a differential relation.
Proposition 2.4. We have (u, f) ∈ T1 if and only if u and f ∈ H1, u′ is locally
absolutely continuous, and −u′′ + qu = wf .
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Proof. First note that if u and f ∈ H1, then the definition of G0 shows that

〈u, v〉 − 〈f,G0(wv)〉 =
∫ b

0

(u′v′ + quv − wfv) (2.2)

for any v ∈ L0 ∩ H1. If in addition u′ is locally absolutely continuous and satisfies
−u′′ + qu = wf integrating by parts gives

〈u, v〉 − 〈f,G0(wv)〉 =
∫ b

0

(−u′′ + qu− wf)v = 0.

This proves one direction of the proposition.
In proving the other direction the assumption is that the quantity (2.2) is zero.

But since C∞0 (0, b) ⊂ H1 this means that the distributional derivative of u′ is qu−wf
so that u′ is locally absolutely continuous and u satisfies the differential equation.

To give a proof without the use of distribution theory we prove a variant of the
classical du Bois Reymond lemma. If v ∈ L0 ∩H1 integration by parts in (2.2) gives∫ b

0

{u′ −
∫ x

0

(qu− wf)− C}v′ = 0 (2.3)

for any constant C. Now let [c, d] ⊂ (0, b) and choose C to be C = 1
d−c

∫ d
c
{u′ −∫ x

0
(qu− wf)}. Put v(y) = 0 for y /∈ [c, d] and

v(y) =
∫ y

c

{u′(x)−
∫ x

0

(qu− wf)− C} dx

for y ∈ [c, d]. Then v ∈ L0 ∩H1 and (2.3) gives∫ d

c

|u′ −
∫ x

0

(qu− wf)− C|2 = 0

so that u′−
∫ x

0
(qu−wf) is constant in [c, d]. Thus u′ is locally absolutely continuous,

and differentiation gives −u′′ + qu = wf .
Let Dλ = {(u, λu) ∈ T1} and let Dλ be the projection of Dλ onto its first com-

ponents, i.e., u ∈ Dλ means that u ∈ H1 and u satisfies −u′′ + qu = λwu. We then
have

T1 = T0 uDλ uDλ

as a direct sum, for any non-real λ. Here dimDλ = dimDλ is constant in each of the
upper and lower half-planes, and these dimensions will be called the deficiency indices
of T1. See [1, Theorem 1.4] for this simple generalisation of the von Neumann formula
for symmetric operators and its consequences. It is clear that dimDλ ≤ 2, and that
dimDλ = dimDλ, since u ∈ Dλ if and only if u ∈ Dλ. Thus deficiency indices are
always equal, and there are always self-adjoint extensions of T0, which will at the
same time be restrictions of T1, and therefore realisations of (1.3). It is of course of
interest to have criteria in terms of the coefficients q and w for different values of the
deficiency indices dimDλ. In surprising contrast to the right-definite case, we have
the following simple and explicit criteria.
Theorem 2.5. Suppose Imλ 6= 0 and let W be an anti-derivative of w. Then
dimDλ = 2 if b <∞ and q +W 2 ∈ L1[0, b). Otherwise dimDλ = 1 for Imλ 6= 0.
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The theorem is a special case of [2, Theorem 2.3]. See also [5]. In the right-definite
case a simple variation of constants argument shows that if dimDλ = 2 for one real
or non-real value of λ, then this holds for all λ ∈ C. A similar argument shows that
this remains true in the left-definite case, with the exception that it is possible that
dimD0 = 2 even if dimDλ < 2 for all λ 6= 0. This is to be expected, since D0 does
not depend on the choice of w. We characterise dimD0 completely in the following
theorem, which also brings out the significance of the space D0. We use the expression
finite function in H1 to denote a function which vanishes near b.
Theorem 2.6.

1. The set D0 is the orthogonal complement in H1 of L0∩H1 and has dimension
1 or 2.

2. dimD0 = 2 if and only if b <∞ and q ∈ L1[0, b).
3. If b <∞ and q ∈ L1[0, b), then v and v′ have finite limits at b for all v ∈ D0,

and these limits uniquely determine v.
4. If b < ∞ and q ∈ L1[0, b), then every u ∈ H1 has a limit at b which is a

bounded linear form on H1.
5. If dimD0 = 1 and D0 3 v 6≡ 0, then v(0)v′(0) < 0 and u(x)v′(x) → 0 as

x→ b for any u ∈ H1.
6. Finite functions are dense in H1 if and only if dimD0 = 1.

Most of this is also a special case of the results of [2] respectively [5], but we give
a simple proof, an elaboration of which can also prove Theorem 2.5.

Proof. We have u ∈ D0 precisely if (u, 0) ∈ T1, which holds precisely if 〈u, v〉 =
〈u, v〉 − 〈0, G0(wv)〉 = 0 for all v ∈ L0 ∩ H1, proving the first claim. Since there are
elements v ∈ H1 with v(0) 6= 0, and since u(0) = 0 for every u ∈ L0 ∩ H1 it follows
from (2.1) for x = 0 that dimD0 ≥ 1 and we have proved (1).

If b is finite and q integrable standard existence and uniqueness theorems show
that all solutions of −v′′ + qv = 0 are continuously differentiable with absolutely
continuous derivative in [0, b], and thus in H1, and that they are uniquely determined
by the values of v and v′ at b. In this case the proof of Lemma 2.1 clearly also works
for a = b, so we have proved (3), (4) and one direction of (2).

Now let u ∈ H1 and v ∈ D0. Integration by parts gives∫ x

0

(u′v′ + quv) + u(0)v′(0) = u(x)v′(x). (2.4)

Thus u(x)v′(x) has a limit at b. If this is not 0, then (u(x)v′(x))−1 is bounded close
to b. Therefore u′/u = u′v′/(uv′) is integrable near b, so that u has a non-zero limit
at b. Since q|u|2 is integrable it follows that q ∈ L1(0, b). Similarly, v′′/v′ = qv/v′ =
qvu/(v′u) is integrable near b, so v′ has a non-zero limit at b. Since |v′|2 is integrable
it follows that b is finite.

Now, setting u = v 6≡ 0 in (2.4) the integral is increasing, ≥ 0 and not constant,
so if v(0)v′(0) ≥ 0, then v(x)v′(x) can not tend to 0 at b. However, if dimD0 = 2
we may choose v ∈ D0 with v′(0) = 0, so it follows that q ∈ L1(0, b) and b finite,
completing the proof of (2).

On the other hand, if dimD0 = 1 then u(x)v′(x) must tend to zero for any u ∈ H1.
In particular, for u = v one therefore has v(0)v′(0) < 0 for any non-zero v ∈ D0 which
proves (5).

Finally, if u ∈ H1 is finite and v ∈ D0 integration by parts shows that 〈u, v〉 =
−u(0)v′(0), so the orthogonal complement of the finite functions consists of those
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v ∈ D0 for which v′(0) = 0. According to (5) this implies v = 0 if dimD0 = 1 and
the proof is complete.

It is now possible to give a detailed description of the kernel g0.
Proposition 2.7. The kernel g0(x, y) is real-valued and symmetric in x, y. As a
function of y it satisfies (1.3) with λ = 0 for y 6= x, and there are real-valued functions
ψ0 and ϕ0 which solve (1.3) with λ = 0, such that if u ∈ H1, then

1. ψ0 ∈ H1, ψ′0(0) = 1 and ψ′0(x)u(x)→ 0 as x→ b,
2. ϕ0(0) = −1, ϕ′0(0) = 0,
3. g0(x, y) = ϕ0(min(x, y))ψ0(max(x, y)).

Proof. The existence of the solution ϕ0 is not in question, and if a solution with the
properties of ψ0 exists, it is easy to verify that the kernel ϕ0(min(x, y))ψ0(max(x, y))
has the properties required of g0(x, y).

The existence of ψ0 follows from Theorem 2.6. Indeed, if dimD0 = 2, the element
v ∈ D0 with v(b) = 1, v′(b) = 0 is real-valued and must have v(0)v′(0) < 0 by (2.4),
so v′(0) 6= 0, and an appropriate multiple will have the properties required of ψ0.

On the other hand, if dimD0 = 1, any non-zero v ∈ D0 satisfies v(0)v′(0) < 0
so v′(0) 6= 0, and an appropriate multiple will satisfy the requirements for ψ0. Note
that this solution is real-valued, since its real and imaginary parts also are in D0, and
are thus proportional, and the initial condition guarantees that the imaginary part
vanishes.

Now let T be a self-adjoint restriction of T1 and assume that (u, f) and (v, g) ∈ T .
Integrating by parts we then obtain∫ x

0

(u′g′ + qug)−
∫ x

0

(f ′v′ + qfv) = (u′g − fv′)
∣∣x
0
. (2.5)

As x → b this vanishes, since the left hand side tends to 〈u, g〉 − 〈f, v〉. Thus the
condition for symmetry is that

(u′g − fv′)
∣∣b
0

= 0.

Comparing this with (u′v − uv′)
∣∣b
0

= 0, which is the similar condition in the right-
definite case, we see that only exceptionally would self-adjoint boundary conditions
in the left-definite case also be self-adjoint boundary conditions in the right-definite
case.

Separated boundary conditions are those that make u′g − fv′ vanish at each
end-point separately, and are thus at 0 of the form

f(0) cosα+ u′(0) sinα = 0, (2.6)

for some α ∈ [0, π). Again comparing with the right-definite case, where the condition
is u(0) cosα + u′(0) sinα = 0, the conditions coincide only in the case α = π/2, the
Neumann boundary condition. However, for eigenfunctions, where f = λu, it is clear
that also α = 0, the Dirichlet boundary condition, give the same spectra outside of
λ = 0.

