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We investigate some basic properties of the Hellmann and the Hellmann-Weizsacker 
energy functional, density functionals, which use densities for angular momentum chan- 

nels as trial functions, and investigate their relation to the ground state energy of an 
atomic N-electron system. Furthermore, various scaling properties are shown, the virial 
theorem, and in the case of no electron-electron interaction the dependence on the 
nuclear charge. 

1. Introduction 

Already in the early period of quantum mechanics the Thomas-Fermi theory 
(Thomas [l], Fermi [2], Lenz [3]) has been derived as an approximation scheme 
for the ground state energy and ground-state density of N electrons for large 
particle number in the field of some nuclei of total charge Z. The Thomas-Fermi 
energy E:“(N) has for N = cZ a relatively simple dependence on the total charge 

E;“(N) = E;F(~)Z7’3. (1.1) 

Since the Thomas-Fermi model has been heuristically derived under the assump- 
tion of a large particle number, the right-hand side of (1.1) has been considered as 
the leading asymptotic term for the quantum mechanical ground state energy 
EQ(Z, N) (see e.g. March [4]). Lieb and Simon [S] showed that this heuristics can 
be turned into a proof. They obtained for N = cZ 

E,(Z, N) = E;F(~)Z7’3+o(Z7’3). (1.2) 

Later, Lieb [6] refined this result to 

E, (Z, N) = ETF(c) Z7’3 + 0 (Z7’3 - 1’3o). (1.3) 

Thirring [7] improved the lower bound for the infimum of the spectrum of the 
Coulomb hamiltonian which implies that the error term in (1.3) may be chosen of 
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order 0 (Z713 - 2i33 ). Scott [S], however, and later Schwinger [9] and Englert and 
Schwinger [lo] gave arguments that the next correction should be of order Z2. 
The constant should be given as q/8, where q is the number of spin states, for the 
electron two. The purpose of the present paper is to develop a tool for the first 
part of this conjecture. 

Hellmann [11] introduced a functional, which uses the densities of the angular 
momentum channels as trial functions. We shall investigate the Hellmann and the 
Hellmann-Weizsacker functional, which will be used in later papers to bound the 
quantum mechanical ground state energy in order to improve (1.3) towards Scott’s 
conjecture. 

In Chapter 2 we shall define the model to be investigated. Chapter 3 deals with 
uniqueness and existence questions of minimizing densities and thus with the 
uniqueness and existence of solutions for the corresponding Euler-Lagrange 
equation. Moreover, the critical particle number, i.e. the number of electrons that 
can be bound by an atom with nuclear charge Z, is discussed. In Chapter 4 we 
mention some scaling properties of the Hellmann and Hellmann-Weizsgcker 
functional for the case with and without electron-electron interaction. Chapter 5 
generalizes a previous bound of one of the authors [12] to the case of non-integer 
occupation numbers of the various angular momentum subchannels. 

2. 

If 

Definition of the Hellmann and the Hellmann-WeizsScker 
infima 

We hrst define a set of functions. Let 

functional and their 

G = QEL~(R+)~L~(R+)I$&R+), Q 2 0 . 

Q E G, then 7 @? dr is finite, too, since 
0 r 

(2.1) 

(2.2) 

is well defined, where 1 denotes the angular momentum channel. The positive 
constants aI are bounded from above while the numbers PI are bounded from 

below by a positive constant. They will be chosen subsequently to be ’ 
( > 

2 

4m+ 1) 

and (I++),“, respectively. We remark that E& is strictly convex on G. This follows 
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from the strict convexity of x3 for x > 0 and the linearity in Q of the second term 
of the functional. 

Furthermore, if $’ is restricted onto GN = (~~Glll~jl~ < Nl or GdN 
= {Q E G( llell 1 = N), it is bounded from below: 

l Bl z 
4%((e) 2 ,S 7-7 QWdr-Z yet Id ( ! r r 2 mf --- rE(O, l] -Z N 3 const N. 

1 ({?5/ 1) 

(2.4) 

If we neglect the electron-electron interaction for the moment, we may interpret 
E&(Q) with Sedr = N as the quasi-classical energy of N electrons with radial 
density Q in the angular momentum channel I (Thomas-Fermi functional for these 
electrons in the effective radial potential). If tag is chosen to be 7~’ and [~dr = N, it 
may be interpreted as the quasi-classical energy of N electrons with radial density 
Q in the angular momentum subchannel with indices 1, m, s. 

Let Q denote (eO, . . ., Q~, . . .) and a (Q) = ( f a, 7 Q: dr)l13 be the norm, in which 
1=0 0 

X = L3 (R+ x No, dp) is a reflexive Banach space. Here d,u is the Lebesgue measure 
in the first coordinate and the counting measure weighted by a1 in the second 
coordinate. Furthermore, define the following sets: 

(2.5) 

where e > 0 is an abbreviation for eo, . . . , el,. . . > 0. Then the quasi-classical func- 
tional $: M -+ R, which restricted onto MaN is the functional of the total energy of 
N non-interacting electrons in the filed of a nucleus of charge Z, is given by 

(2.6) 

This is obviously well defined which follows from the properties of each E& and from 

the fact that f ~,Iledli, f lIedI, f B c 
l=O I=0 I=0 

I 111 II and ,f I~~!~, are all finite. The 

latter follows analogously to (2.2) since the /3r are bounded from below by a 

positive constant. Again for Q > 0 and 7 f el(r)dr d N the functional .$ is 
0 I=0 
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bounded from below: Using (2.4) we get 

z%) 2 j l$o($-;‘) eldr-Z i f e[(r)dr 3 (const-Z)N. 
i I=O 

In order to treat interacting electrons we. introduce the quadratic form 

D(Q, CJ) = ‘fdr ids-& 
0 (r) 0 (s) 

0 h max {r, s] . 

