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We investigate some basic properties of the Hellmann and the Hellmann—Weizsiicker
energy functional, density functionals, which use densities for angular momentum chan-
nels as trial functions, and investigate their relation to the ground state energy of an
atomic N-clectron system. Furthermore, various scaling properties are shown, the virial
theorem, and in the case of no electron-electron interaction the dependence on the
nuclear charge.

1. Introduction

Already in the early period of quantum mechanics the Thomas-Fermi theory
(Thomas [1], Fermi [2], Lenz [3]) has been derived as an approximation scheme
for the ground state energy and ground-state density of N electrons for large
particle number in the field of some nuclei of total charge Z. The Thomas—Fermi
energy ELF(N) has for N = ¢Z a relatively simple dependence on the total charge

EXF(N) = ETF () 2713, (1.1)

Since the Thomas—Fermi model has been heuristically derived under the assump-
tion of a large particle number, the right-hand side of (1.1) has been considered as
the leading asymptotic term for the quantum mechanical ground state energy
Ey(Z, N) (see e.g. March [4]). Lieb and Simon [5] showed that this heuristics can
be turned into a proof. They obtained for N =c¢Z

Eo(Z, N)=ETH ()27 +0(Z77). (1.2
Later, Lieb [6] refined this result to
Eo(Z, N) = E[F () Z7P+0(Z27 71739, (1.3

Thirring [7] improved the lower bound for the infimum of the spectrum of the
Coulomb hamiltonian which implies that the error term in (1.3) may be chosen of
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order O(Z7/3~2133), Scott [8], however, and later Schwinger [9] and Englert and
Schwinger [10] gave arguments that the next correction should be of order Z2.
The constant should be given as ¢/8, where ¢ is the number of spin states, for the
electron two. The purpose of the present paper is to develop a tool for the first
part of this conjecture.

Hellmann [11] introduced a functional, which uses the densities of the angular
momentum channels as trial functions. We shall investigate the Hellmann and the
Hellmann-Weizsdcker functional, which will be used in later papers to bound the
quantum mechanical ground state energy in order to improve (1.3) towards Scott’s
conjecture.

In Chapter 2 we shall define the model to be investigated. Chapter 3 deals with
uniqueness and existence questions of minimizing densities and thus with the
uniqueness and existence of solutions for the corresponding Euler-Lagrange
equation. Moreover, the critical particle number, i.e. the number of electrons that
can be bound by an atom with nuclear charge Z, is discussed. In Chapter 4 we
mention some scaling properties of the Hellmann and Hellmann-Weizsicker
functional for the case with and without electron—electron interaction. Chapter 5
generalizes a previous bound of one of the authors [12] to the case of non-integer
occupation numbers of the various angular momentum subchannels.

2. Definition of the Hellmann and the Hellmann-Weizsicker functional and their
infima

We first define a set of functions. Let

G = §geL1 (R*) A I3 (Rf)]r%eLl (R*), 0 > 0}. (2.1)

“olr . . .
If peG, then jgi—) dr is finite, too, since
h r

1

Q(r) j o(r)dr+ Tlg(r)dr <
ol 17

r2

el +llelly- (2:2)
1

Thus

ez G- R, elz(0) = f( %0 (r)+(&—£>a(r)>dt (23)

is well defined, where ! denotes the angular momentum channel. The positive
constants «; are bounded from above while the numbers f§, are bounded from

2
below by a positive constant. They will be chosen subsequently to be <q~(2—?;1—)>

and (I+3%)? respectively. We remark that &f; is strictly convex on G. This follows
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from the strict convexity of x* for x > 0 and the linearity in ¢ of the second term
of the functional.

Furthermore, if ¢, is restricted onto Gy = eeGllloll; S N} or Gy
= {0eGl|lgll; = N}, it is bounded from below:

s{,’z(g) P :j)(%——%) (rdr—Z ?Q(r)dr = <1nf{<ﬂ—'—z

re(0, 1]} )N > const N.
(24)

If we neglect the electron—electron interaction for the moment, we may interpret
ez (0) with fedr = N as the quasi-classical energy of N electrons with radial
density ¢ in the angular momentum channel [ (Thomas-Fermi functional for these
electrons in the effective radial potential). If o, is chosen to be n* and {odr = N, it
may be interpreted as the quasi-classical energy of N electrons with radial density
¢ in the angular momentum subchannel with indices [, m, s.

Let @ denote (go, .., @), -..) and (@) = (Y. o | ¢7 dr)"’* be the norm, in which
1=0 (0]

X = L3(R" x Ny, dp) is a reflexive Banach space. Here dy is the Lebesgue measure
in the first coordinate and the counting measure weighted by «; in the second
coordinate. Furthermore, define the following sets:

"Ms

M={Q€X|Q?O f% <o0, )
! or

{odr < oo},
0

jQ—z w0, Y [odr< } (2.5)
0 . =0 R

B |

0

|
JATTI S

where Q 0 is an abbreviation for gy, ..., ¢;,... = 0. Then the quasi-classical func-
tional £f: M — R, which restricted onto Mgy is the functional of the total energy of
N non-interacting electrons in the filed of a nucleus of charge Z, is given by

MNz{gequzo Z

My = {Q€X|Q

1

e o)

&= Z z(@)- (2.6)

This is obviously well defined which follows from the properties of each ¢f, and from
the fact that Y wliedll, ¥ lledh, Y 85| and ¥ |
1=0 =0 =0 || =07l

latter follows analogously to (2.2), since the f; are bounded from below by a

are all finite. The

positive constant. Again for @ >0 and [ Y ¢/(r)dr < N the functional ¥ is
0 1=0
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bounded from below: Using (2.4) we get

1 o Z [ sI)
(o) = f Z (%—7>der—2 [ Z oi(r)dr = (const—Z) N. 2.7
0

=0 1 1=0

In order to treat interacting electrons we, introduce the quadratic form

D(o, o) = Td ; ds—M. (2.8)
0
r

o maxir, s

jdsa(s)-i— jdrg(r fdsﬁ and this is well

defined on G2. Thus the Hellmann funct1onal

e MR,

D(¢, 6) may be bounded by j’ er(

B (2.9)
e (@ =& (@+31 Y Do er)

LI'=0

is obviously well defined, and, since &f (g) = &7 () for @ = 0, it is also bounded

from below, if Z f o;dr < N. Later we shall show that this last condition is not
1=0 0

necessary. Physically speaking, the atom described by the Hellmann functional can

bind only finitely many electrons, which is obvious and has its source in the

electron—¢lectron repulsion. Indeed the repulsion will be essential for the corre-

sponding mathematical argument, too. Both ¢ and ¥ are strictly convex.