We shall not need a detailed description of self-adjoint boundary conditions at a
singular endpoint. However, one may always impose the condition (2.6) at 0. It is
easy to see that the corresponding restriction of T1 has a symmetric adjoint, which
is a strict extension of T0. If the deficiency indices of T0 equal 1, this is sufficient
to obtain a self-adjoint restriction T of T1, and all selfadjoint realisations are of this
form. Otherwise, a condition needs to be imposed also at b. From (2.5) it follows
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immediately that every (u, f) ∈ T1 satisfying such a condition at b must satisfy
Im(u′(x)f(x))→ 0 as x→ b.

Assuming now that we have a self-adjoint relation T , the spectral theorem looks
as follows ([1, Theorem 1.15]). Consider the set H∞ = {u ∈ H1 | (0, u) ∈ T}. Then
H∞ is a subspace of H1, and setting H = H1 	 H∞ the domain DT of T (i.e., the
set of first components of T ) is a dense subset of H, and T ∩ H ⊕ H is the graph
of a self-adjoint operator in H. We will denote this operator by T as well, and may
now apply the usual spectral theorem to T . If the resolution of the identity for the
operator T is {Et}t∈R, we extend the domain of the projection Et to all of H1 by
setting EtH∞ = 0. Clearly one may view H∞ as an eigenspace for the relation T
belonging to the eigenvalue ∞, so adjoining the orthogonal projection onto H∞ to
{Et}t∈R gives a resolution of the identity in H1 for the relation T . In the present case
one may give a rather complete description of H∞.
Proposition 2.8. The space H∞ consists of those elements g ∈ H1 for which wg = 0
a.e., and for which (0, g) satisfies the boundary conditions that define T . In particular,
if wg = 0 a.e. and g ∈ L0 ∩H1, then g ∈ H∞.

Proof. Now g ∈ H∞ means that (0, g) ∈ T , which therefore satisfies the boundary
conditions defining T . In particular, 0 = 〈g,G0(wf)〉 − 〈0, f〉 = 〈g,G0(wf)〉 =

∫
gfw

for any f ∈ L0 ∩H1. It follows, as in the proof of Proposition 2.3, that wg = 0 a.e.
Conversely, if (0, g) satisfies the boundary conditions and gw = 0 a.e., then if

(u, f) ∈ T an integration by parts gives

〈u, g〉 − 〈f, 0〉 = lim
x→b

(u′g − f · 0)
∣∣x
0

= 0,

i.e., (0, g) ∈ T , so the proof is complete.
We remark that if an endpoint is regular, then the boundary condition implied by

u ∈ H∞ are in most cases the vanishing of u in that endpoint. For separated boundary
conditions an exception occurs when the boundary condition is of Neumann type, (i.e.,
when α = π/2 in (2.6)). If we have Neumann conditions at both ends, or at one end
when deficiency indices equal 1, there are no boundary conditions for elements of H∞.

We will base our derivation of the expansion theorem for the operator T on a
detailed description of the resolvent Rλ = (T − λ)−1. Thus Rλ is defined on H, but
we extend its domain to H1 by setting RλH∞ = 0. The range of Rλ is of course
DT , which is a dense set in H. Using the kernel g0 for the evaluation operator on
H1 introduced in the proof of Proposition 2.3, we have Rλu(x) = 〈Rλu, g0(x, ·)〉 =
〈u,Rλg0(x, ·)〉, since the adjoint of Rλ is Rλ. Thus we may view G(x, ·, λ) = Rλg0(x, ·)
as Green’s function for our operator; note, however, that G is not the kernel of a
standard integral operator. It will turn out to be convenient to introduce the kernel
g(x, y, λ) = G(x, y, λ) + g0(x, y)/λ, so that we obtain

Rλu(x) = 〈u, g(x, ·, λ)〉 − u(x)/λ. (2.7)

Note that G(x, ·, λ) ∈ H but this is not true of g(x, ·, λ) unless H∞ = {0}. We shall
need a precise description of g(x, y, λ). To do this we must introduce solutions of (1.3)
satisfying initial conditions at 0, so let ϕ(x, λ), θ(x, λ) be solutions of (1.3) for λ 6= 0
satisfying {

λϕ(0, λ) = − sinα
ϕ′(0, λ) = cosα

,

{
λθ(0, λ) = cosα
θ′(0, λ) = sinα

. (2.8)

This means that ϕ satisfies the boundary condition (2.6) and θ another similar bound-
ary condition at 0. We have the following theorem.
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Theorem 2.9. Suppose T is a selfadjoint realisation of (1.3) given by (2.6) and, if
needed, an appropriate condition at b. Then there exists a function m(λ) defined for
Imλ 6= 0, the Titchmarsh-Weyl m-function for T , depending only on λ and such that
ψ(x, λ) = θ(x, λ) +m(λ)ϕ(x, λ), called the Weyl solution for T , is in H1 and satisfies
the boundary condition at b, if any. Furthermore

g(x, y, λ) = ϕ(min(x, y), λ)ψ(max(x, y), λ).

Proof. For non-real λ neither ϕ nor θ can be in H1 and satisfy the boundary
condition at b, since that would make λ a non-real eigenvalue for a selfadjoint problem.
Thus there is a solution ψ(x, λ) = θ(x, λ) + m(λ)ϕ(x, λ) in H1 which also satisfies
the boundary condition at b, since if dimD(λ) = 2 one linear, homogeneous condition
still leaves a one-dimensional space, whereas if dimD(λ) = 1 no boundary condition
is imposed at b.

Define, for fixed x and λ /∈ R the function

F (y) = ϕ(min(x, y), λ)ψ(max(x, y), λ)− λ−1g0(x, y).

Since ψ(·, λ) and ψ0 are in H1 so is F . We claim that F ∈ DT . In fact, one easily
checks that F ′ is locally absolutely continuous and that F satisfies −F ′′ + qF =
λwF +wg0(x, ·). It is also easy to check that F satisfies the boundary condition (2.6).

Finally, for y > x the function F is a linear combination of ψ(·, λ) and ψ0. The
former satisfies the boundary condition at b by construction, and ψ0 satisfies the
boundary condition at b by Theorem 2.6(5), since if (u, f) ∈ T , then ψ′0f − 0u′ =
ψ′0f → 0 at b. All this means that F = Rλg0(x, ·) = Rλg0(x, ·) = G(x, ·, λ) so that
g(x, y, λ) is as claimed.
Theorem 2.10. The function m is analytic outside R, it maps the upper half plane
into itself, and satisfies m(λ) = m(λ).

Proof. Since Rλ is analytic outside R in the strong operator topology Rλu(x) is,
by (2.1), pointwise analytic. It follows that g(x, ·, λ) is weakly analytic for each x, and
thus, again by (2.1), g(x, y, λ) is analytic outside R for each x and y. Since ϕ(x, λ)
and θ(x, λ) also are analytic and since an integration by parts shows that they are
non-zero for x > 0 and λ /∈ R, it follows that m(λ) is analytic in C \ R.

If (v, g) defines a boundary condition at b, then so does either its real part or
its imaginary part, which is easily seen. Therefore, since ψ(x, λ) satisfies (1.3) and
the boundary condition at b, so does ψ(x, λ), and is thus a multiple of ψ(x, λ). Now
ϕ(x, λ) = ϕ(x, λ), θ(x, λ) = θ(x, λ) and ψ(x, λ) = θ(x, λ) + m(λ)ϕ(x, λ) so it follows
that m(λ) = m(λ).

Integrating by parts we have

Imλ

∫ x

0

(|ψ′(·, λ)|2 + q|ψ(·, λ|2) = Im(ψ′(·, λ)λψ(·, λ))
∣∣x
0
.

Since ψ satisfies a boundary condition at b, the integrated term vanishes as x → b.
At 0 the integrated term evaluates to − Imm(λ), so we obtain

‖ψ(·, λ)‖2 = Imm(λ)/ Imλ. (2.9)

Thus m maps the upper and lower half-planes into themselves.
A function with the properties of m is a so called Nevanlinna or Herglotz function,

and has a unique representation

m(λ) = A+Bλ+
∫

R

( 1
t− λ

− t

t2 + 1

)
dρ, (2.10)
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where A ∈ R, B ≥ 0, and dρ is a positive measure with
∫

R
dρ(t)
1+t2 <∞. We will call the

measure dρ the spectral measure for T , for reasons that will become clear presently.
We finally note the following proposition.

Proposition 2.11. Unless α = π/2 and 0 /∈ suppw the functions ψ0 and ψ(·, λ) are
in H.

Proof. Suppose g ∈ H∞. An integration by parts then gives

〈g, ψ〉 = −g(0)ψ′(0),

where ψ = ψ0 or ψ(·, λ). The boundary condition at 0 requires g(0) = 0 unless
α = π/2, and even then g(0) = 0 unless w = 0 in a neighbourhood of 0.

3. The Fourier transform. We shall call functions that vanish near b finite
and from now on make the following simplifying assumption.
Assumption 3.1. Assume that finite functions are dense in H1.

According to Theorem 2.6 this means exactly that either q /∈ L1(0, b) or else b =
∞. Note that, according to Theorem 2.5, the assumption implies that the deficiency
indices of T1 equal 1.