(2.7) 

(2.8) 

D (Q, a) may be bounded by 7 dr $7 dsa(s) + i drg (r) y ds q and this is well 

defined on G2. Thus the Hellmann fuictional 
0 0 

Ef: M-R, 

G!(e) = me)+3 f D(@l, er) 

(2.9) 

1,l’ = 0 

is obviously well defined, and, since E:(Q) > C;(Q) for Q B 0, it is also bounded 

from below, if f i e,dr d N. Later we shall show that this last condition is not 
l=O b 

necessary. Physically speaking, the atom described by the Hellmann functional can 
bind only finitely many electrons, which is obvious and has its source in the 
electron-electron repulsion. Indeed the repulsion will be essential for the corre- 
sponding mathematical argument, too. Both $ and $ are strictly convex. 

Given N 3 0, the infima of the functionals (2.3) (2.6) and (2.9) are denoted by 

e, (NJ = ~~fk$IZ(e)leG& F-z 
.?g((N) = inf {EF(@))lee MN), 

e;(N) = inf (.$(@))IQE MN]. 

(2.10) 

(2.11) 

(2.12) 

For every fixed Z these functions are convex and monotone decreasing. We are 
interested in these infima only because of technical reasons. Later on, they will 
allow us to make connections with the well known techniques of the calculus of 
variations to establish the existence of minimizing solutions for 

E& (N) = inf ia& (e) I e 6 GaN i , (2.13) 

E;(N) = inf [~~(Q))IQE M,,j, (2.14) 

E;(N) = inf @(@)leE: Mahi]. (2.15) 
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The distinction between the two types of infima, however, is superficial, since the 
corresponding infima are equal. 

THEOREM 2.1. 

Proof: We prove only the third equation, since the other are proven by 
similar arguments. The inequality e;(N) Q E:(N) is trivial. To prove the converse 

we note that E: is continuous in the norm llel(* = (,Eexl ll~lll:)~‘~+ ,zOBl ii$il, + 

+f 52 . 
II !I I=0 r 1 

Let en - e in the *-norm, then 

The second and the third term tend to zero by definition of the *-norm. For the 
first term we get 

+ 3 ,i aI 7 k+(r) e,,l (4 (er (4 - e,,l W)] dr. (2.17) 
0 

Again the first term on the right-hand side of (2.17) converges to zero by 
definition. The second term on the right-hand side of (2.17) may be bounded as 
follows by Hijlder’s inequality 

f a1 ~lel(r)e.,r(r)(el(r)-e.,~(r))ldr 
l=O 0 

G ( f a1 y ef (4 dr)“3 ( f al 7 c2.I (4 dr)“3 ( f al 7 Ia (4 - en,1 WI3 dr)i’3 
1=0 0 I=0 0 I=0 0 

d const ( f a1 llel -en,1lli)1/3 - 0. (2.18) 
1= 0 
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Finally, we estimate the last term of (2.16) 

1 lg o ID (@l, er,) -w?“,h @“,dl 

er)--D( er,> 4n.4 + Pk.,h er) - ~(@“,lY edl) 

< 1 l$ o 
, ( 7 @lt (I) dr 5 ‘@’ (r) lenpl (r)l dr + 5 en,1 (r) dr 7 lel’ (r) Ten*” (r)l dr _, 0. 

0 0 0 
(2.19) 

Next we claim that each element eg A4 with f l/~r[lr d 1 can be approximated by 
1= 0 

functions en with f Il~~,~llr = 1. Choose Q,,~ 
l=O 

= pl+ij.,,, where the f.,l are non-nega- 

Jo 00 03 cc 
tive functions with [0, (1 + j?J ) n n SUPP_& = 8, C j fn,l dr = n (jl- - ,zo d et d+ 

l=O 0 

,zo d ~~~~~~~~~ dr < 2n5 and _L,l d 1. Then 

Ile-edI* = f {( f al ~fi&)1’3+ f A i/$11 
l=O 0 I=0 I 

<i const(2nA)1’3+F+2$ -0, 
n ( > 

since the al are bounded from above. Thus we can 

5 y~~,~dr = 1 so that $(e,) approaches e:(A) in the 
I=0 0 

m f”,l +c 7 
l=O iI /I I 1 

(2.20) 

find a sequence e,, with 

*-norm. Thus 

(2.21) 

Remark. The above argument has its origin in a similar argument of Lieb and 
Simon [S] for the case of Thomas-Fermi theory. 

The second type of functionals we wish to consider are analogues of the 
Thomas-Fermi model with gradient term. We call them Hellmann-Weizsacker 

It 
functionals. For these functionals we choose a, = 

( > 

2 

q(21+ 1) 
and /?r = I(I+ 1). 