Given N = 0, the infima of the functionals (2.3), (2.6) and (2.9) are denoted by

eIZ(N) inf { 1312 (0)lee Gy}, (2.10)
& (N) = inf {g (0)lee My}, (2.11)
e (N) = inf (¢ (9}l @e My} . (2.12)

For every fixed Z these functions are convex and monotone decreasing. We are
interested in these infima only because of technical reasons. Later on, they will
allow us to make connections with the well known techniques of the calculus of
variations to establish the existence of minimizing solutions for

1z(N) = inf {ef'; ()| o€ Gon}, (2.13)

EZ(N) = inf {7 (@)l g€ May), (2.14)
EZ(N) mftﬁz(QHQGMam (2.15)
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The distinction between the two types of infima, however, is superficial, since the
corresponding infima are equal.

THEOREM 2.1.
el (N) = Ef,(N), & (N)=EJ(N), eJ(N)=E§N).

Proof: We prove only the third equation, since the other are proven by
similar arguments. The inequality eX (N) < EZ(N) is trivial. To prove the converse

o
we note that ¢ is continuous in the norm |lg||* = (Y lledl3)' + Z ﬂ,‘
1=0

& . Let @, — o in the *-norm, then

leZ (@ —¢7 (@)l < Y

[led (r)—o3 (r) dr+ B, ‘M

77 8
=}
°"'>8 PN,
w| R
A Ot 8

leu(r) =21}l , } S 1D e)~Dlens ear)l. (216

LI'=0

The second and the third term tend to zero by definition of the *-norm. For the
first term we get

— 8

a0

o [ lo? () —eni (Ml dr < Z o [ lei(r) = @ni(r]*dr+
0

Ms

"
=]
(=]

+3 3 o [l en(M (@) —eun@)dr.  (217)
0

=0

Again the first term on the right-hand side of (2.17) converges to zero by
definition. The second term on the right-hand side of (2.17) may be bounded as
follows by Holder’s inequality

Z a; j th(r) Qn,1(7) (Qt (")““Qn,t("))| dr
=0 0

<(Y @ [ @) (Y a [ d) (3 o | o) —gna () dr)?
I=o 0 = 0 =0 0

=0

[e9)

< const( Y oylle;—enil3)? — 0. (2.18)

=0
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Finally, we estimate the last term of (2.16)

Z ID(@i> @) —D(2n1s nr)l

LV'=0

(lD(Qb or)—D(or, en )l +|D(@n1s 0r)— D(0n1s an)f)

(;g,m a1 ey o [0~
(2.19)

o~

‘uMS EMS

Next we claim that each element ge M with ) |lg/l; < 4 can be approximated by
=0

functions @, with Z ||@nill; = A. Choose g,; = ¢+ - f,, 1, where the f,; are non-nega-
=0

tive functions with [0, (1+B)n)~supp f,; = O, Z jf,,,, dr=n(i— ) [adr),
0

=0 0 =0
a0
2

=0

Ksupp sy ,dr 2ni, and f,; < 1. Then

o 8

1 an an i an "
no—e,n*=—{(za,5fn. s 3 gl o 5 L }
n{i=0o o =0 1
sl const(2nl)”3+%+2il -0, : (2.20)
n n? n

since the «; are bounded from above. Thus we can find a sequence @, with

o @

Y [ enidr =4 so that ¢ (g, approaches ef(4) in the *-norm. Thus

=0 O

EF () < lim e (e) = (). (2.21)

n—ao

Remark. The above argument has its origin in a similar argument of Lieb and
Simon [5] for the case of Thomas-Fermi theory.
The second type of functionals we wish to consider are analogues of the
Thomas-Fermi model with gradient term. We call them Hellmann—Weizsicker
2
functionals. For these functionals we choose a; = (—n——) and B, =1(1+1).
q(2l+1)
First we treat the functional for one angular momentum channel. Let H§ (0, o) be
the local Sobolev space of order one (completion of C§ (0, o) in the norm ||¢ll2,,
=l@ll2+l¢llz and let

F={ele >0, /ee H}(0, )}. (2.22)
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Define
efy: F—-R

¥ (o) = ({(\/e(r) L4 93(r)+(’ Z)g(r))dr. 2.23

By Lieb- Thlrrmgs inequality [13] [[oll; < cllfllz 1 holds. Moreover, j 2er can

be bounded by const j \/5’2 dr using Hardy’s inequality. Thus, in view of the result

for eff, the funct10na1 ey

e 0]

jgdr < N, and strictly convex which follows immediately from the proof of the

is well defined on F, bounded from below for

convexxty of the Thomas—Fermi-Weizsdcker functional (Lieb [6]).