The spectral measure introduced in the previous section gives rise to a Hilbert
space L2

ρ with scalar product 〈û, v̂〉ρ =
∫∞
−∞ ûv̂ dρ. We shall define a generalised

Fourier transform F : H1 → L2
ρ with the following properties.

Theorem 3.2.
1. The map u 7→

∫ b
0

(u′ϕ′(·, t) + quϕ(·, t)), defined for finite u ∈ H1, extends by
continuity to a map F : H1 → L2

ρ called the generalised Fourier transform.
The image of u ∈ H1 is denoted by F(u) or û. We write this as û(t) =
〈u, ϕ(·, t)〉 although the integral in general does not converge pointwise.

2. The mapping F : H1 → L2
ρ has kernel H∞ and is unitary between H and L2

ρ

so that Parseval’s formula 〈u, v〉 = 〈û, v̂〉ρ holds if at least one of u and v is
in H.

3. If u ∈ DT , then F(Tu)(t) = tû(t). Conversely, if û and tû(t) are in L2
ρ, then

F−1(û) ∈ DT .
4. Suppose α 6= 0 in (2.6). Then ϕ(x, ·) ∈ L2

ρ for each x and
∫∞
−∞ ûϕ(x, ·) dρ =

〈û, ϕ(x, ·)〉ρ converges in H, and hence locally uniformly in x, for û ∈ L2
ρ.

This is the adjoint of F : H1 → L2
ρ and thus the inverse of F restricted to H.

If M is a Borel set in R, then

EMu(x) =
∫
M

ûϕ(x, ·) dρ. (3.1)

If α = 0 the same is true, except that we must replace ϕ(·, t) for t = 0 by
the function ψ0 of Proposition 2.7. Note that ψ0 is the eigenfunction for the
eigenvalue 0 in this case.

We first consider the Fourier transform for finite functions u ∈ H1, for every
λ ∈ C setting

û(λ) = 〈u, ϕ(·, λ)〉.

It is clear that û is an entire function, since integration by parts shows that

û(λ) = 〈u, ϕ(·, λ)〉 =
∫ b

0

uλϕ(·, λ)w − u(0) cosα,

and by (2.8) λϕ(x, λ) is an entire function of λ, locally uniformly in x.
10



Lemma 3.3. For finite u and v ∈ H1 we have û and v̂ ∈ L2
ρ. If E∆ is the spectral

projection for T associated with an interval ∆, then 〈E∆u, v〉 =
∫

∆
ûv̂ dρ.

Proof. We have 〈Rλu, v〉 = û(λ)v̂(λ)m(λ) + g(λ), where g is entire, as is easily
verified by direct calculation. Integrating around a rectangle γ with corners at c ± i
and d± i we therefore have

∫
γ
〈Rλu, v〉 dλ =

∫
γ
û(λ)v̂(λ)m(λ) dλ whenever one of the

integrals exists. By the spectral theorem the first integral equals
∫
γ

∫
R
d〈Etu,v〉
t−λ dλ,

so if the integral is absolutely convergent changing the order of integration gives
−2πi〈E(c,d)u, v〉 if c and d are points of continuity for 〈Etu, v〉.

Similarly, using the Nevanlinna representation (2.10), the other integral equals
−2πi

∫ d
c
û(t)v̂(t) dρ(t) if it is absolutely convergent and c, d are points of continuity

for ρ.
The absolute convergence of the double integrals is ensured if 〈Etu, v〉 respectively

ρ are differentiable at c and d as is easily seen. For more details of the identical
calculation carried out for the right-definite case, see [6, Lemmas 14.3, 14.4].

As functions of bounded variation 〈Etu, v〉 and ρ are both differentiable a.e., so
the second claim of the lemma is true if the endpoints of ∆ belong to this dense set
of points, and so in general by continuity. In particular, letting c → −∞, d → ∞
through such points it follows that 〈ERu, u〉 = 〈û, û〉ρ, so that û, v̂ ∈ L2

ρ.
Since finite functions are dense in H1, and since ER has kernel H∞, we now obtain

Theorem 3.2 (1) by continuity and also (2) except for the surjectivity of F . To prove
this we need the following lemmas.
Lemma 3.4. The transform of Rλu is û(t)/(t− λ).

Proof. According to the spectral theorem we have 〈Rλu, v〉 =
∫

R
d〈Etu,v〉
t−λ and by

Lemma 3.3 we have 〈Etu, v〉 =
∫ t
−∞ ûv̂ dρ so that

〈Rλu, v〉 =
∫

R

û(t)
t− λ

v̂(t) dρ(t).

We also have Rλ −Rλ = (λ− λ)RλRλ and 〈Rλu,Rλu〉 = 〈RλRλu, u〉 so

〈Rλu,Rλu〉 =
1

λ− λ
(〈Rλu, u〉 − 〈Rλu, u〉) =

∥∥ û(t)
t− λ

∥∥2

ρ
.

Expanding ‖ û(t)
t−λ − F(Rλu)‖2ρ and using Parseval’s formula and the above yields 0,

thus proving the lemma.
Lemma 3.5. The operator T has eigenvalue 0 if and only if α = 0, in which case the
eigenfunction is ψ0, and for any u ∈ H1 we then have û(0) = −u(0).

Furthermore, the measure dρ has mass at 0 ( {0} is not a nullset with respect to
dρ) precisely if α = 0. In this case ψ̂0 = χ{0}/ρ{0}, where χ{0} is the characteristic
function of the singleton {0} and ρ{0} the spectral measure of this set.

Proof. According to Theorem 2.6 the only non-trivial solutions of (1.3) for λ = 0
in H1 are multiples of a solution u for which u′(0)u(0) < 0, so that u′(0) 6= 0. These
solutions satisfy the boundary condition (2.6) precisely if α = 0, which proves the first
claim. If u is any finite function integrating by parts gives û(0) = 〈u, ϕ(·, 0)〉 = −u(0).
This holds in general by continuity, u(0) being a bounded linear form on H1 by (2.1),
and û(0) on L2

ρ since dρ has mass at 0, as we shall see presently.
Now u ∈ DT and Tu = 0 precisely if u + λRλu = 0, and the Fourier transform

of u + λRλu is (1 + λ
t−λ )û(t) = tû(t)

t−λ . If this is 0, then û = 0 a.e. with respect to dρ
11



except possibly at t = 0. Thus, if α = 0, then {0} can not be a nullset with respect to
dρ. It also follows that ψ̂0 is a multiple of the characteristic function of the set {0}.
On the other hand, since dimDλ = 1, Weyl solutions for different α are proportional
so it immediately follows that

m0(λ) =
ψ′(0, λ)
λψ(0, λ)

=
sinα+mα(λ) cosα
cosα−mα(λ) sinα

, (3.2)

where mα denotes the m-function associated with the boundary condition parameter
α. Now m0(iν) → ∞ as ν ↓ 0, as a consequence of the mass at 0, so that mα(iν) →
cotα for α 6= 0. For α 6= 0 the spectral measure therefore has no mass at 0.

It only remains to prove the formula for ψ̂0. By Parseval’s formula (note that ψ0 ∈
H by Proposition 2.11) we have ψ̂0(0) = −ψ0(0) = ‖ψ0‖2 = ‖ψ̂0‖2ρ = |ψ̂0(0)|2ρ{0}.
Hence −ψ0(0) = ψ̂0(0) = 1/ρ{0}.

It is now easy to prove that F is surjective.
Lemma 3.6. The Fourier transform H → L2

ρ is surjective.
Proof. Suppose that û ∈ L2

ρ is orthogonal to all Fourier transforms v̂. Since
v̂(t)/(t − λ) is also a transform, for any non-real λ, we have

∫
1
t−λ û(t)v̂(t) dρ(t) = 0

for all non-real λ. Thus the Stieltjes transform of the measure ûv̂ dρ is 0, so by the
uniqueness of the Stieltjes transform it follows that this measure is the zero measure.

Now, if v̂ is the transform of a finite function in H1, then it is an entire function,
so to prove that t is outside the support of û dρ it is enough to show that there is
such a v̂ for which v̂(t) 6= 0. If t 6= 0 and v̂(t) = 0 for all compactly supported
v ∈ H1, then as in the proof of Proposition 2.4 it follows that ϕ(·, t) satisfies (1.3)
both for λ = 0 and λ = t, so that ϕ(·, t)w = 0 a.e., which is not possible since it
implies that ϕ(·, t) = 0 in a set of positive Lebesgue measure. It therefore follows that
û dρ vanishes outside 0. But according to Lemma 3.5 this proves that the measure is
zero, unless α = 0. However, also in this case û = 0 since otherwise û would be the
transform of an eigenfunction.

We next turn to Theorem 3.2 (3).
Lemma 3.7. If u ∈ DT then F(Tu)(t) = tû(t). Conversely, if û and tû(t) are in L2

ρ,
then F−1(û) ∈ DT .

Proof. We have u ∈ DT if and only if for some v ∈ H1 we have u = Rλ(v − λu),
i.e., if and only if û(t) = (v̂(t)− λû(t))/(t− λ) or tû(t) = v̂(t) for some v̂ ∈ L2

ρ.
We obtain the following corollary which will be useful later on.

Corollary 3.8. If u ∈ DT , then û is integrable with respect to dρ.
Proof. The functions tû(t), û and 1/(t − i) are all in L2

ρ, so that û(t) = (tû(t) −
iû(t))/(t− i) is integrable with respect to dρ.