First we treat the functional for one angular momentum channel. Let Hh(O, 00) be 
the local Sobolev space of order one (completion of Cc(O, co) in the norm IIq~lj~,~ 

= l140’l12+lld2 and let 

F = {de > 0, &H:(O, ad}. (2.22) 
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Define 

m 

$‘zw(e) = d dr. (2.23) 

BY Lieb-,Thirring’s inequality [13] ((e((3 < c li,,/&& holds. Moreover, i!&edr can 

be bounded by const i A” dr using Hardy’s inequality. Thus, in view of the result 

for E& the functiotal sty is well defined on F, bounded from below for 

TQdr d N, and strictly convex which follows immediately from the proof of the 

zonvexity of the Thomas-Fermi-Weizsacker functional (Lieb [6]). 

To treat the functionals of the total energy we define 6 Hh(O, 00) to be the 
I=0 

Hilbert space direct sum of II&. Then with ,,/$ = (6, . . . , A, . . .) let 

(2.24) 

Again one shows that 

and 

(2.25) 

(2.26) 

are well defined on w bounded from below on W, and on W,,, and strictly 
convex. We introduce 

and 

g”(N) = inf f.sFW(e)leE W,), (2.27) 

E;“(N) = inf(sFW(e))IeE WON}. (2.28) 
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As for the case without 

THEOREM 2.2. 
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gradient correction one proves: 

effiw(N) = ErF(N), l?;‘“(N) = E?“(N), e2W(N) = EFw(N). 

Here we used notations analogous to those in Theorem 2.1. 

3. Uniqueness and existence of minimizing densitions. Critical particle numbers 

First we show the uniqueness of minimizing densities: 

THEOREM 3.1. If there exists a minimizing density for one of the above dejned 
functionals, then it is unique. 

Proof: Suppose this were not the case, i.e. there were two distinct Q and <r 
with E (Q) = E (a) = e(N). Then by strict convexity for 0 < c1 < 1 

~(a~+(1 --a)~) < a&(~)+(1 ---CL)&(~) = e(N), (3.1) 

which is a contradiction. H 

Next we investigate the existence of minimizing densities and the maximal 
number of electrons which can be bound for the Hellmann functional. First we 
treat the relation of the Euler-Lagrange equations to the Htllmann functional. 
The following theorem and its proof are analogues of the corresponding result of 
Lieb and Simon [S] for Thomas-Fermi theory. 

THEOREM 3.2. (a) Zf QE MaN obeys the Hellmann equations 

where 4p is either 

(3.2) 

(3.3) 

or 

40(r) = F, (3.4) 

then Q minimizes &f respectively .FF on M,, E;(x) ana’ i?:,“(x) are differentiable at x 
= N, and 

1 = dE;(x) d@(x) 
. 

dx 
respectively I = ___ 

x=N dx x=N 

In particular, /1 is zero (in the interacting case), if Q minimizes E; on M. 

(3.5) 
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(b) Conversely, if QE MdN minimizes E: or CF on MBN, then Q obeys the Hellmann 
equations (3.2) and (3.3) or (3.2) and (3.4), respectively, where ;1 is given by (3.5). 

Proof: As mentioned above, the proof is analogous to the proof of Theorem 

II.10 of [S] with the definition 6c/&, = cr,~:-q(r)+flJr’. n 

Next we come to the existence of a minimum. The strategy is the usual one of 
calculus of variations: Show weak lower semicontinuity of the functional on a 
suitable weakly compact set. For the Hellmann functional this is unfortunately not 
straightforward because of two reasons: The high singularity at the origin of the 
PJr’ term and the lack of decrease in the variable 1 in the Z/r term. We start with 
c&, where only the first problem occurs. 

THEOREM 3.3. E& has a unique minimizing element in GN. 

Proof Let Q. be any sequence in GN such that lim e&((e.) = e&(N). Further- 
n-m 

B1 z Pl 
more, let rl be the zero of rz - ;, i.e. rl = z. We then see that & = Q, at,, oDj is also 

a minimizing sequence, since 4 & dr < N and 
b 

where we used the property that ?-- is positive for r ~(0, rJ. Next, we remark 
r r 

“Z 
that 11&J3 is bounded: - [- &dr is bounded from below on GN by -5 N, thus 

br rl 

The right-hand side of (3.6) is convergent as we showed above and therefore 
bounded in n. Thus, since L3(R+) is reflexive, we may use the Banach-Alaoglu 
theorem and extract from 5, a L3 (R+)-weakly convergent subsequence, whose limit 
is denoted by 6. We denote this subsequence by 5, too. We get 

a G” dr = lim 5 $’ &, dr 6 & (7 G” dr)2’3 (15: dr)l13, 
n-r f.) n-cc 0 
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and thus 

;~8”dr$li&$;dr. (3.7) 
0 n-tm 0 

Since E L312 (R+), we obtain 

(3.8) 

Combining (3.7) and (3.8) we have 

&(a <&.&z(&) = e&(N). 
n-roe 

This proves the theorem provided we can show GEG~: 
m 

(i) G 2 0 a.e., since otherwise S f(&- g3dr would not converge to zero for 

every f E L312, e.g. f = xA with A i {rlG(r) < 0, r d RI for some large enough R. 
m m a, m 

(ii) I Q”dr < N, since j” Gdr = lim J xco,,,) cdr = lim lim j x~~,,,) &, dr < IV. 
0 m-+m 0 m+m It-+* 0 

(iii) yxdr < CL), since i$dr = T$dr < $. 
0 r2 ‘I 

Uniqueness follows from Theorem 3.1. l 

Next we come to the functionals of total energy. Let k be some non-negative 
integer and E P’(E!“) the restriction of E:(E$) onto Mk = {QE M[Q~+~.= ek+2 
= . . . = 01. Analogously one defines Mk, M&. A simple corollary to the proof of 
Theorem 3.3 is 

THEOREM 3.4. tzFk and .?Fk have unique y 1 determined minimizing elements on 

Mk. 