To treat the functionals of the total energy we define @ H}(0, ) to be the
14

=0
Hilbert space direct sum of H}. Then with \/é =(/0Co, > \/E,, .. let

~ole>0. Vae S 10, ), 3 4, T4 ar <],

Wy = {eeW| ) [adr< N}, (2.24)

Wiy = {QGWI Z

Again one shows that
eIV W — R,

o , (2.25)

&Z" (= §<\/Ql(") + st( )+<E—‘>Qt(r)>

1=0 0
and
&% W R,
(2.26)
eg” (@) = Z §<\/Ql(r' Q?()“’(ﬁ—E)Ql("))d"*‘ Z D(a, or)
1=0 0 11—0

are well defined on W, bounded from below on Wy and on W,,, and strictly
convex. We introduce

e7” (N) = inf {e§¥ (@)l @ Wy}, (2.27)
and

EZ"(N) = inf {e£" (@)l @€ Wan} - (2.28)
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As for the case without gradient correction one proves:
THEOREM 2.2
ey (N)=EZ' (N), &"(N)=Ef"(N), ef"(N)=Ef"(N).

Here we used notations analogous to those in Theorem 2.1.

3. Uniqueness and existence of minimizing densitions, Critical particle numbers

First we show the uniqueness of minimizing densities:

THEOREM 3.1. If there exists a minimizing density for one of the above defined
Sunctionals, then it is unique.

Proof: Suppose this were not the case, i.e. there were two distinct ¢ and ¢
with £(g) = ¢(6) = e(N). Then by strict convexity for 0 <a < 1

e(ag+(1—a)6) <ac(@)+(1—a)e(o) = e(N), (3.1)

which is a contradiction. =

Next we investigate the existence of minimizing densities and the maximal
number of electrons which can be bound for the Hellmann functional. First we
treat the relation of the Euler-Lagrange equations to the Hé¢llmann functional.
The following theorem and its proof are analogues of the corresponding result of
Lieb and Simon [5] for Thomas—Fermi theory.

THEOREM 3.2. (a) If ge My obeys the Hellmann equations

ﬁl’I/Z
a(r) =0¢f”2[¢(r)+/1—;5J , 1=0,1,2,.., (3.2)
+
where ¢ is either
o T al)
¥ 33
o) = r ,;,gmax{r r} (33)
or
Z
o)==, (34

then @ minimizes €f respectively 5 on My, E¥(x) and EH(x) are differentiable at x
= N, and
dE¥ (x) dE} (x)

tively A = .
dx |_» respectively dx b

A= 3.5)

In particular, A is zero (in the interacting case), if @ minimizes ef on M.
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(b) Conversely, if e M,y minimizes ¥ or € on Mgy, then @ obeys the Hellmann
equations (3.2) and (3.3) or (3.2) and (3.4), respectively, where A is given by (3.5).

Proof: As mentioned above, the proof is analogous to the proof of Theorem
I1.10 of [5] with the definition 8¢/dg;, = a0 — @ (r)+/r*. =

Next we come to the existence of a minimum. The strategy is the usual one of
calculus of variations: Show weak lower semicontinuity of the functional on a
suitable weakly compact set. For the Hellmann functional this is unfortunately not
straightforward because of two reasons: The high singularity at the origin of the
By/r? term and the lack of decrease in the variable [ in the Z/r term. We start with
¢f', where only the first problem occurs.

TueoreM 3.3. ¢!, has a unique minimizing element in Gy.

Proof: Let g, be any sequence in Gy such that lim & (o,) = ef';(N). Further-
B

zZ . .
more, let r; be the zero of EZI——, ie.r = 7 We then see that g, = g, X, ) 1S also
r

.
a0

a minimizing sequence, since [ 0,dr < N and
(4]

« Z x VA

A ..
where we used the property that EEI—— is positive for re(0, r;). Next, we remark
T

a0

Z ) zZ
that [g,l3 is bounded: — [— g,dr is bounded from below on Gy by ——N, thus
or

0 ry

- 3 /(% (o, B Z\. Z 3 .. Z
0 <133 < —(I (3'03+<—2'~—>Qn>dr+*N>=—(Effz(enH*N)- (3.6)
o4} h r r ry o4} r

The right-hand side of (3.6) is convergent as we showed above and therefore
bounded in n. Thus, since L*(R™) is reflexive, we may use the Banach-Alaoglu
theorem and extract from g, a L3 (R*)-weakly convergent subsequence, whose limit
is denoted by g¢. We denote this subsequence by g, too. We get

[Q dr = lim fg Ondr < lim ([ 3 dr)?({ @7 dr)'?,
0

no n— oo 0
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and thus

o @ '
3 g 53 dr. 3.7)

VA
Since (Ezl—?>x(,,,w,ep/z(k+), we obtain
r

@ Z
lim | <r—'—%)§,,dr = b[ (—21—~)§dr. (3-8)

Ao 0 ror
Combining (3.7) and (3.8) we have
H (e Tiem oH (35— H (AN
enz\@) & 1im & z{Qn) = ez (V).

This proves the theorem provided we can show geGy:

ao

(1) ¢ =20 ae, since otherwise j f(@,— @)dr would not converge to zero for

]
every fe L2 eg f= XA with A = {r lé(r) <0, r < R} for some large enough R.

(ii) der < N, since J"gdr- lim jx(o,,,,gdr— lim lim jx(o,,,)g,,dr

m-— o () m-w o
% 0 N
(iii) j € ar < oo, since j Qar= j‘ dr < rz
1
Uniqueness follows from Theorem 31. =

Next we come to the functionals of total energy. Let k be some non-negative
integer and &*(é¥¥%) the restriction of &7 (&) onto M* = {ge M|gx, "= 04+2
=...=0}. Analogously one defines MY, M%y. A simple corollary to the proof of
Theorem 33 is

THEOREM 3.4. &F* and E5* have uniquely determined minimizing elements on
MY, '

Proof: We remark that the r, are bounded from below by 1/(4Z) and that
D(p, 6) as a positive quadratic form is weakly lower semicontinuous. The rest
follows as in the proof of Theorem 3.3. =

THeoreM 3.5. (a) The following holds
f(k) = inf {eF* (@)@ M} > inf{ef*" ! (Q)lee MK '} = f(k+1),

i.e. the infima are monotone decreasing functions in k.
(b) There is a critical k, such that f(k) = f(k;) for k > k., and in this case the
uniquely determined minimizing @* has ¢y +1 = O +2=...=0.