To finish the proof of Theorem 3.2 it only remains to consider the inverse trans-
form.
Lemma 3.9. If α 6= 0 the integral 〈û, ϕ(x, ·)〉ρ converges in H and locally uniformly
for every û ∈ L2

ρ. If û = F(u) for some u ∈ H1, then the integral is the orthogonal
projection of u onto H.

If α = 0 the same statement is true if one replaces ϕ(·, 0) by ψ0 in the integral.
Remark 3.10. A simple integration by parts shows that every finite function is or-
thogonal to ϕ0. Now suppose α = 0 and let θ0 = ϕ(·, 0) so that θ0 solves (1.3) for
λ = 0 with initial data θ0(0) = 0, θ′0(0) = 1. Then, when calculating the Fourier
transform at 0 we may replace ϕ(·, 0) by any function θ0 +Aϕ0 for A constant, with
no change to the Fourier transform.
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In particular we may choose A = −ψ0(0) = 1/ρ{0}, according to Lemma 3.5, so
that θ0 +Aϕ0 = ψ0. This might seem a more natural choice of kernel for the Fourier
transform, in view of the fact that it must be used for the inverse transform, and that
ψ0 is an eigenfunction to the eigenvalue 0, but would thus not actually change the
Fourier transform.

Proof. [Proof of Lemma 3.9] We have u(x) = 〈u, g0(x, ·)〉 = 〈û, e(x, ·)〉ρ for u ∈ H
where e(x, t) = F(g0(x, ·))(t). If u ∈ H1 we instead get the projection of u onto
H, so that the integral operator û 7→ 〈û, e(x, ·)〉ρ is the adjoint of F . We must
prove that e(x, t) = ϕ(x, t), so suppose û has compact support and consider ũ(x) =
〈û, ϕ(x, ·)〉ρ which satisfies the equation −ũ′′+ qũ = w(x)〈û, tϕ(x, ·)〉ρ, differentiating
under the integral sign. Since û has compact support u ∈ DT , so that −u′′ + qu =
w(x)〈tû(t), e(x, t)〉ρ. Thus u1 = u − ũ satisfies −u′′1 + qu1 = w(x)〈tû(t), e(x, t) −
ϕ(x, t)〉ρ.

Now, if v is finite, then

〈ũ, v〉 =
∫∫

û(t)(ϕ′(·, t)v′ + qϕ(·, t)v) dρ(t) = 〈û, v̂〉ρ = 〈u, v〉,

since the double integral is absolutely convergent. Hence u1 is orthogonal to all finite
v so it satisfies −u′′1 + qu1 = 0. It follows that w(x)〈tû(t), e(x, t) − ϕ(x, t)〉ρ = 0
a.e., so that 〈tû(t), e(x, t) − ϕ(x, t)〉ρ = 0 on a set of positive measure. But this
function also satisfies (1.3) for λ = 0, as is seen by replacing û by tû(t) in the previous
calculations. It follows that t(e(x, t) − ϕ(x, t)) = 0 for a.a. t with respect to dρ, so
that e(x, t) = ϕ(x, t) except possibly if t = 0 and α = 0.

However, 0 is an eigenvalue for α = 0 and the eigenfunction ψ0 has transform
χ{0}/ρ{0} according to Lemma 3.5, so we must choose e(x, 0) = ψ0(x).

The proof of Theorem 3.2 is now complete if we note that from 〈Etu, v〉 =
∫ t
−∞ ûv̂

follows that the transform of Etu is û multiplied by the characteristic function of
(−∞, t]. The formula EMu(x) =

∫
M
ûϕ(x, ·) dρ therefore follows from the inversion

formula.
In Lemma 3.5 we calculated the Fourier transform of ψ0 in the case α = 0. We

shall need to find a few more Fourier transforms.
Lemma 3.11. If λ /∈ R the Fourier transform of ψ(·, λ) is ψ̂(t, λ) = 1/(t − λ).
Furthermore, the Fourier transform of ψ0 equals ψ̂0(t) = sinα/t for α 6= 0 and 1/ρ{0}
times the characteristic function of the set {0} for α = 0.

Proof. We have already calculated ψ̂0 for α = 0 in Lemma 3.5. If α 6= 0 we note
that ψ0(x) = −g0(0, x) so its Fourier transform is −e(0, t) = −ϕ(0, t) = sinα/t.

According to (2.7), Theorem 2.9 and Lemma 3.9, for u ∈ H we have

− sinα〈û, ψ̂(·, λ)〉ρ = λϕ(0, λ)〈u, ψ(·, λ)〉

= λRλu(0) + u(0) = 〈( λ

t− λ
+ 1)û(t), e(0, t)〉ρ

= 〈û(t),
t e(0, t)
t− λ

〉ρ = − sinα〈û(t),
1

t− λ
〉ρ

so that we have ψ̂(t, λ) = 1/(t − λ) if α 6= 0. If α = 0 we assume û has compact
support so that we may differentiate u(x) = 〈û, e(x, ·)〉ρ under the integral sign to
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obtain

〈û, ψ̂(·, λ)〉ρ = ϕ′(0, λ)〈u, ψ(·, λ)〉 = (Rλu)′(0)

= 〈 û(t)
t− λ

, e′x(0, t)〉ρ = 〈û(t),
e′x(0, t)
t− λ

〉ρ = 〈û(t),
1

t− λ
〉ρ.

Thus, also in this case we obtain ψ̂(t, λ) = 1/(t− λ).
Corollary 3.12. Suppose u ∈ H. Then 〈u, ψ(·, tλ)〉 → 0 as t→∞, locally uniformly
for λ /∈ R. By (2.1) this means that ψ(x, tλ) → 0 as t → ∞, locally uniformly in x
and λ /∈ R.

In fact, unless 0 /∈ suppw and α = π/2 we have ψ(·, tλ) → 0 in H, locally
uniformly in λ /∈ R as t→∞.

Proof. We have 〈u, ψ(·, λ)〉 = 〈û, ψ̂(·, λ〉ρ. With the extra assumptions Proposition
2.11 shows that ψ(·, λ) ∈ H so that ‖ψ(·, λ)‖ = ‖ψ̂(·, λ)‖ρ.

It follows immediately by dominated convergence from Lemma 3.11 that the
claims are true.
Remark 3.13. All of the theory of Sections 2 and 3 extends with no essential change
to the case when w is just a measure, or even an element of H−1

loc (0, b).

4. Uniqueness of the inverse problem. We shall here deal with the following
question: To what extent is the operator T , i.e., the interval [0, b), the coefficients q
and w, and the boundary condition parameter α determined by the spectral measure
dρ? To answer this question we introduce the concept of a Liouville transform as
a map v 7→ u given by u(x) = f(x)v(g(x)), where f and g are fixed functions. We
suppose that g is strictly increasing and continuous, and that f is never 0. It is then
easy to see that the inverse of a Liouville transform is also a Liouville transform, as
is the composition of two Liouville transforms.

Now consider another relation T̆ of the same type as T , with Hilbert space H̆1,
interval [0, b̆), boundary condition parameter ᾰ, and coefficients q̆ and w̆. We will
assume, as we do for H1, that finite functions are dense in H̆1.
Theorem 4.1. Suppose that α = ᾰ, or 0 < α = π/2 − ᾰ < π/2, or π/2 < α =
3π/2 − ᾰ < π and that there is a continuously differentiable bijection g from [0, b)
to [0, b̆) with the following properties: g, g′, and g′′ are locally absolutely continuous,
g′ > 0, g(0) = g′′(0) = 0, g′(0) = (sin ᾰ/ sinα)2 if α 6= 0 6= ᾰ, g′(0) = 1 if α = ᾰ = 0,
and the coefficients of T and T̆ satisfy q̆(g(x)) = (−f(x)f ′′(x) + q(x)f(x)2)/g′(x) and
w̆(g(x)) = w(x)/g′(x)2 where f(x) = g′(x)−1/2.

Then the spectral measures associated with T and T̆ are identical.
Proof. The functions g and f give rise to Liouville transform L from functions

defined on [0, b̆) to functions defined on [0, b), in particular to a transform from H̆1

to H1. We will first show that this latter transform is unitary. To that end assume
that ŭ and v̆ are in H̆1 and that at least one of them is a finite function. Obviously
Lŭ and Lv̆ are locally absolutely continuous. Furthermore we obtain after a partial
integration

〈Lŭ,Lv̆〉H1 =
∫ b

0

(g′(ŭ′v̆′) ◦ g + (−ff ′′ + qf2)(ŭv̆) ◦ g)

=
∫ b̆

0

(ŭ′v̆′ + q̆ŭv̆) = 〈ŭ, v̆〉H̆1
.
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This proves firstly that Lŭ ∈ H1 whenever ŭ is a finite function in H̆1 and secondly
that L is an isometry from the finite functions in H̆1 onto the finite functions in H1.
As an isometry L can be extended to a unitary operator from H̆1 to H1.

Next, a straightforward computation, using that 2f ′g′ + fg′′ = 0, shows that
−u′′ + qu = wr if u = Lŭ, r = Lr̆, and −ŭ′′ + q̆ŭ = w̆r̆. In particular, (ŭ, r̆) ∈ T̆
implies that (Lŭ,Lr̆) ∈ T and Lψ̆(·, λ) must be a multiple of ψ(·, λ).