Proof: We remark that the rI are bounded from below by l/(42) and that 
D(Q, a) as a positive quadratic form is weakly lower semicontinuous. The rest 
follows as in the proof of Theorem 3.3. n 

THEOREM 3.5. (a) The following holds 

f(k) = inf {&Fk(@),)l@E Mk} 2 inf (e~~“‘(@l@E MkN+lj = f (k+ l), 

i.e. the injima are monotone decreasing functions in k. 
(b) There is a critical k, such that f(k) = f (k,) for k 2 k,, and in this case the 

uniquely determined minimizing ek has ek,+ 1 = &+ 2 = . . . = 0. 

Proof: (a) is immediate. 
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(b) Let t$ be the uniquely determined minimum of &’ on Mi.. Then 4’ fulfils 
the Euler-Lagrange equations for some non-positive pk 

for I = 0, 1, . . . . k, 

where 

Since Yk(r)/r2 is monotone decreasing on S = {rl Yk(r)/r2 > 0}, we have 

Yk (9 < Yk (4 < Yk Q-1) 
7’ r 

-XC-. r r f 
for r > r’ >, rl. 

Given E > 0 we distinguish two cases: 
(1) Y“ is bounded by (l+a)&. 
(2) !Pk is not bounded by (l+c)&. Then we define for every r with Y’(r) 

> (l+~)j& the point rl = r Let r’E[rl, r]. Then we obtain 

Thus 

N 2 i 7 Q: (r’) dr’ 2 i et (r’) dr’ 
I=0 0 ‘1 

and therefore 

Combining both cases and choosing E = 1, we get 

(3.9) 

The right-hand side of (3.9) is independent of k and r. Therefore, independently of 
47rN 

k, we obtain at least for all 1 with jI?r > iexp-- that Q~ = 0 which proves (b). The 

proof of (3.9) is essentially due to Soher [14:. n 
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We remark that for the non-interacting case the analogue can be proven in a 
similar way. Therefore we have as an immediate corollary: 

THEOREM 3.6. E; and g: have uniquely determined minimizing elements in M, 

which are equal to those of E:‘~’ and E:“‘, respectively, on M$ and the corresponding 
minima are equal. 

Now we discuss the critical particle number. Let NC be that particle number, 
where the energy ceases to decrease further. We call N, the critical particle 
number. Since the infima of both the Hellmann and the Hellmann-Weizsacker 
functional are monotone decreasing in the particle number, as Theorem 2.1 and 
2.2 show, and convex, N, E [0, a] is well defined. Because of the monotonicity of 

the infimum and the uniqueness of the minimizing Q we have f l[~r/l~ = N for 
l= 0 

N < NC. Our goal is to show that N, = 2 in the interacting case. We begin with 
the following theorem. 

THEOREM 3.7. For N ,< Z the minimizing 4 for E; on M, has f 7 e,dr = N. 
I=0 0 

Proof: Suppose that the minimizing Q has f 7 e,dr = No < N. Then the 
I=0 0 

Lagrange multiplier 1 is zero, thus 

Thus there exist two positive constants c and R such that 

el (4 2 c for r>R. 

Hence 
a 
iQ,dr 2 cTr-1/2dr = x. 

k 

Such densities, however, are excluded, which proves the theorem. n 

THEOREM 3.8. If N 2 Z, then for the Q that minimizes E! on M, the following 
equality holds: 

l$o _ erWr = Z. 
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Proof: We hrst remark that f T el ( ) d r I cannot be smaller than Z because of 
I=0 0 

Theorem 3.7. Now suppose f 7 cl(r) dr > Z. Then by Newton’s theorem, for r 
l=O 0 

large enough, 

(3.10) 

becomes negative. We therefore have a closer look at 

T= [rERjr>,O, q(r) ~0). 

First we remark that cp is continuous away from zero. Zero, however, does 
certainly not belong to 7: since cp diverges to infinity as r approaches zero from 
the right. Thus Z as the preimage of an open set under a continuous function is 
open. Furthermore by the Euler-Lagrange equation 

+ 

Q[ is zero on 7: since A < 0. Hence on T: f el = 0 and since 
I=0 

cp = a+b/r. B ecause cp vanishes on the boundary of T and cp (r) - 0 for 
r - X, cp is identical to zero on T Hence T = 8 and cp 2 0 everywhere, which is a 
contradiction. m 

Both proofs are characteristic of the Hellmann functional and cannot be 
transscribed to the case with gradient correction. The following theorem summar- 
izes the above results. 