Proof: (a) is immediate.
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(b) Let g be the uniquely determined minimum of &3** on M} Then ¢* fulfils
the Euler-Lagrange equations for some non-positive p

1
¢ = o oW —BIY?  for 1=0,1,...,k,
r .

where

k o *
" z( )
ro=r (-8 Tt en)
Since P*(r)/r? is monotone decreasing on S = {r|¥*(r)/r* > 0}, we have

wE(r) YA _ YE(ry)

2 = 2 < 2

r r ry

forr=zrz=r,.
Given ¢ > 0 we distinguish two cases:
(1) ¥* is bounded by (1+¢)f,.
(2) ¥* is not bounded by (1+¢)f,. Then we define for every r with ‘I”‘(r)

1+¢) B,

> (1+¢)p, the point r, = r<( Y () ) . Let relr,, r]. Then we obtain

N\ 2 1
() > (’) ‘P*()>( > i) = Cr O 0) = (149

Thus

di(rydr = j@o(r)dr =ap ”2f [‘P"(r) BolY?dr
\/El__ /ggﬂ P (r)
%o a2 (1+8)Bo’
‘I"‘(r)é(1+e)ﬂoexp<2\/;%N>.

Combining both cases and choosing ¢ = 1, we get

4nN
YE(r) < exp -1;~ (3.9

2,
\%
M=

Ot 8

1]
(=]

and therefore

The right-hand side of (3.9) is independent of k and r. Therefore, independently of
1 4nN

k, we obtain at least for all I with §; > EexpnT that g, = 0 which proves (b). The

proof of (3.9) is essentially due to Solter [14]. m
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We remark that for the non-interacting case the analogue can be proven in a
similar way. Therefore we have as an immediate corollary:

THEOREM 3.6. ¢ and £F have uniquely determined minimizing elements in My

. Hk ~H k . k .
which are equal to those of e, ¢ and & "°, respectively, on My and the corresponding
minima are equal.

Now we discuss the critical particle number. Let N, be that particle number,
where the energy ceases to decrease further. We call N, the critical particle
number. Since the infima of both the Hellmann and the Hellmann—Weizsdcker
functional are monotone decreasing in the particle number, as Theorem 2.1 and
2.2 show, and convex, N, e[0, co] is well defined. Because of the monotonicity of

e 9]

the infimum and the uniqueness of the minimizing @ we have ) [loll, = N for
I=0

N < N,. Our goal is to show that N, = Z in the interacting case. We begin with

the following theorem.

TueoreM 3.7. For N < Z the minimizing @ for ¢§ on My has ) |o,dr=N.
I=0 0

Proof: Suppose that the minimizing @ has )
1=0

0;dr = No < N. Then the

Qe B

Lagrange multiplier A is zero, thus

w i@z(”')
“1912(")=[E— { — dl—%]+.

r pmaxir,r} r

Thus there exist two positive constants ¢ and R such that

1
Q,(F)ZC\/- for r = R.
r

Hence
o o
[eidr=c [r~Y2dr = o0.
0 R
Such densities, however, are excluded, which proves the theorem. m

THEOREM 3.8. If N = Z, then for the @ that minimizes £§ on My the following
equality holds:

o(rydr =2Z.

s
Oty B

I
<)
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o

Proof: We first remark that Z | @,(r)dr cannot be smaller than Z because of
= 0

0/(rydr > Z. Then by Newton’s theorem, for r

O‘-aS(

Theorem 3.7. Now suppose Y,
1=0

large enough,

7 Z o(r)
o0 = L 19

becomes negative. We therefore have a closer look at
T={reRjr=0, o) <0}.

First we remark that ¢ is continuous away from zero. Zero, however, does
certainly not belong to 7, since ¢ diverges to infinity as r approaches zero from
the right. Thus Z as the preimage of an open set under a continuous function is
open. Furthermore by the Euler—Lagrange equation

O‘IQIZ(")=[(0—& J

0; is zero on 1T, since A < 0. Hence on T Z 0 =0 and since

2
SRR
0
@ = a+bfr. Because ¢ vanishes on the boundary of T and ¢(r)— 0 for
r— x, ¢ is identical to zero on T. Hence T = ) and ¢ > 0 everywhere, which is a
contradiction. m

Both proofs are characteristic of the Hellmann functional and cannot be
transscribed to the case with gradient correction. The following theorem summar-
izes the above results.

TueorReM 3.9. (a) If N < Z, then & assumes its minimum on M,y for a unique
element. The minimizing density fulfils the Euler—Lagrange equations (3.2) and (3.3)
H
with A = dE; (x)
dx x=N
For N > Z there exists no minimizing element for e in M,y and no solution of
the Euler—Lagrange equations. In My, however, a unique minimizing element g exists

[« SR o]

which fulfils Y | dr=2Z.

I=0 0

. Particularly, if N =27, then A =0, and if N < Z, then 1 <0.
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(b) For & a unique minimizing density in My exists for all N. This density
dEY

z(3) <0.

dx x=N

Julfils the Euler-Lagrange equations (3.2) and (3.4) with 1 =

Proof: For the non-interacting case N, = oo remains to be proved. This
follows analogously as in the proof of Theorem 3.7. =

Now we come to the Hellmann—Weizsiicker functional. For technical purposes
we define further functionals and sets of functions, obtained by writing ¥ for g:

F={yly>0y’eF},
W={Vv>0 yew},

and analogously Fy, Fay Wy and W,y. ¥? stands here for (Y2, ¥2, ...). These
functionals are the following:

FY W)= ?( ;2+9‘3—‘¢?+(—’—5)w3>dr,

2
0 r r

an

FEN =Y FiT W),

=0

FNW =FI"W+1 T DWW, vd).

