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Abstract
We prove that compactly supported perturbations of algebro-geometric
potentials for the one-dimensional Schrödinger equation are uniquely
determined by the location of all their eigenvalues and resonances.

1. Introduction

Algebro-geometric potentials q of the one-dimensional Schrödinger operator L = −d2/dx2

+ q are a small but important class of potentials with a number of rather nice properties.
Their name is due to the fact that there exists a differential operator P of odd order such that
the pair (P,L) satisfies the algebraic relation P 2 = R(L) for some polynomial R of odd
degree. Moreover, the commutator [P,L] equals zero, so that, according to Lax’s celebrated
paper [13], q is a stationary solution of some equation in the KdV hierarchy. However, the
property which is most important for this paper is that the solutions of the differential equation
−y ′′ + qy = λy are meromorphic functions of the independent variable (see Its and Matveev
[11] and Segal and Wilson [15])3. At least in some subclasses of algebro-geometric potentials
this property allows us to show that solutions have a certain algebraic structure (see theorem 2).
Asymptotic features of this structure survive when the potential is subjected to compactly
supported perturbations. The paradigm of an algebro-geometric potential is the g-soliton
−g(g + 1)/cosh(x)2 (and the functions obtained from it under time evolution according to the
KdV equation) but the set includes also rational, periodic, elliptic and other functions.

Marchenko [14] showed in 1955 that a real-valued potential q on [0,∞) for which
(1 + x)q(x) is integrable is uniquely determined from the scattering phase, the eigenvalues
and their norming constants.

3 That meromorphic solutions of the differential equation are also a sufficient condition for q to be algebro-geometric
in at least the elliptic, simply periodic and rational realm was shown in [9, 17]. See [10] for an overview of the subject.

0266-5611/04/020481+14$30.00 © 2004 IOP Publishing Ltd Printed in the UK 481

http://stacks.iop.org/ip/20/481


482 B M Brown and R Weikard

Neither the scattering phase (as a function on R) nor the norming constants can be
obtained directly from laboratory measurements and one might therefore ask what would
constitute equivalent information. In the case of compactly supported potentials at least the
answer is also (implicitly) given by Marchenko: each piece of the required information can be
obtained from the Jost function4 which, in this particular case, is an entire function. Thus it
can be recovered from the location of its zeros (and its known asymptotic behaviour along the
positive imaginary line) with the aid of Hadamard’s factorization theorem. From a physical
point of view the squares of these zeros are (Dirichlet) eigenvalues or resonances (depending
on whether the zero in question is in the upper or lower half plane). In other words, the location
of eigenvalues and resonances determines a compactly supported real-valued potential.

It is now important to realize that both eigenvalues and resonances appear as poles of the
scattering amplitude. In contrast to eigenvalues the resonance poles are complex but they still
produce a large bump in the scattering cross section for real energies if they are close enough
to the real axis. Since the scattering cross section is measured in the laboratory the observation
that eigenvalues and resonances determine the potential is very important from a practical point
of view. To our knowledge this observation was first publicly made by Korotyaev [12] but
Zworski [19] had realized (but not published) it earlier in the context of compactly supported
even potentials on R. Christiansen [7] is another recent contribution to this field.

In a joint work with Knowles we have developed an approach to this kind of problem
which is independent of Marchenko’s (see [2]). Our approach makes no distinction whether q
is real or complex by reconstructing the Weyl–Titchmarsh m-function instead of the scattering
phase. The m-function may be defined for complex potentials (see Brown et al [3]) and
determines the potential uniquely, just as in the case of real potentials (see [4]). In this paper
we will apply this new method to compactly supported perturbations of algebro-geometric
potentials. Note that these potentials generally do not have an integrable first moment so that
Marchenko’s approach does not apply.

In section 2 we present some basic facts about the Titchmarsh–Weyl m-function for
complex-valued potentials. Section 3 states and proves a general theorem (theorem 1)
which identifies sufficient conditions under which the eigenvalues and resonances determine a
potential. Algebro-geometric potentials are defined and discussed in section 4. In particular,
we show there that they provide examples for theorem 1. Finally, in section 5 we discuss
compactly supported perturbations of algebro-geometric potentials. Theorem 4 is the main
result of that section.