THEOREM 3.9. (a) If N < Z, then &’ assumes its minimum on M,, for a unique 
element. The minimizing density fu&ls the Euler-Lagrange equations (3.2) and (3.3) 

with A = ‘9 1 . Particularly, if N = Z, then 1 = 0, and if N < Z, then I -C 0. 
x=N 

For N > Z there exists no minimizing element ,for E: in MdN and no solution of 
the Euler-Lagrange equations. In MN, however, a unique minimizing element e exists 

m aj 
which fulfils 1 [ g,dr = Z. 

I=0 il 
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(b) Fur Z” a unique minimizing density in M aN exists for all N. This density 

fuljils the Euler-Lagrange equations (3.2) and (3.4) with A. = F < 0. 
x=N 

Proof: For the non-interacting case iV, = cc remains to be proved. This 
follows analogously as in the proof of Theorem 3.7. n 

Now we come to the Hellmann-Weizsticker functional. For technical purposes 
we define further functionals and sets of functions, obtained by writing $’ for Q: 

p = {+I+ 2 0, ti2@), 

I@= {JII+~o, $2EW), 

and analogously FN, E,N tiN and @N. J12 stands here for (tj& IJQ~, . . .). These 

functionals are the following: 

The infima of these functionals are the same as those of the associated density 
functionals and # minimizes 9:” on ti&,, if and Only if Q = t/d- IIIiIIiIniZeS &gW on 
W,,. The same holds in the other cases. Therefore we denote the infima of the 
9-functionals by E, too. Now we come to the relation of the functionals 9 to the 

Euler-Lagrange equations: 

THEOREM 3.10. (a) If r)c~ @8N obeys the Hellmann-Weizsiicker equations 

-@;‘(r)+~I$f+($-~(r)-A)t++~ = 0, 1= 0, 1, 2, . . . . (3.11) 

where CP is either 
t r’ 

cp (r) = f - ,fo i ,L :r )r,, dr’ (3.12) 
2 

or 

Z 
rp(r) = 79 (3.13) 

then IJP minimizes 9:” respectively $Fw on wN, E!“(x) and j?;“(x) are difiren- 
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tiable at x = N, and 

1 = dE,HW(x) dEfw (x) 

dx 
respectively I = 

x=N dx . x=N 

(3.14) 

In particular 1 is zero (in the interacting case), if + minimizes 9;” on W 

(b) Conversely, if $E WON minimizes .F;w or @:” on Wan, then J( obeys the 

Hellmann-Weizsiicker equations (3.11) and (3.12) respectively (3.11) and (3.13) where 

A is given by (3.14). 

Proof: The proof imitates that of Theorem 3.2. l 

Now we are concerned with existence questions. 

THEOREM 3.11. 9ff7r has a minimizing element in 

0.f Iti~C?(o, a)l$ 2 O> in the norm lltU2+l11//l16. 

Proof’ First we remark that 9FF is finite on 
= ,I,2 iT 

D where D is the completion 

D: Because of Hardy’s and 

I-‘iilder’s inequalities [ sdr < S ttGr2 dr holds and for every E > 0 there exist 
6 4r 0 

positive numbers 6 and b with 

$Ftj2dr d i(“-$) 
0 r 

t,k2dr+Ei$dr+ $41Lldr < .s T$‘2dr+b(y+6dr)1t3. 
0 0 

Therefore 9yzw is bounded from below on D by 

s&!+’ a II~‘ll:+~llljlll~+B~ ; I-~ll~.:bll~ll: 2 YW’II~+II~II~)-C (3.15) 
I/ II 

with certain positive constants y and C. 
Now let I/I,, be a minimizing sequence. Because of (3.15) we find that Ilt,GJ12 and 

Il$& are bounded. By the Banach-Alaoglu theorem we can extract a subsequence, 
also denoted by $,, converging weakly in the norm l~J1~~~2+~~~n~~6 to $E D. 

Therefore II/. -+ I,+ weakly in L6 holds and hence 

y$‘dr <j& 7$.6dr. (3.16) 
0 n+m 0 

Choosing the number a sufficiently small we define the scalar product 

(f, +) = i (I’~~-~xlo,~l(r)~~)dr 
0 
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which is continuous in the norm 1j$‘112+j/~jj6 

G Ilf’ll2 11v112 + cona Ilf’ll2 MI6 G coWll~‘ll2 +lWll~). 

Therefore, using Schwa& inequality, we find 

“f Furthermore d I’$ dr is a continuous linear functional 

(3.17) 

(3.18) 

The term 1 -, +” dr remains. Since $, -+ r,G weakly in L6, $, -, I,+ weakly in I.& 

and theref&e in I&,,. Since for any R > 0 the space H’(0, R) may be compactly 
imbedded in L3 (0, R) (Adams [lS] Theorem 6.2), we find +f -+ +” strongly in L,:, . 