LIr=0

The infima of these functionals are the same as those of the associated density
functionals and ¥ minimizes F£¥ on Wy, if and only if p = Y* minimizes ¢¥* on
W,y. The same holds in the other cases. Therefore we denote the infima of the
Z-functionals by E, too. Now we come to the relation of the functionals % to the

Euler-Lagrange equations:

TueoreM 3.10. (a) If Ve Wyy obeys the Hellmann-Weizsiicker equations

C— ;’(r)+a,¢,5+<&—q)(r)—l)|//, =0, [1=0,1,2,..., (3.11)

r2

where ¢ is either

o(r) = o 1=Zo gmax {r, o dar (3.12)
or
Z
)= - (3.13)

then V¥ minimizes FE¥ respectively 5% on Wy, EE¥ (x) and EZ¥ (x) are differen-
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tiable at x = N, and

dES¥ (x) - : dEFY (x)
—_— respectively A = —=—— .
dx x=N dx x=N

A= (3.14)

In particular 1 is zero (m the interacting case), if ¥ minimizes FE8% on W.

(b) Conversely, if e Wyy minimizes FE¥ or FH¥ on W,y, then ¥ obeys the
Hellmann—Weizsiicker equations (3.11) and (3.12), respectively (3.11) and (3.13) where
A is given by (3.14).

Proof: The proof imitates that of Theorem 3.2. »

Now we are concerned with existence questions.

TueoreM 3.11.  FP¥ has a minimizing element in D where D is the completion
of WeC§(0, o)l =0} in the norm (Y|l +|Ills-

Proof: First we remark that #1 is finite on D: Because of Hardy’s and
W L2 e
Filder’s inequalities f ~—dr j Y'?dr holds and for every &> 0 there exist
0
positive numbers ¢ and b with

® 4 a0 2 w © ©
jg¢2dr<j<g—%)lﬁ2dr+ej dr+ j l//zdr ijﬁ’zdr+b(jlﬁ6dr)1/3.
0 r 0 r 4r o o

Therefore #77 is bounded from below on D by

p o
Fi7 =y II%+§H¢II2+ﬂz "

“w —ellW11Z=blliE = (W13 +1¥Il§) — C (3.15)

with certain positive constants y and C.

Now let , be a minimizing sequence. Because of (3.15) we find that ||y}||, and
l¥.ll¢ are bounded. By the Banach—Alaoglu theorem we can extract a subsequence,
also denoted by ,, converging weakly in the norm ||yl +|¥.lle to yeD.
Therefore ¥, — ¥ weakly in L° holds and hence

jt//" r < lim j"x//,,dr (3.16)

n— o

Choosing the number a sufficiently small we define the scalar product

U, ¥) = :f<f VL0 .,(r)fw)dr
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which is continuous in the norm ||, +|¥ile
a /7 2 1/2 a
(L) < |lf’l|2f|¢’||z+(f <7f) dr) (Mzalr)”2
< 1/12 112 +const || fl]2 [IWlle < const(|ly']|2+1¥ls)-

Therefore, using Schwarz’ inequality, we find
n _;‘ (llz A[G,a] \r) .Yllz\d'r s llm j‘ (k/;z_gxﬁa](r)'li\dr' (317)
o\ r / % o\ r /
® f ) ) )
Furthermore j—leldr 1s a continuous linear functional
o’
B | o 42 1/2 /1,2 1/2
f—z (f ) <§7dr) < A4S M2 (2 +Ille)
ol orl ol
yielding
o 2 @ wn
B j < lim B, j (3.18)

© Z
The term | ——7|/12 dr remains. Since ¥, — ¥ weakly in L, ¢, -y weakly in L2

and therefore in Hj . Since for any R > 0 the space H'(0, R) may be compactly
imbedded in L*(0, R) (Adams [15] Theorem 6.2), we find 2 — ¥? strongly in L}.
Therefore we have

—y%dr

YHdr| <

j(!//,. 2)dr+

Ro Rop

(j‘ r 3/2dr)2/3( j‘ IWZ '// I dr)1/3+22/3 R—l/3(j‘ WIZ 2[3 dr)l/S.

The first and the third integral are finite. The second integral tends to zero as n
approaches infinity, whereas all the other terms remain bounded. Taking then the
limit R, to infinity yields zero for the remaining term. Thus we have

j n/zzdr-—hmj y2dr. (3.19)

n—aw g

Combining (3.16), (3.17), (3.18) and (3.19) we finally arrive at
Fi7 W) < im #17 (Y,). »

n—*co
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Again, as in the Hellmann case, we can generalize this result to the case where
finitely many angular momentum channels are taken into account. We define the

functionals #E%* and ZE%* and the sets W* W} and W) analogously to the

Hellmann case and we arrive at

TueoreM 3.12. FEW* and FEW* have minimizing elements in

D* = (W|Yo, Y1, ... €D, Yyiy =¥iu2=...= O}

Now we consider the critical particle number. Of course N, = oo, if there is no
interaction. Our goal is to show that N, < oo for each functional #4"* and

N.>Z.
k w®©
The ¥ that minimizes F5"* on D* fulfils Y, [yidr < .