Also, since ϕ̆(·, λ) satisfies the differential equation −ŭ′′ + q̆ŭ = λw̆ŭ the func-
tion Lϕ̆(·, λ) satisfies −u′′ + qu = λwu. Our assumptions on α, ᾰ, g′(0), and g′′(0)
imply that f(0) = sinα/ sin ᾰ = cos ᾰ/ cosα and that f ′(0) = 0. Therefore we find
λ(Lϕ̆(·, λ))(0) = λf(0)ϕ̆(0, λ) = − sinα and (Lϕ̆(·, λ))′(0) = ϕ̆′(0, λ)/f(0) = cosα
which shows that ϕ(·, λ) = Lϕ̆(·, λ). The situation is a little more complicated for the
relationship between θ and θ̆ where one finds that

Lθ̆(·, λ) = θ(·, λ) + (tan ᾰ− tanα)ϕ(·, λ).

By the linearity of L we have

Lψ̆(·, λ) = θ(·, λ) + (tan ᾰ− tanα+ m̆)ϕ(·, λ) = ψ(·, λ).

This proves that m̆+ tan ᾰ = m+ tanα and hence that ρ̆ = ρ.
In the rest of this section we will make the following additional assumption about

(1.3).
Assumption 4.2. The coefficients w and w̆ satisfy suppw = [0, b), supp w̆ = [0, b̆).

Note that this does not mean that w 6= 0 a.e.; w could vanish on a nowhere dense
set of strictly positive measure. However, it does mean that H∞ = {0}, H = H1.
Remark 4.3. One may also allow w to be an arbitrary measure. However, then in
the definition of the function h below, and in the statement of Lemma 5.1, w should
be replaced by the density of the absolutely continuous part of the measure w, and
Assumption 4.2 will have to be made on this density. If this is done, the results in the
rest of the paper are still true, mutatis mutandis, with essentially the same proofs.

Now define the functions h(x) =
∫ x

0

√
|w| on [0, b) and h̆(x) =

∫ x
0

√
|w̆| on [0, b̆)

respectively. By Assumption 4.2 these are strictly increasing, locally absolutely con-
tinuous functions.

Our main theorem is the following.
Theorem 4.4. Suppose that T and T̆ have the same spectral measure dρ. Then there
is a unitary Liouville transform U taking T̆ into T , in the sense that H 3 u 7→ Uu ∈ H̆
through u(x) = f(x)Uu(g(x)) and UT = T̆U . Here g(x) = h̆−1 ◦ h(x) and f(x) =
(g′(x))−1/2.

The functions f and g are continuously differentiable, f is strictly positive and f ′

is locally absolutely continuous with f ′(0) = 0. Also α = ᾰ, in which case f(0) = 1, or
else 0 < α = π/2−ᾰ < π/2 or π/2 < α = 3π/2−ᾰ < π, in which case f(0) = | tanα|.

The relations between the coefficients are w̆(g(x)) = w(x)/(g′(x))2 and q̆(g(x)) =
(−f ′′(x) + q(x)f(x))/(f(x)(g′(x))2).

It is clear from Theorem 4.1 that Theorem 4.4 is optimal in the sense that it is
not possible to deduce more about the relation between T and T̆ from the equality of
their spectral measures than is done in Theorem 4.4. Sufficient additional information,
however, will imply that T and T̆ are identical. We give two corollaries of this type.
Corollary 4.5. Suppose T and T̆ have the same spectral measure and that |w| = |w̆|
in [0,min(b, b̆)). Then T = T̆ , i.e., b = b̆, α = ᾰ, q = q̆ and w = w̆.

Proof. The assumptions together with Theorem 4.4 show that g(x) = x so that
b = b̆, and that f(x) = 1, so that T and T̆ are identical.
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Note that only the absolute value of w need be known, so that all information
about sign changes in w is encoded in the spectral measure. Also note that if |w| = |w̆|
only in [0, a) where 0 < a < min(b, b̆) we still have α = ᾰ and q = q̆, w = w̆ in [0, a).
Corollary 4.6. Suppose T and T̆ have the same spectral measure, that q = q̆ on
[0,min(b, b̆)) and that either b = b̆ or α = ᾰ. Then T = T̆ , i.e., b = b̆, α = ᾰ, q = q̆
and w = w̆.

We will postpone the proof and first prove Theorem 4.4. To do this we will use a
theorem of Paley-Wiener type. For its statement it will be convenient to introduce a
special class of entire functions.
Definition 4.7. Let A be the set of entire functions û of order ≤ 1/2 which satisfy

lim sup
t→∞

t−1 ln |û(t2λ)| ≤
∫ a

0

Re
√
−λw (4.1)

for some a ∈ (0, b) and all λ ∈ C \R. Here the branch of the square root is that with
a positive real part.
Theorem 4.8. Let û be the generalised Fourier transform of u ∈ H. Then û has at
most one entire continuation in A, and if sup suppu = a < b such a continuation is
given by

û(λ) =
∫ a

0

(u′ϕ′(·, λ) + quϕ(·, λ))

in which case (4.1) holds with equality for all λ ∈ C.
Conversely, if û has an entire continuation of order ≤ 1/2 satisfying (4.1) for λ

on at least two different rays from the origin, then suppu ⊂ [0, a].
We will postpone the proof of Theorem 4.8 to the next section and instead turn

to the proof of Theorem 4.4.
Lemma 4.9. Let g : [0, b)→ [0, b̆) be increasing and g(0) = 0. Suppose U : H1 → H̆1

is linear with the properties that (Uu)(0) = 0 if u(0) = 0, that suppUu ⊂ [0, g(x)] if
suppu ⊂ [0, x], and that suppUu ⊂ [g(x), b̆) if suppu ⊂ [x, b). Then there exists a
function f such that (Uu)(g(x)) = f(x)u(x) for all u ∈ H1.

Proof. Fix x ∈ [0, b). Suppose u, v ∈ H1 and that u(x) = v(x). We will first show
that (U(u− v)(g(x)) = 0. If x = 0 this is by assumption.

For x > 0 we define1 u− = χ[0,x](u−v) and u+ = χ[x,b)(u−v). These are elements
of H. Thus suppUu− ⊂ [0, g(x)] and suppUu+ ⊂ [g(x), b) so that the functions Uu±
vanish in g(x). Adding them gives U(u− v)(g(x)) = 0 as desired.

It follows that the value of Uu at g(x) only depends on the value of u at x. Thus,
for each fixed x ∈ [0, b), the map u(x) 7→ Uu(g(x)) is well-defined and linear on C, so
we may find f(x) so that Uu(g(x)) = f(x)u(x).

We will also need the following lemma.
Lemma 4.10. Put m(x, λ) = ψ′(x, λ)/(λψ(x, λ)). Then m(x, λ)→ 0 and λm(x, λ)→
∞ for every x ∈ [0, b) as λ→∞ along any non-real ray starting from the origin.

Proof. First note that m(x, λ) is the m-function for (1.3) on the interval [x, b),
with the Dirichlet boundary condition (α = 0) at x. The first claim is then an
immediate consequence of [3, Theorem 3.6].

To prove the second claim, first assume that q does not have compact support,
so that it does not vanish identically on [x, b). Now note that, according to (3.2),
m̃(λ) = −1/m(x, λ) is the m-function for the Neumann boundary condition (α = π/2)

1χI denotes the characteristic function of an interval I
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at x, so we need to show this to be o(|λ|). Now, in the Nevanlinna representation
(2.10) it is easy to see that the integral is always o(|λ|), so we simply need to prove
that B = 0 in the representation of m̃. Denote the corresponding Weyl solution by ψ̃
and the spectral measure by dρ̃. Using (2.9) and Lemma 3.11 we obtain

‖ψ̃(·, λ)‖2[x,b) =
Im m̃(λ)

Imλ
= B +

∫ ∞
−∞

dρ̃(t)
|t− λ|2

= B + ‖ ˆ̃
ψ(·, λ)‖2ρ̃.

However, by Proposition 2.11, Parseval’s formula is correct for ψ̃, so that B = 0 and
we are done in the case when q does not have compact support.

Now suppose q vanishes identically in [x, b). Consider an auxiliary equation for
which q does not have compact support, but which has the same coefficients as (1.3)
up to some point c, x < c < b. For this equation the above proof of the lemma is
valid. Moreover, let θ̃ and ϕ̃ denote functions analogous to θ and ϕ for α = 0, but
with initial data given in the point x. In view of (2.9) both the original m(x, λ) and
the corresponding function for the auxiliary equation are in the ‘Weyl disk’ defined
by ∫ c

x

|θ̃′ +mϕ̃′|2 ≤ Imm

Imλ
,

so their distance is bounded by the diameter of the disk, which is exponentially small
as λ becomes large (see [3, Theorem 6.3] for this result). Since m(x, λ) is a non-trivial
Nevanlinna function it can not tend to 0 faster than a multiple of 1/|λ| for large
|λ|, so that asymptotically m(x, λ) is the same as the corresponding function for the
auxiliary equation. Thus the lemma is actually valid in all cases.

Proof. [Proof of Theorem 4.4] Note first that by Lemma 3.5 we must have either
α = ᾰ = 0 or else α 6= 0 6= ᾰ.

Let H respectively H̆ denote the Hilbert spaces and F respectively F̆ the gener-
alised Fourier transforms associated with the two equations, and put U = F̆−1 ◦ F :
H → H̆, which is unitary since the target space is L2

ρ for both F and F̆ . By Lemma
3.11 we have Uψ0 = ψ̆0 if α = ᾰ, and if α 6= 0 6= ᾰ we have Uψ0 = sinα

sin ᾰ ψ̆0. Since
〈u, ψ0〉 = −u(0) it follows that

u(0) = −〈u, ψ0〉 = −〈Uu,Uψ0〉 =
sinα
sin ᾰ

Uu(0), (4.2)

where the quotient of the sines is to be read as 1 for α = ᾰ = 0. In particular,
Uu(0) = 0 if and only if u(0) = 0.