Therefore we have 

I I R” 1 
TA(t,bjf-$2)dr d I ;($,2-ti2)dr + 7 ~bKFti2)dr 
or I I Ro 

a 
r~3~2dr)“‘(R~li:_i”dr)“3+22~3R,1~3(R~~~~-iy2l3dr)1’3. 

a 

The tirst and the third integral are finite. The second integral tends to zero as n 
approaches infinity, whereas all the other terms remain bounded. Taking then the 
limit R. to infinity yields zero for the remaining term. Thus we have 

$F$‘dr = lim ~~$~dr. (3.19) 
n-+a, o r 

Combining (3.16), (3.17), (3.18) and (3.19) we finally arrive at 

fl$W G lim ~EWJ. . 
“+CC 
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Again, as in the Hellmann case, we can generalize this result to the case where 
finitely many angular momentum channels are taken into account. We define the 
functionals F:w,k and &F’“sk and the sets wk, k@ and I%& analogously to the 
Hellmann case and we arrive at 

THEOREM 3 12 F:w,k and 5 . . r_ZHW*k have minimizing elements in 

Dk = IJllll/o~ +I, . . . . $kED, &+I = &+2 = . . . = 01. 

Now we consider the critical particle number. Of course N, = co, if there is no 
interaction. Our goal is to show that N, < cc for each functional FfWsk and 
N, > Z. 

k co 

THEOREM 3.13. The J( that minimizes cF2W,k on Dk fulfils c j ~+!$dr < 00. 
l=O 0 

Proof: Suppose 7 i @dr = cc. Then there will be a point rl with 
0 I=0 

*l k 

i lTo$?dr = Z+d f 

6 

or some positive 6. Therefore q(r) < -- holds for r 2 rI. 

Since \cI fulfils the Euler-Lagrange equations (3.11) for 1 = i, 1, . . ., k we have 

-$;‘+;til d 0 for r 2 rl. 

The function &, = Mre- 2xdr fulfils the inequality 

-&!+$& 0 for r#O. 

Thus we have for r 2 rl 

(3.20) 

Choose M such that +bI(rl) < $,(r,). Now fix [E Cc [0, ‘=o) with 0 < 5 6 1 and 

i(r)= i 
1 

Ez :zf 

and define r,,(r) = [ ‘, . Multiplying (3.20) by c, [$r ---$,I+ and integrating over 
0 

the interval [r,, co) yields 

4(~,-~I)‘(i:,UI-~rl++r.C~I-~11;)dr+ ~bcJIt-kl~ Ldr < 0 
‘1 ‘1 

r 
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and hence 

~~Cti~-iJ,li i,dr G i -($,-$JGC$,-$,I+ dr = 3 ~iiC$~-&Jz+ dr. 
‘1 ‘1 ‘1 

We may estimate the latter integral by 

which tends to zero as n + co. However, [, --, 1 as n approaches infinity and 
“6 

therefore S - [$1-$,]: dr = 0 yielding t++!(r) < G,(r) for r 2 rI. Since 6, is square 
‘1 

r 
m k 

integrable, we find $,E L2, too, and hence J c $,” dr < GO, which contradicts our 
0 l=O 

assumption and proves the theorem. m 

THEOREM 3.14. Zf $ minimizes 9;” or Ffw,k on D” or Dk, respectively, then 

5 y$fdr>Z. 
I=0 0 

Proof Again we suppose that the contrary is true: f 7 II/: dr < 2. Then we 
I=0 0 

find easily that q(r) 2 0 for r # 0. Therefore, since a minimizing JI fulfils the 
Euler-Lagrange equations, we have particularly for r # 0 

--$b’+aoll/z 2 0. 

The function q. = cr- ‘I2 fulfils for r > 1 the inequality 

-&J+aoII;~ d 0, 

3q2 
if the constant c is chosen such that c4 < __ holds. Therefore we have for r > 1 

4x2 

(3.21) 

Since tiO~H,k, tie is continuous on a compact set D using Theorem 5.4 of Adams 
[15]. Therefore we can choose c such that go (1) < r,Go (1). Moreover, I//g = a0 II/z - 
-q~(r)$~ is continuous and consequently rjo~ C”(Q). Now define the function f 
= $o-~o and the open set A = (r > 1) f(r) < 0). Using (3.21) we find on A that 
f” < 0, i.e. f is concave. This is impossible, since f(1) 2 0 and tie > 0. Hence A is 
empty and 3, (r) < tie(r) for r 2 1. Therefore we have 
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which yields a contradiction, thus proving the theorem. n 

We remark that the proofs of the Theorem 3.11, 3.13 and 3.14 are suggested by 
Benguria, Brezis and Lieb [ 161. 

In a final theorem we summarize the results for the Hellmann-Weizsacker 
functionals. 

THEOREM 3.15 (a) For every ke No there exists a number N, with Z < NC < 00 
such that for N d N, the functional sFW,k assumes its minimum on Wi:, for a unique 

element e. + = & fu$ls the Euler-Lagrange equations (3.11) and (3.12) with A 

dE HW,k (x) 
= 

dx ’ 
Particularly, if N = N,, then 1 = 0, and if N < N,, then A < 0. 

x=N 

For N > NC there exists no minimizing element for .$W~k in W,:, and no solution 
of the Euler-Lagrange equations. In W,, Ir however, a unique minimizing element e 

exists which. futfils i 7 et dr = N,. 
l=O 0 

(b) For every kg No the functional rFW*k assumes its minimum on Win for 

a unique element e. + = ,,/$ fulfils the Euler-Lagrange equations (3.11) and (3.13) 

with 3, = dEHd~o / <-(). 
x=N 

4. Scaling properties of the Hellmann and the Hellmann-Weizsiicker functional 

In this chapter we collect some scaling properties of the Hellmann and the 
Hellmann-Weizsacker functional. Let us start with the interaction free case. We 
scale 

Then 

rt--+Zr =T, 

e(r) bZe(Zr) = C(r). 
(4.1) 

} dr = Z”E~~(Q). 