TueorEM 3.13.
1=0 0
o k
Proof: Suppose | ) ¢idr=oco. Then there will be a point r, with
0 1=0
L I 4 ] S
[ Y yidr=2+6 for some positive 5. Therefore ¢(r) < —- holds for r>r,.
r

0 1=0
Since ¥ fulfils the Euler-Lagrange equations (3.11) for [ =0, 1, ..., k we have

0
— ;’+;|/1,<0 for r=r,

The function ¥, = Mre™ %  fulfils the inequality

— ~;’+f|/7, =20 forr+#0.
r

Thus we have for r = r;
- o -
—(lﬁt“'/’t)/"i';(‘//z—'//z) <0. (3.20)

Y,(ry). Now fix e Cg[0, ) with 0<{ <1 and

1 forr<i
C(')z{o for r > 2

Choose M such that y,(r,) <

and define {,(r) = { (%) Multiplying (3.20) by ¢,[¥,—¥,]+ and integrating over
the interval [r,, o0) yields

j(‘/’l ) Calvi— 0 + 8 [y — 9.0 ) dr + j [ —¥,13 Cadr <
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and hence

I Wi~ .03 Cudr < f~(¢z-l/71)’C;[l//z Ui+ r—sz”[lﬂz i3 dr.

r

We may estimate the latter integral by

fdr <cen*Pylig,

=r.;'=\’

! jé"wl i1 dr < jC”tﬁ,dr < fv

which tends to zero as n— co. However, {,— 1 as n approaches infinity and

3 - . ~ . ~ .
therefore [—[n//,~¢,]i dr = 0 yielding Y,(r) < Y, (r) for r = r,. Since y; is square
rl r
o k

integrable, we find ¥, L?, too, and hence | Y ydr < co, which contradicts our
0 1=0
assumption and proves the theorem. m

THeOREM 3.14.  If \y minimizes FEY or FZW* on D= or DX, respectively, then

Y [widr>Z.
=0 0
Proof: Again we suppose that the contrary is true: ) [y{dr <Z. Then we

=0 0
find easily that ¢(r) = 0 for r # 0. Therefore, since a minimizing  fulfils the
Euler-Lagrange equations, we have particularly for r # 0

—Yo+agPs =0

The function o = cr™ /2 fulfils for r > 1 the inequality

—Yo+oeY3 <0

. ) 3q?
if the constant ¢ is chosen such that ¢* < Zq_z holds. Therefore we have for r > 1
T

—(Wo—o) +ao(Wi—¥3) = 0. (3.21)

Since yoe Hl_, ¥, is continuous on a compact set Q using Theorem 5.4 of Adams
[15]. Therefore we can choose ¢ such that (1) < ¥, (1). Moreover, Y = a3 —
—@(r)y, is continuous and consequently Yoe C?*(22). Now define the function f
=o—, and the open set 4 = {r > 1| f(r) < 0}. Using (3.21) we find on A4 that
f" <0, 1e. f is concave. This is impossible, since f(1) = 0 and ¥, = 0. Hence 4 is
empty and Yo (r) < Yo (r) for r > 1. Therefore we have
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Yyidr > l//odr j Y§dr=c* [r 'dr =0
1

0 1

il

s
Ot 8

1

which yields a contradiction, thus proving the theorem. m

We remark that the proofs of the Theorem 3.11, 3.13 and 3.14 are suggested by
Benguria, Brezis and Lieb [16].

In a final theorem we summarize the results for the Hellmann-Weizsicker
functionals.

TueoreM 3.15 (a) For every ke N, there exists a number N, with Z < N, < o0
such that for N < N, the functional e5""* assumes its minimum on W) for a unique

element 9. Y= \/Q fulfils the Euler—Lagrange equations (3.11) and (3.12) with i
EHW,k
=d—d—(x) . Particularly, if N=N,, then A =0, and if N <N, then J <0.
X x=N
For N > N, there exists no minimizing element for eZ"* in Wl and no solution

of the Euler-Lagrange equations. In W¥, however, a unique minimizing element @
k o :

exists which_ fulfils )" fe,dr =N,
=0 0
(b) For every ke Ny the functional & assumes its minimum on W), for

a unique element @. Y = \/éfulﬁls the Euler—Lagrange equations (3.11) and (3.13)

EHWk
with J __t{_(x) < 0.
dx x=N

HW .,k

~HW .k

4. Scaling properties of the Hellmann and the Hellmann-Weizsiicker functional

In this chapter we collect some scaling properties of the Hellmann and the
Hellmann—Weizsidcker functional. Let us start with the interaction free case. We
scale

r—Zr=r,
_ (4.1)
e(r—Zo(Zr)=¢(r).
Then
2 o B, z?
7 (2) = J{( \/ZQ(Z")) +§Z3Q3(Zr)+ ZQ(Z")——Q(Z")}dr' ert ().
4.2)
Thus we obtain
Y (N) = Z*EfY (N), 4.3)

and
EFW(N) = Z? E¥¥% (N). (4.4)
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The counterpart of (4.2) for the Hellmann functional implies the result analogous
to (4.3) and (4.4). For the interacting case this result breaks down, however.

Next we show the virial theorem. Use again the scaling as above. Suppose @
A% on Wy. Then for ¢ >0

minimizes &y
flo)=¢ez"(ce(c) (4.5)

assumes its minimal value for ¢ = 1. Thus

0= rw=2% T(Va* S o+l i

=0 0
S e, 12T T alr)er(r)
- ——dr+= dr {dr' ———=, (4.6)
I=ZO g r 2112=0(‘)~ (j) max {r, r'}
which implies
2THY 4 yHV L wHW = 0, 4.7

where we introduced the obvious abbreviations for the first, second, and third
term of the right-hand side of (4.6). Again the results for the case without
interaction and for the Hellmann functional follow analogously.

5. A bound for the quantum mechanical ground state energy
As shown in [12] one finds for the quantum mechanical ground state energy
the following upper bound, whenever some non- negative integers N, such that

Y Nims= N and non-negative functions @, , with j4rtr2 Oims(r)dr =N, are

lms

given:
® _ 2 16n* [N}, —1 -
Rl L N e
lms O I,m,s
l+1) Z
+<(r2) r) 1ms}dr+ D) fdr4nr2jdr4nr Grm,s (1) O s (F)
lmslms
1
xdede’IY”"'(Q)IZIY"""'(Q,)IZE——H' (5.1)

If one introduces g,(r) = 4nr? q(2l+1) g, (r) and assumes N,,, ;= L inde
" g1+ 1)

pendent of m and s then the right-hand side of (5.1) becomes the functional £5”
with coefficients

n? 1
= 1-— d =1(l+1). 52
% q2(2l+ 1)2|: le,m,s:l+ an ﬁl ( + ) ( )
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Thus, % is an upper bound on the quantum mechanical ground state energy, if
one prescribes the N, to be integer. Here we will generalize this condition to
non-integer values of N, ..