Now, applying Theorem 4.8 for the rays generated by ±i, it is clear that if ă ∈
(0, b̆) and u ∈ H, then sup suppu = a if sup suppUu = ă, where h(a) = h̆(ă), provided
there is such an a ∈ (0, b)2 (see [4, p.29] for more details). This will certainly be the
case if ă is sufficiently close to 0. Suppose for some ă ∈ (0, b̆) we have h(b) ≤ h̆(ă).
Then, since compactly supported functions are dense in H, the range of U would be
orthogonal to all elements of H̆ with supports in (ă, b̆), contradicting the fact that U
is unitary.

A similar reasoning applied to U−1 shows that the mapping

g : [0, b) 3 a 7→ ă ∈ [0, b̆)

2Note that Re
√
±iw =

√
|w|/2
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is bijective, and that sup suppUu = ă if sup suppu = a. It follows that sup suppu = a
if and only if sup suppUu = g(a).

We also have inf suppu = a if and only if inf suppUu = g(a). To see this, note
that what we have already proved implies that if inf suppu = a > 0, then Uu is
orthogonal to all elements of H̆ with support in [0, g(a)]. This means that in this
interval Uu is a multiple of ϕ̆0. However, since u(0) = 0 we also have Uu(0) = 0, so
that the multiple is 0, and thus inf suppUu ≥ g(a). A similar reasoning applied to
U−1 proves the other direction.

We have now verified that U and U−1 both have the properties required in Lemma
4.9. This implies that there is a non-vanishing function f so that

u(x) = f(x)Uu(g(x)). (4.3)

We must have f real-valued since F and F̆−1, and thus U , map real-valued functions
to real-valued functions. We note that (4.2) implies that f(0) = 1 if α = ᾰ = 0
and f(0) = sinα

sin ᾰ > 0 if α 6= 0 6= ᾰ. Now choose Uu = 1 in a neighbourhood of
g(x). We then have u = f in a neighbourhood of x. Since u ∈ H is locally absolutely
continuous, so is f . This also implies that f is strictly positive, since it can not change
sign and f(0) > 0. Similarly, choosing Uu linear in a neighbourhood of g(x) it follows
that also g is locally absolutely continuous.

According to Lemma 3.11 Uψ(·, λ) = ψ̆(·, λ), so we have ψ(x, λ) = f(x)ψ̆(g(x), λ).
Taking the logarithmic derivative we obtain

ψ′(x, λ)
ψ(x, λ)

=
f ′(x)
f(x)

+ g′(x)
ψ̆′(g(x), λ)

ψ̆(g(x), λ)
.

Here the left member and the coefficient for g′(x) are locally absolutely continuous,
and the coefficient for g′(x) is not independent of λ by Lemma 4.10. It follows that
g′ and f ′ are locally absolutely continuous, and differentiating, using the differential
equations, we obtain

−f
′′

f
+ q − (g′)2q̆ ◦ g − λ(w − (g′)2w̆ ◦ g) =

(f2g′)′

f2

ψ̆′(g(·), λ)

ψ̆(g(·), λ)
.

Here the right member is o(|λ|) according to Lemma 4.10 so the coefficient of λ to the
left vanishes. On the other hand, the right member is not independent of λ unless
(f2g′)′ = 0, so that we obtain

q̆ ◦ g =
1

f(g′)2
(−f ′′ + qf),

w̆ ◦ g = (g′)−2w,

f2g′ = C

for some constant C. Evaluating (4.3) and its derivative at 0 for u = ψ(·, λ) elementary
calculations now show3 that C = 1 and f ′(0) = 0. One also deduces that either α = ᾰ
or else 0 < α = π/2 − ᾰ < π/2 or π/2 < α = 3π/2 − ᾰ < π. In these calculations
one uses that m̆ is not a Möbius transform, which is clear since this would give a
transform space of dimension 1. This can only happen if w, and dρ, is a point mass.

3See Appendix
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Finally we have to prove Corollary 4.6
Proof. [Proof of Corollary 4.6] The function f̃ = −ϕ0 solves −f̃ ′′ + qf̃ = 0 with

initial data f̃(0) = 1, f̃ ′(0) = 0. Since q ≥ 0 this solution is strictly positive on [0, b), so
we may put g̃(x) =

∫ x
0

1/f̃2. The pair of functions f̃ , g̃ gives us a Liouville transform
F0 mapping [0, b) onto some interval [0, c) and [0, b̆) onto [0, c̆), and transforming the
equations into −u′′0 = λw0u0 and −ŭ′′0 = λw̆0ŭ0 respectively. Thus F0FF

−1
0 , where

F is the Liouville transform of Theorem 4.4, transforms one of these equations into
the other.

Being a composition of Liouville transforms this is itself a Liouville transform
given, say, by u0(x) = f1(x)ŭ0(g1(x)). By construction we obtain f1(0) = f(0),
f ′1(0) = 0 and f2

1 g
′
1 ≡ 1. Since both potentials are identically 0 it follows that f ′′1 = 0.

This means that f1 ≡ f(0) and g1(x) = x/(f(0))2.
If α = ᾰ then by Theorem 4.4 f(0) = 1 so that F0FF

−1
0 is the identity, implying

that also F is the identity. Similarly, if b = b̆ then c = c̆ so that f(0) = 1, unless
c = c̆ = ∞. We will show that c is always finite, and then it again follows that F is
the identity.

Now c =
∫ b

0
1/f̃2, so we need to show that this integral is finite. Put H = f̃ ′f̃

which will be strictly positive sufficiently close to b by (2.4).
Differentiating H ′ = (f̃ ′)2 + f̃ ′′f̃ = (f̃ ′)2 + qf̃2 ≥ (f̃ ′)2. Thus 1/f̃2 = (f̃ ′)2/H2 ≤

H ′/H2 so that
∫ b
d

1/f̃2 ≤ 1/H(d) < ∞ if d is sufficiently close to b. This completes
the proof.

5. The Paley-Wiener theorem. The proof of Theorem 4.8 relies on the fol-
lowing lemma, which is taken from [3, Theorem 6.1, Corollary 6.2].
Lemma 5.1. The following asymptotic formulas hold, locally uniformly for λ ∈ C\R
and x > 0. The square root refers to the branch with positive real part.

lim
t→∞

t−1 lnϕ(x, t2λ) =
∫ x

0

√
−λw,

lim
t→∞

t−1 lnψ(x, t2λ) = −
∫ x

0

√
−λw.

The next lemma implies the simple direction of Theorem 4.8.
Lemma 5.2. Suppose u ∈ H and suppu ⊂ [0, a]. Then û(λ) is entire of order ≤ 1/2
and û(λ) = o(|λϕ(a + ε, λ)|) for every ε > 0 as λ → ∞ along any non-real ray
originating at the origin.

Proof. For finite u we have 〈u, ϕ(·, λ)〉 = −u(0) cosα+
∫ b

0
uλϕ(·, λ)w. Now write

û(λ) = −u(0) cosα+ λϕ(a+ ε, λ)
∫ a

0

uϕ(·, λ)w/ϕ(a+ ε, λ).

The function ϕ(x, λ)/ϕ(a + ε, λ) tends to zero uniformly for x ∈ [0, a] and λϕ(a +
ε, λ) → ∞ according to Lemma 5.1 as λ → ∞ along a non-real ray. The lemma
follows.

The hard direction of Theorem 4.8 follows from the next lemma.
Lemma 5.3. Suppose u ∈ H, that û has an entire continuation of order ≤ 1/2 and
that û(λ) = O(1/|ψ(a, λ)|) as λ→∞ along two different non-real rays originating at
the origin. Then suppu ⊂ [0, a] and û(λ) = 〈u, ϕ(·, λ)〉.

Proof. Let ε > 0 and consider F (λ) = 〈Rλu, v〉 − û(λ)〈ψ(·, λ), v〉, where v =
G0(wf) and f ∈ H has compact support in (a+ ε, b). In particular v ∈ DT . We shall
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show that F has an entire continuation of order ≤ 1/2 which tends to 0 along the
given rays. By Phragmén-Lindelöf’s principle it follows that F is bounded everywhere
and is therefore constant by Liouville’s theorem, thus actually identically 0.

Now F (λ) =
∫ b

0
(Rλu− û(λ)ψ(·, λ))fw so, arguing like in the proof of Proposition

2.3, it follows that Rλu− û(λ)ψ(·, λ) has support in [0, a+ε]. Applying the differential
equation it follows that also u has support in [0, a+ε]. Since ε > 0 is arbitrary, in fact
u has support in [0, a]. For x > a the formula (2.7) gives Rλu(x) = ψ(x, λ)〈u, ϕ(·, λ)〉
so that ψ(x, λ)(û(λ)− 〈u, ϕ(·, λ)〉) = 0. The lemma follows from this.

To prove that F is entire, Parseval’s formula and Lemma 3.11 show that

F (λ) =
∫ ∞
−∞

û(t)− û(λ)
t− λ

v̂(t) dρ(t).