Thus we obtain 

and 

(4.2) 

E?F(N) = Z2 E:?‘(N), (4.3) 

i;“(N) = Z’@“(N). (4.4) 
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The counterpart of (4.2) for the Hellmann functional implies the result analogous 
to (4.3) and (4.4). For the interacting case this result breaks down, however. 

Next we show the virial theorem. Use again the scaling as above. Suppose Q 
minimizes .sfW on W,. Then for c > 0 

f(c) = sZHW (W.)) (45) 

assumes its minimal value for c = 1. Thus 

0 = f’(1) = 2 f i (J$z+;Q;+$+r- 
I=0 0 

(4.6) 

which implies 

2THW+ PW+ WHW = 0, (4.7) 

where we introduced the obvious abbreviations for the first, second, and third 
term of the right-hand side of (4.6). Again the results for the case without 
interaction and for the Hellmann functional follow analogously. 

5. A bound for the quantum mechanical ground state energy 

As shown in [12] one finds for the quantum mechanical ground state energy 
the following upper bound, whenever some non-negative integers Nr,,,, such that 

1 Nr,,,, = N and non-negative functions &m,s with 7 4rcr2 &,,s(r) dr = Nl,,,, are 
I,m,s 0 

given : 

E,(Z, N) < C q4ar2 Jmf2+T CN’~;-ll+ r4Gzm,,(r)+ 
l,m,s 0 i 6m.s 

+ (y)-$L] dr + k ,G, I, jj s, $ dr4xr2 1 dr’ 4d2 &,m,s (4 &t,mT,sp (4 ) , , , 

If one introduces @r(r) = 4m2 q(21+ 1) &,,s(r) and assumes N1,,,, = 
Nl 

q(21+ 1) 
inde- 

pendent of m and s then the right-hand side of (5.1) becomes the functional afW 
with coefficients 

7c2 1-L 
a1 = q2(21+ 1)2 i 1 N&s + 

and /11 = 1(1+ 1). (5.2) 
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Thus, .sFW is an upper bound on the quantum mechanical ground state energy, if 
one prescribes the NI,,,, to be integer. Here we will generalize this condition to 
non-integer values of Nl,m,s. 

In the following we consider the trace class operators d, with the additional 
properties 

(i) 0 ,< dr (x, x’) = f wj~j(X)~~(~‘) < 1 and 
i=o 

(ii) jEo~j i SIVqji2d3r < CO. 
0= 1 

Here x and x’ are space-spin variables, i.e. x = (r, 0) and the gradient is to be 
understood in distributional sense. For this class of operators 

XV,) = i j -4 x, x) d3r+ 
ff=l Q &4 k 

1 X=X’ 
-$4 ( 

> 

+; 5_ ss 
dl (x, x)d, (x’, x’) 

d3 rd3 r’ 
b.0’ - 1 )r - r’l 

may be defined in a natural way. The occurrences of dl in the following proof may 
be interpreted in the same way. 

The quantum mechanical ground state energy can be bounded by the Hartree- 
Fock form of the energy functional independently of whether the one-particle 
density matrix is derived from a Slater determinant or not using Lieb’s theorem 
[17] and thus, by the positivity of the Coulomb kernel we have 

E,(Z, N) d h,(N) = inf {Z(d,)ltrd, = N}, (5.3) 

where N is the number of particles, i.e. an integer. However, we now relax this 
condition and allow for non-integer values of N for which h,(N) is also well 
defined, and prove that the condition trd, = N in (5.3) may be substituted by the 
condition tr d, < N. 

THEOREM 5.1. The function h,(N) is monotone decreasing, i.e. h,(N) < h,(N’) 
for N’ < N. 

Proof We introduce a seminorm for one-particle density matrices 

The functional X is continuous in this seminorm on each set (d, I tr d, < c} : Let 

Ildl,,-dlll* - 9 then 
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l~(4,n)-~(4)l G i: Jl[&,.(x, 4-4 6, x-q 
o= 1 x’= x 

Id3r+ 

+ i J ‘ld~,,(X, X)-d~(x, x)ld3r+ i J Eldl,n(xY x)-d,(x, x)jd3r 
LT= 1 lrl ca IfI CT= 1 111 >a I4 

+’ f 

2 o,or= 1 

I.FP’.“‘x’ xl+4 (x3 X))Pl,n(X’, x’l-4 (x’, a d3r,d3 r, 

If - r’l (5.4) 

The first term of the right-hand side of (5.4) tends to zero, which follows from the 
definition of the seminorm. In order to treat the other terms we remark that the 
following inequalities hold: 

i SJd;‘3(X, x)1&r <( i f&(x, x)jd%)*‘2( i 
a=1 a=1 . 