In the following we consider the trace class operators d; with the additional
properties

() 0<dy(x,x)= Y wjp;(x)eF(x)<1 and
j=o
@ q
i) > w; Y [IVe?d*r <.
=0 c=1

Here x and x’ are space-spin variables, i.e. x = (r, ) and the gradient is to be
understood in distributional sense. For this class of operators

| 4 & , z ,
%(dl) = ;1 j ﬁdl (X, x) xle“mdl (x, x)>d r+
1(x, x)d; (X', X')

&drd’r
Ir—r'|

1 & d
5 2 if

o,6'=1
may be defined in a natural way. The occurrences of d, in the following proof may
be interpreted in the same way.

The quantum mechanical ground state energy can be bounded by the Hartree—
Fock form of the energy functional independently of whether the one-particle
density matrix is derived from a Slater determinant or not using Lieb’s theorem
[17] and thus, by the positivity of the Coulomb kernel we have

Eo(Z, N) < hz(N) = inf {#(d,)|trd; = N}, (5.3)

where N is the number of particles, i.e. an integer. However, we now relax this
condition and allow for non-integer values of N for which hz(N) is also well
defined, and prove that the condition trd; = N in (5.3) may be substituted by the
condition trd, < N.

TueoreM 5.1.  The function hz(N) is monotone decreasing, i.e. hy(N) < hy(N')
for N' < N.

Proof: We introduce a seminorm for one-particle density matrices
2

ki 0
Iy = [‘ i, (x, x’J .
1 aglj arar ll( ) . r

The functional # is continuous in this seminorm on each set {d|trd, <c}: Let
ldy »—dq|[* — 0, then
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dr+

02 |
[ﬁ(dl,n(x, x')—d; (x, X/))J

x'=x

# )= AN Y

+ Z Ilj Ir 1ld1 2 (X, X)— d;(x, X)|d3r+ Z j . lldl (X, X)—d, (x, X)ld3
o=t bsa e=1 |r| >a
Zq: ff(dl’"(x’ x)+d; (x, X))]dl,,,(x’, x)—d; (x, x)|

ao—l ll‘——l‘,l

B3rdir. (54)

The first term of the right-hand side of (5.4) tends to zero, which follows from the
definition of the seminorm. In order to treat the other terms we remark that the

following inequalities hold:
q

3 [di3 (x, x)|d>r < ; |dy (x, x)|d*r)t/? [1di PP (x, x)d> )2, (5.5)
> | (3] e

‘=x

&
Z [ld;1>*(x, x)d*r < const Z j[ﬂr P Id] (x, x):’ ar, (5.6)
where we used Holder’s inequality in (5.5) and Lieb-Thirring’s and Jensen’s

i 1
inequalities in (5.6). Since I?;(BaeLS/:"(Rﬂ and mxge L*(R%) (B, = {r||r| < a}) the

second and the third integral will tend to zero using Holder’s inequality, (5.5) and
(5.6). The fourth integral is estimated by
> (5.7)

lldy,a+dll, (“dl,n_dlllt
o111 1 1 1 . v . ..
with —+;+— = 2 and —+?+—, = 2 using Holder’s and Young’s inequalities. We
q S q S
choose g =1, s=3,t=3, s =4, and t' =%. Thus we see that (5.7) will tend to
zero and hence the functional # is continuous in the *-seminorm. Now we claim
that each one-particle density matrix d; with trd; = N’ < N can be approximated

1 ! .
by density matrices d, , with trd, , = N. Choose d, , = d, +;§g (i)g* (%) with
Vge L*(R%) and ¢ [|g(r)*d*r = N—N'. Thus trd,, = N and

b))
n =l [6r or'? C)g* G)Jr’ﬂ

as n approaches infinity. Hence we can find a sequence d, , with trd; , = N > N’
so that #(d, ,) approaches h,(N’) in the *-seminorm:

hz(N) < lim #(dy,,) = hz(N'). =

n—ao

1
s+“d1,n_d1”z' ”I?IXE

1
,H AB,

*

lldy,n—diff* =

d3r=%§lVg|2d3r—>0
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From now on let d, denote the one particie density matrix with the following
kernel:
0 14 q IS 2a
ikymytry N/ S ()
Z z Z Wy ms€ o v ; - X

o 1=0 m=—1s=1 r

Ms

dq(

@ n0)e TNy 00 (58)

where 0 < w,;ms <1, and Y w,;.,<N. The y, are normalized spin functions,
v,l,m,s

e.g. xs(6) = d,,, the Y, are spherical harmonics and {;(r) are monotone increasing
functions with {;: [0, cv)— [0, 1), {;(0) =0 and {,(r)— 1 for r — oo ie.

4L = [ dr

for some non-negative function f; with integral one. For a given index [/ the
difference k,;—k, ; has to be an integer multiple of 2 because of the orthogonality
requirement of the eigenfunctions of d,. Therefore we choose k, ; to be 2v or (2v—1)
depending on whatever lowers the energy the most.

By the above we have Ey(Z, N) < #(dy). This yields
Ey(Z, N)

X

0 1 q :
D) Zwv,l,m,sj{w/f,(r +k31fz()+<l(l+l) Z)fz(r)}dr+

oo I=0 m=-1s=1

+12 Z Z zwvlms vlms jdrjdrﬁ ﬁ'(r()jdg‘.dg/

2vv L' mm’ s,s’

<

v=

|M8

| Yy (D) [ Yo e ()]
X .
Ir—r|

(5.9)

If we choose the w,; », independent of m and s, we are able to carry out the sums
over m and s in (5.9). Define the numbers N, =) q(2/+1)w, . ; which have to

N;
satisfy the requirement Z N; < N. Defining N, = (21 0 this is equivalent to
=0
Y Wy ims = Nims- Since v appears only in k%, and since this term is positive, we

prefer those v being closest to zero. Therefore we define Nj, , to be the greatest
integer less than or equal to N,,, and g, = N,,,—N; .. If N, is odd, we
choose k,; = 2v, otherwise we choose k,; = 2v—1. The numbers w, ; , ; are chosen
as follows:
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1 fOI' Ikv,ll < ;,m,s - 13
W tms = %gl for }kv,l, = N;,m,s+ 1,
0 otherwise.