It is obvious that this is an entire function, at least if we can bound the integrand
properly. To do this and see that the order is at most 1/2, note that for |t − λ| ≤ 1
we may estimate the integrand by sup|z|≤1 |û′(λ + z)||v̂(t)|. For |t − λ| > 1 we may
estimate the integrand by |û(t)v̂(t)| + |û(λ)||v̂(t)|. Hence we have locally uniformly
dominated convergence of the integral and

|F (λ)| ≤ ‖u‖‖v‖+ ( sup
|z|≤1

|û′(λ+ z)|+ |û(λ)|)
∫ ∞
−∞
|v̂|dρ,

which is the required estimate, the integral being finite by Corollary 3.8 and û and
therefore û′ being of order ≤ 1/2.

Finally, to show that F tends to 0 along the rays, we first note that ψ(x, λ)/ψ(a, λ)
converges to 0 uniformly for x ∈ [a+ ε, b), according to Lemma 5.1. Assuming f has
compact support in [a + ε, b) we obtain

∫ b
0
ψ(·, λ)fw = o(|ψ(a, λ)|). Since Rλ → 0

strongly as Imλ→∞, it follows that F tends to 0 along the given rays. This finishes
the proof.

Theorem 4.8 is a simple consequence of these lemmas.
Proof. [Proof of Theorem 4.8] If suppu ⊂ [0, a] it follows from Lemmas 5.2 and

5.1 that û(λ) = 〈u, ϕ(·, λ)〉 is an entire continuation of û of order ≤ 1/2 such that

lim sup
t→∞

t−1 ln |û(t2λ)| ≤ lim
t→∞

t−1 ln |ϕ(a+ ε, t2λ)| =
∫ a+ε

0

Re
√
−λw

for non-real λ and all ε > 0.
On the other hand, suppose there is an entire continuation of û of order ≤ 1/2

and such that

lim sup
t→∞

t−1 ln |û(t2λ)| ≤
∫ a

0

Re
√
−λw

for λ on two different rays from the origin. If one or both of these are real, an
immediate application of the Phragmén-Lindelöf principle shows this to be true for
all other rays as well, so we may assume them non-real. By Lemma 5.1 this implies
that û(λ) = O(|ψ(a+ ε, λ)|−1) for large λ on these rays if 0 < ε < b− a. Lemma 5.3
now shows that suppu ⊂ [0, a+ ε] for small ε > 0 and thus for ε = 0. The uniqueness
of the continuation also follows from Lemma 5.3. If we have strict inequality on one
ray a simple argument using the Phragmén-Lindelöf principle (see [4, Lemma 3.6])
shows this to hold on all nearby rays as well, so that in fact sup suppu < a. The proof
is now complete.
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6. Inverse scattering on the half-line. In this section we will show that
scattering data for the half-line problem determines the coefficient w if q is known.
We will of course have to assume that our equation is sufficiently close to a model
equation, which, as usual, has constant coefficients.

Thus we consider (1.3) on [0,∞) with the following additional assumption, which
will be in force throughout this section.
Assumption 6.1. There is a constant q0 ≥ 0 such that q(x) − q0 and w(x) − 1 are
both in L1(0,∞).

Note that according to Theorems 2.5 and 2.6 finite functions are dense in H1 and,
given the boundary condition (2.6), there is a unique selfadjoint realisation T of (1.3)
in H1.

We will need the following standard result.
Proposition 6.2. For Im k ≥ 0, k 6= 0 there exists a solution f(·, k) of (1.3) with
λ = k2 + q0 having the following properties: (1) f(x, ·) and f ′(x, ·) are analytic for
Im k > 0 and continuous for Im k ≥ 0, k 6= 0; (2) f(x, k) ∼ eikx and f ′(x, k) ∼ ikeikx
as x→∞.

This is standard. It is easily proved by first writing the equation for g(x, k) =
f(x, k)e−ikx as g′′+2ikg′ = (q−q0−(k2 +q0)(w−1))g and then solving this equation
by successive approximations from its desired initial values g(∞) = 1, g′(∞) = 0 at
∞ using the estimate |e2ik(t−x) − 1| ≤ 2. See, for instance, Deift and Trubowitz [19].

If Im k > 0 then f(·, k) ∈ H1. Thus, if λ /∈ R (i.e., also Re k 6= 0) then

f(x, k) = F (k)ψ(x, λ)

for some function F defined in Im k > 0, Re k 6= 0.
Let [u, v] = u′v − uv′ denote the Wronskian of the functions u and v and recall

that Wronskians of solutions to (1.3) are independent of x. Since

[λϕ(·, λ), f(·, k)] = F (k)[λϕ(·, λ), ψ(·, λ)] = F (k) (6.1)

is analytic for Im(k) > 0 we find that F is analytic and can be extended analytically
to the positive imaginary axis. Moreover, since [λϕ(·, λ), f(·, k)] is continuous in
Im(k) ≥ 0, k 6= 0, the function F extends continuously to the positive and negative
real line. The zeros of F are located exactly where ϕ and f are linearly dependent,
i.e., when λ = q0 + k2 is an eigenvalue.

Equation (6.1) gives also that F (−k) = F (k) for real k 6= 0 and that F has no
zeros on either the positive or the negative real line since ϕ(·, λ) is real for real λ and
the real and imaginary parts of f(x, k) ∼ eikx are linearly independent.

For k > 0 and thus λ = k2 + q0 > q0 define

ψ±(·, λ) = lim
ε→0

ψ(·, (±k + iε)2 + q0)

and

m±(λ) = lim
ε→0

m((±k + iε)2 + q0).

Since m(λ) = m(λ) when λ is not real we find that m+(λ) = m−(λ) when λ is real.
Therefore

2ikλ
|F (k)|2

= λ[ψ+(·, λ), ψ−(·, λ)] = m+(λ)−m−(λ) = 2i Imm+(λ)
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when k > 0 so that λ > q0. This in turn implies

πρ′(λ) = Imm(λ+ i0) =
kλ

|F (k)|2

for λ > q0. Thus the restriction of F to the positive real line determines the spec-
tral measure on the interval (q0,∞). It follows from this that the spectrum of T is
absolutely continuous4 in (q0,∞).

In the interval (−∞, q0), where λ corresponds to the positive half of the imaginary
axis for k, the spectrum is discrete since F is analytic there. There might also be
an eigenvalue for k = 0, λ = q0. Suppose λ 6= 0 is an eigenvalue. Then ϕ(·, λ) is
a corresponding eigenfunction, and its Fourier transform ϕ̂(λ) is a multiple of the
characteristic function of the set {λ}. The inversion formula (3.1) gives ϕ(x, λ) =
ϕ̂(λ)ϕ(x, λ)ρ{λ}, where ρ{λ} is the spectral measure of the set {λ}. Thus ϕ̂(λ) =
1/ρ{λ}. Parseval’s formula gives ‖ϕ(·, λ)‖2 = |ϕ̂(λ)|2ρ{λ} = 1/ρ{λ}. On the interval
(−∞, q0] we therefore know the spectral measure if we know all eigenvalues λ and the
corresponding normalisation constants ‖ϕ(·, λ)‖2. Similarly, if α = 0 then by Lemma
3.5 also λ = 0 is an eigenvalue, and 1/ρ{0} is the normalisation constant for the
eigenfunction ψ0. We obtain the following theorem.
Theorem 6.3. Given the absolute value of the coefficient F (k) for positive k, all
eigenvalues, the corresponding normalisation constants, and either q or |w|, the coef-
ficients q and w and the boundary value parameter α are uniquely determined.

Proof. We have already seen that the given data determine the spectral measure,
and may now apply Corollaries 4.5, 4.6 to draw the desired conclusion.

7. Eigenvalues. This section is devoted to the proof of the following theorem.
Part of the proof is an adaptation of Marchenko [25].
Theorem 7.1. Assume that q and w satisfy Assumption 6.1. Then

1. The eigenvalues of T are isolated and can accumulate only at q0 or negative
infinity.

2. There will be infinitely many negative eigenvalues if and only if w is negative
on a set of positive measure.

If in addition we have
∫∞

0
t|q(t)− q0w(t)|dt <∞ we also have

3. Eigenvalues will not accumulate at q0.
4. q0 is not an eigenvalue unless q0 = 0 and α = 0.

To prove this we need the following strengthening of Proposition 6.2.
Proposition 7.2. Suppose q and w satisfy Assumption 6.1 and the integral

∫∞
0
t|q(t)−

q0w(t)|dt is finite. Then, for every x ∈ [0,∞), the function f(x, ·) and its x-derivative,
which were previously defined for Im(k) ≥ 0, k 6= 0 extend continuously to k = 0.

The additional assumption and the improved estimate

|e2ik(t−x) − 1| ≤ min(2|k|t, 2)

allow us to perform the successive approximations also near k = 0. The proposition
follows from this.

Proof. [Proof of Theorem 7.1] If µ = k2 + q0 < q0 is an eigenvalue of T then,
since F is analytic in the upper half plane, eigenvalues are isolated and hence cannot
accumulate at any point in (−∞, q0). This proves (1).

4For q0 < s < t we have
∫ t

s Imm(µ + iε) dµ → π(ρ(t) − ρ(s)) as ε ↓ 0. But the left hand side

converges to
∫ t

s Imm(µ+ i0) dµ so ρ is absolutely continuous.
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To prove the second statement we make first the assumption that q0 > 0 and
α 6= 0. By Lemma 3.5 zero is then not in the spectrum of T so that the range of T is
H and we may define a bilinear form Q on H by setting

Q(u, v) =
∫

R

1
t
û(t)v̂(t)dρ(t).