[Jd1/5’3(X, x)d3y)l’2, (5.5) 
o=l I 

i j(d115’3(x, x)d3r dconst i S 
0= 1 b= 1 

Id I( 1 x, x’) 1 . d3r, 
x’ = x 

(5.6) 

where we used Holder’s inequality in (5.5) and LiebThirring’s and Jensen’s 

inequalities in (5.6). Since &x~~E L5’*(R3) and ~~~EL~(RI) (B, = {rllrl d u)) the 

second and the thud integral will tend to zero using HGlder’s inequality, (5.5) and 
(5.6). The fourth integral is estimated by 

(5.7) 

1 1 1 111 
with -+ - +- = 2 and - +: + T = 2 using HBlder’s and Young’s inequalities. We 

4 r s 4r s 
choose q = 1, s = 9, t = $, s’ = 4, and t’ = 4. Thus we see that (5.7) will tend to 
zero and hence the functional 2 is continuous in the *-seminorm. Now we claim 
that each one-particle density matrix dl with trd, = N’ < N can be approximated 

by density matrices d,,, with trd,,, = N. Choose dl,, = d, ++g L g* c 

0 0 
with 

VgEL2(R3) and qJ)g(r)12d3r = N-N’. Thus trd,,, = N andn 
n n 

as n approaches infinity. Hence we can find a sequence dl,, with trd,,, = N > N’ 
so that s&‘(d,,,) approaches h,(N’) in the *-seminorm: 

hz(N) < lim .#(d,,,) = h,(N’). n 

n-5 
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From now on let d, denote the one particle density matrix with the followmg 
kernel: 

where 0 < w v,l,m,s d 4 and 1 w,,I,~,~ L < N. The xS are normalized spin functions, 
v,l,m,s 

e.g. xS (4 = L, the &, are spherical harmonics and cl(r) are monotone increasing 
functions with ii: [0, m) ---t [0, l), <i(O) = 0 and cl(r) + 1 for r -+ co i.e. 

for some non-negative function fi with integral one. For a given index 1 the 
difference /c,,~ -k,,,i has to be an integer multiple of 2 because of the orthogonality 
requirement of the eigenfunctions of d, . Therefore we choose k,,i to be 2v or (2v - 1) 
depending on whatever lowers the energy the most. 

By the above we have E,(Z, N) < H(d,). This yields 

E,(Z> N) 

d f f i i: W,,l,m,s 1 4 \~fm2+~~,lfi3( )+ r 

“=-_m I=0 m=-1 s=l 
($f$-F)&(r)]&-+ 

X 
I I;,m (Q2)12 I I;,,,, (WI2 

jr - r’l 
. (5.9) 

If we choose the w,,~,~,~ independent of m and s, we are able to carry out the sums 

over m and s in (5.9). Define the numbers N, = cq(21+ 1) w,,~,,,~ which have to 
‘Y 

a, 
satisfy the requirement 1 N, G N. Defining Nr,,,, = 

N, this is equivalent to 
l=O 4(21+ 1) 

cw v.1,m.s = Ni,m,s. Since v appears only in kz,, and since this term is positive, we 

&efer those v being closest to zero. Therefore we define Nj,,,,, to be the greatest 
integer less than or equal to Nr,,,,, and g1 = N1,,,, - N;,,,,. If N;,,,, is odd, we 
choose k,,! = 2v, otherwise we choose /c,,~ = 2v- 1. The numbers w,,~,~,~ are chosen 
as follows: 
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1 for Ik,~l d W,m,s- 1, 
W”,l,nt,S = fsl for Ik.d = W,,,,+ 1, 

0 otherwise. 

This choice satisfies the above mentioned condition 1 w,,~,,_ = Ni,,,,, because 1 

appears N,,,, times in the sum and gJ2 appears twi:e in the sum. 

Next we calculate C ky2,i w,,~,~,~. We get for A;;,,,, odd 

and for N;,,,, even 

Nl,m,s/2 
C k;, wv,l,m,s = c 2(2v-1)2+2$g,(N;,,,,+1)2. 
Y v=l 

In both cases one finds 

N:m s 1 
= T+ NL,,, 

> 

2 4 
-3+29,-g: +jgMg;+jgr, (5.10) 

where N,,,,S -gr was inserted for N;,,,,. Furthermore, we define gl (r) 

=c w,l,,,,g(21+ l)f,(r) = N,f;( 1 r an carry out the sums over m, s and v in (5.9) d 

using (5.10). This yields 

(5.11) 

In order to evaluate the interaction term one may use the addition theorem for the 
1 

spherical harmonics and the expansion of -, i.e. 
)r - f’j 

c II;,,(Q)(2 = 21+1 
m=-I 47[. ’ 
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Thus (5.11) can be evaluated to give the right-hand side of the conclusion of the 
following theorem. 

THEOREM 5.2. Let E,(Z, N) denote the injimum of the operator 

in A (L’ (R3)OCq). Let (eo, el, . . .)E W,. Then 
i= 1 

-q&c NJ d $y@O, @I, . ..)+ 

-3g:+6g,-1 

N: 
+q(21+ 1) 

2Y:-;3;+4g,)jQ;dr. 

1 0 

Therefore we have the following result. If the condition, that the Nl,,_ are 
integers, is dropped, we find that the Hellmann-Weizs%cker functional is still an 
upper bound for the quantum mechanical ground state energy provided one adds 
the correction term in Theorem 5.2, which can be positive or negative. However, 
the correction for the infimum proves to be of lower order, at least in our 
applications which will be shown in [18, 191. 
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