This choice satisfies the above mentioned condition Y W, ;ms = Ny ms because 1

v
appears N;, ¢ times in the sum and g,/2 appears twice in the sum.
Next we calculate Y k2w, ;... We get for N;, . odd

v
Ny~ DI2

Zk%,l Wv,l,m,s = Z 2(2V)2+ zégl(N;,m,s-*_ 1)2,
v v=1
and for Nj,  even
Nl,m,s/2

Zk\zr,lwv,l,m,s = Z 2(2v_1)2+2%gl(N;,m,s+1)2'

v=1
In both cases one finds

1
Zk\z),lwv,l,m,s = 3Nlms(Nlms 1)+gl(N;,m,s+1)2

Nims 1 2 4
= '3 ’ +Nz,m,s<—§+Zgz—g?)+§g?—2ﬁ+§gz, (5.10)

where N,,,—g, was inserted for Nj,,. Furthermore, we define g,(r)
=Y W, 1msq(2I+1) fi(r) = N, fi(r) and carry out the sums over m, s and v in (5.9)

using (5.10). This yields

Eo(Z,N)< ¥ f{\/ () +((r+) Z) )+

=0 0

1 1 2 4 \qQI+1)
(3Nlms+Nl,m,s(_§+2gl-glz>+§g?_2giz+'3"gl)'_lv“l3"_9? dr+

1 ® 1
+ Z fdr jdr 2Q,(r)Q, (r)defdQ’ - (5.11)
2,120 0 16n —r]’
In order to evaluate the interaction term one may use the addition theorem for the
spherical harmonics and the expansion of I;“_l"\’ 1.e
! 20+1

2 V(@) =

m=—1

4r
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i }’:‘ (min {r, r'})!  4n
|r—-r| <o ,(max P 2141

Y5 () ¥, ().

Thus (5.11) can be evaluated to give the right-hand side of the conclusion of the
following theorem.

THEOREM 5.2. Let Ey(Z, N) denote the infimum of the operator

Hz,i( A—£)+Z !

|l i<j|ri_rj|

N
/\ (L*(R*)®CA). Let (o, 01, --.)€ Wy. Then

Eq(Z, N) < ¥ (00s 01, - )+

i 3 6 2g3 —6 4g,\®
n Z < gt +6g,— + g2i+1) g — gz+ g f
=0 3 N? 0

Therefore we have the following result. If the condition, that the N, are
integers, is dropped, we find that the Hellmann—Weizsicker functional is still an
upper bound for the quantum mechanical ground state energy provided one adds
the correction term in Theorem 5.2, which can be positive or negative. However,
the correction for the infimum proves to be of lower order, at least in our
applications which will be shown in [18, 19].

Acknowledgements

The authors thank A. M. K. Miiller for his constant support and encourage-
ment as well as G. U. Solter for some helpful discussions. We thank W. Thirring
for supplying us with reference [7] and pointing out the improvement of (1.3).
Furthermore one of us (H. S.) thanks E. Lieb and B. Simon for drawing his
attention on Scott’s conjecture. Financial support of the Deutsche Forschungsge-
meinschaft is gratefully acknowledged.

REFERENCES

[1] Thomas L. H.: Proc. Camb. Philos. Soc. 23 (1927), 542-548.

[2] Fermi E.. Rend. Accad. Naz. Lincei 6 (1927), 602-607.

[3] Lenz W.: Z. Phys. 77 (1932), 713-721.

[4] March N. H.: Adv. in Phys. 6 {(1957), 1-101.

[5] Lieb E. H. and Simon B.: Adv. Math. 23 (1977), 22-116.

[6] Lieb E. H.: Rev. Mod. Phys. 53 (1981), 603-641. '

[7] Thirring W.: Commun. Math. Phys. 79 (1981), 1-7.

[8] Scott J. M. C.: Phil. Mag. 43 (1952), 859-867.

{91 Schwinger J.: Phys. Rev. A22 (1980), 18271832,

[10] Schwinger J. and Englert B. G.: Phys. Rev. A29 (1984), 2331-2338.



218

(1]
[12]
[13]

(14]
[15]
[16]
[17]
[18]
[19]

H. K. H. SIEDENTOP and R. WEIKARD

Helimann H.: Acta Physicochemica URSS 4 (1936), 225-244.

Siedentop H. K. H.: Z. Phys. A302 (1981), 213-218. ' -
Lieb E. H. and Thirring W. E.: Inequalities for the Moments of the Eigenvalues of the
Schrédinger Hamiltonian and their Relation to Sobolev Inequalities, in: Studies in Mathematical
Physics: Essays in Honor of Valentine Bargmann (E. H. Lieb, B. Simon and A. S. Wightman,
eds.), Princeton University Press, Princeton 1976.

Solter G. U.: private communication.

Adams R. A.: Sobolev Spaces, Academic Press, New York 1975.

Benguria R., Brezis H. and Lieb E. H.: Commun. Math. Phys. 79 (1981), 167-180.

Licb E. H.: Phys. Rev. Lert. 46 (1981), 457-459; 47 (1981), 69.

Siedentop H. K. H. and Weikard R.: Abh. Braunschweig. Wiss. Ges. (Germany) 38 (1986), 145-158.
Siedentop H. K. H. and Weikard R.: On the leading energy correction for the statistical model
of the atom: Interacting case, to appear in Commun. Math. Phys. .