Note that Q(u, v) = 0 if the supports of û and v̂ do not intersect, which happens,
for instance, if u and v are eigenvectors for different eigenvalues. Furthermore, by
Lemma 3.7 Q(u, Tv) =

∫
R û(t)v̂(t)dρ(t) = 〈u, v〉. An integration by parts gives∫ x

0

(u′v′ + quv) = u(x)v′(x)− u(0)v′(0) +
∫ x

0

wuTv

for u ∈ H and v ∈ DT . Hence if v is in the range of T and u is finite, or if u and v
are exponentially decaying eigenfunctions, then we obtain

Q(u, v) =
∫ ∞

0

wuv + cot(α)u(0)v(0) (7.1)

taking into account the boundary condition satisfied by (T−1v, v).
Now assume that w ≥ 0. If cot(α) ≥ 0 there can be no negative eigenvalue since

Tv = λv, λ < 0, ‖v‖ 6= 0 would imply that

0 ≤
∫ ∞

0

w|v|2 + cotα|v(0)|2 =
1
λ
Q(v, Tv) =

1
λ
‖v‖2 < 0,

giving a contradiction. If cotα < 0 there can be at most one negative eigenvalue as
we shall show now. If there were two distinct negative eigenvalues λ1 and λ2 with
associated eigenvectors v1 and v2, we could assume that v1(0) = v2(0). This would
entail that

0 ≤
∫ ∞

0

w|v1 − v2|2 = Q(v1 − v2, v1 − v2) = Q(v1, v1) +Q(v2, v2) < 0

since eigenfunctions decay exponentially so that we are allowed to employ equation
(7.1).

Next assume w < 0 on a set of positive Lebesgue measure. We shall show that
there are infinitely many negative eigenvalues. For any integer n one can choose
elements u1, ..., un in H, compactly supported in (0,∞), such that Q(uj , uj) < 0 and
Q(uj , uk) = 0 if j 6= k. To achieve this one may for instance choose first bounded sets
A1, ..., An of positive measure and positive distances from zero and each other on
which w is negative. Then one lets uj be a suitable mollification of the characteristic
function of Aj . Equation (7.1) now guarantees that they have the desired properties.

Thus Q(u, u) < 0 whenever u is in the linear span B of u1, ..., un. Let P
be the orthogonal projection of B into the negative spectral subspace of H, i.e.,
Pu = F−1(uχ), where χ is the characteristic function of (−∞, 0). Suppose now that
n is larger than the number of negative eigenvalues. Then the kernel of P cannot be
trivial so that there is a nontrivial u ∈ B such that û is supported in [0,∞). Hence

0 > Q(u, u) =
∫

R

1
t
|û(t)|2dρ(t) ≥ 0.

Since this is impossible the number of negative eigenvalues must be infinite.
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If we only have q0 ≥ 0, but still α 6= 0, then Q remains defined for functions u, v
with Fourier transforms bounded near 0, since in this case 1/t ∈ L2

ρ by Lemma 3.11.
But the Fourier transforms of eigenfunctions to non-zero eigenvalues are supported
away from 0, and the Fourier transform of a finite function is entire and thus locally
bounded. Also, uj is in the range of T . To see this, solve −y′′ + qy = wuj with 0
initial data at a point to the right of suppuj which yields a finite function y. Adding
an appropriate multiple of ψ0 (Proposition 2.7) gives a function in DT . Thus the
proof applies also in this case.

Allowing also α = 0 the form Q is still defined if û(t)v̂(t)/t is continuous at 0.
This is the case if u and v are eigenfunctions to negative eigenvalues. Also, if u is a
finite function orthogonal to the eigenfunction ψ0, then û(0) = 0; so Q is defined for
such functions. This last condition is just one linear condition on the space B, so the
remainder can still have arbitrarily large dimension. All of the uj are in the range of
T , since the boundary condition now reads uj(0) = 0. Thus the proof applies also in
this case, and the proof of (2) is finished.

Now assume that
∫∞

0
t|q(t)− q0w(t)|dt is finite, and that, contrary to our claim,

there is a sequence µn = k2
n + q0 < q0 of eigenvalues converging to q0. Since eigen-

functions are orthogonal and satisfy the boundary condition an integration by parts
shows ∫ ∞

0

wf(·, kn)f(·, km) = −f(0, kn)f(0, km) cotα (7.2)

if n 6= m. If α = 0 the right hand side has to be replaced by zero.
Since

∫∞
0
t|q(t)−q0w(t)|dt <∞, our construction of f shows that f(x, k) ∼ eikx as

x→∞, uniformly for k ∈ i[0, 1]. This shows firstly that (7.2) is bounded as n and m
tend to infinity, secondly we may find a positive c such that |f(x, k)−eikx| ≤ e−|k|x/4
if x ≥ c, k ∈ i[0, 1]. Simple estimates then show that

7
16
e−(|kn|+|km|)x ≤ Re(f(x, kn)f(x, km)) ≤ 25

16
e−(|kn|+|km|)x

if n and m are large. Since w − 1 is integrable this shows that the integral∫ ∞
c

Re(f(x, kn)f(x, km))w → +∞

as n, m tend to infinity. Now, since f(x, k) is uniformly continuous on [0, c] × i[0, 1]
it follows that the integral over [0, c] is bounded, so the integral over [0,∞) tends to
infinity, contradicting the previously established boundedness and proving (3).

Finally, if q0 = 0 we already know q0 is an eigenvalue if and only if α = 0. On
the other hand, if q0 > 0, then f(·, q0) is asymptotic to 1, and any other solution to
(1.3) is asymptotically linear, as is easily seen from the well-known reduction of order
method. Thus no such solution is in H and there is no eigenfunction with eigenvalue
q0. This proves (4).
Remark 7.3. If we allow w to be a general measure, then the negative part of w could
be a finite sum of Dirac measures. In this case one may in the same way show that
the number of negative eigenvalues is equal to the number of these Dirac measures if
α 6= 0, cotα ≥ 0 and q0 > 0, with suitable modifications in the other cases.

8. Appendix. Here we present some calculations which were omitted from the
proof of Theorem 4.4.
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For x = 0 the relation ψ(x, λ) = f(x)ψ̆(g(x), λ) gives

cosα−m(λ) sinα = f(0){cos ᾰ− m̆(λ) sin ᾰ}, (8.1)

while ψ′(x, λ) = f ′(x)ψ̆(g(x), λ) + f(x)g′(x)ψ̆′(g(x), λ) for x = 0 gives

sinα+m(λ) cosα =
f ′(0)
λ
{cos ᾰ− m̆(λ) sin ᾰ}+

C

f(0)
{sin ᾰ+ m̆(λ) cos ᾰ}. (8.2)

From (8.1), (8.2) we obtain

1 = {f(0) cosα +
f ′(0)
λ

sinα}{cos ᾰ − m̆(λ) sin ᾰ}+
C sinα
f(0)

{sin ᾰ + m̆(λ) cos ᾰ}

and

m(λ) = {−f(0) sinα+
f ′(0)
λ

cosα}{cos ᾰ− m̆(λ) sin ᾰ}

+
C cosα
f(0)

{sin ᾰ+ m̆(λ) cos ᾰ},

which after rearranging gives

1− (f(0) cosα+
f ′(0)
λ

sinα) cos ᾰ− C sinα sin ᾰ
f(0)

= m̆(λ){−(f(0) cosα+
f ′(0)
λ

sinα) sin ᾰ+
C sinα cos ᾰ

f(0)
} (8.3)

and

(f(0) sinα− f ′(0)
λ

cosα) cos ᾰ− C cosα sin ᾰ
f(0)

= m̆(λ){(f(0) sinα− f ′(0)
λ

cosα) sin ᾰ+
C cosα cos ᾰ

f(0)
} −m(λ). (8.4)

In (8.3) the left member and the coefficient of m̆ are linear in 1/λ, while m̆(λ) is not
constant or a Möbius transform (this would give a one-dimensional transform space).
From (8.3) we therefore obtain

(f(0) cosα+
f ′(0)
λ

sinα) cos ᾰ = 1− C sinα sin ᾰ
f(0)

(f(0) cosα+
f ′(0)
λ

sinα) sin ᾰ =
C sinα cos ᾰ

f(0)
,

which gives

f(0) cosα+
f ′(0)
λ

sinα = cos ᾰ

C sinα
f(0)

= sin ᾰ.

From this it is (again) clear that sinα = 0 if and only if sin ᾰ = 0, so that we have
two cases.
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• α = ᾰ = 0. We obtain f(0) = 1, and insertion in (8.4) shows that f ′(0)
λ =

m(λ)−Cm̆(λ). The right member is (1−C)m(λ) since m(iν) and m̆(iν)→ 0
as ν → +∞ by Lemma 4.10, and m, m̆ have the same spectral measure.
Again by Lemma 4.10 it follows that C = 1, and thus f ′(0) = 0.

• α 6= 0 6= ᾰ. We obtain f ′(0) = 0, f(0) = C sinα/ sin ᾰ and C sin(2α) =
sin(2ᾰ). But we know that f(0) = sinα/ sin ᾰ so that C = 1. Insertion in
(8.4) gives m(λ)− m̆(λ) = cotα− cot ᾰ.
Since sin(2α) = sin(2ᾰ) we have either α = ᾰ or 0 < α = π/2 − ᾰ < π/2 or
π/2 < α = 3π/2− ᾰ < π. If α = ᾰ we obtain f(0) = 1 and m(λ) = m̆(λ). In
the other cases we obtain f(0) = | tanα| and m(λ)− m̆(λ) = 2 cot(2α).
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