2. Preliminary information

Let � be a fixed open sector of the complex plane whose vertex is at the origin. Then define
Q� to be the set of those complex-valued, locally integrable functions on [0,∞) for which
there is an open half plane � satisfying the following two requirements5:

(1) �c ∩ � is bounded.
(2) The set Q = co({q(x) + r : x, r ∈ [0,∞)}) does not intersect �.

Conditions of this type were first introduced by Brown et al [3]. Given a function q ∈ Q�

we consider the differential expression L = −d2/dx2 + q on [0,∞). If q is real-valued and λ

is not real then Weyl’s nesting circles analysis shows that the differential equation Ly = λy

has at least one square integrable solution. It was shown in [3] that Weyl’s argument can
4 The solution ψ(z, ·) of −y′′ + qy = z2y which asymptotically equals exp(izx) is called the Jost solution of the
problem; the function ψ(·, 0) is then called the Jost function.
5 If S is a subset of the complex plane we denote its complement by Sc and its closed convex hull by co(S).
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be repeated for complex-valued q provided that λ lies outside Q (note that Q ⊂ R for real-
valued q). The set Q� comprises then such potentials for which Ly = λy has at least one
square integrable solution for all sufficiently large λ in the fixed sector �.

We will say that q is of class I, if at most one (up to constant multiples) solution of Ly = λy

is square integrable on [0,∞). Otherwise, if all solutions of Ly = λy are square integrable on
[0,∞), we will say that q is of class II. This classification is independent of the choice of λ.
For real-valued potentials it coincides with the classical limit-point and limit-circle distinction.
However, for complex-valued potentials it does not coincide with Sims’s distinction (cf [16])
between the limit-point and limit-circle cases. See [4] for a discussion of this issue.

Now let θ(λ, ·) and φ(λ, ·) be linearly independent solutions of Ly = λy satisfying the
initial conditions6

θ(λ, 0) = 1 φ(λ, 0) = 0
θ ′(λ, 0) = 0 φ′(λ, 0) = 1.

It is shown in Brown et al [3] (see also [4]) that for every λ ∈ � there is at least one square
integrable solution of Ly = λy which is not a multiple of φ(λ, ·). Hence, if q is of class I
and λ ∈ �, then there is precisely one square integrable solution χ(λ, ·) (up to constant
multiples) and there is a unique number m(λ) such that χ(λ, ·) = θ(λ, ·) + m(λ)φ(λ, ·)
is square integrable. This function m : � → C : λ �→ m(λ) is the generalization of
the Titchmarsh–Weyl m-function for a Dirichlet boundary condition at zero to the case of
complex-valued potentials. Note that

m(λ) = χ ′(λ, 0)

χ(λ, 0)
.

Just as in the self-adjoint case m is an analytic function (see [3]). It may well be possible
to extend it analytically to a larger domain than �. Sometimes m may even be extended to the
Riemann surface of λ �→ √

λ. This is the case we are interested in and therefore we introduce
the function

M(z) = m(z2)

putting the branch cut on the positive real axis (so that Im(z) > 0 represents the so-called
physical λ-sheet).

3. The main theorem

Definition 1. Given an odd polynomial W ∈ C[z] of degree 2g+1 define CW to be the family of
potentials q ∈ Q� which are of class I and for which there exist functions ψ : C×[0,∞) → C

satisfying the following conditions:

(1) For every complex number z the functions ψ(z, ·) and ψ(−z, ·) are nontrivial solutions
of the differential equation −y ′′ + qy = z2y.

(2) The Wronskian of ψ(z, ·) and ψ(−z, ·) satisfies

ψ(z, ·)ψ ′(−z, ·) − ψ(−z, ·)ψ ′(z, ·) = W(z).

(3) ψ(z, ·) is square integrable for all z in some nonempty open subset of the upper half
plane C+.

(4) ψ(·, 0) and ψ ′(·, 0) are entire functions of finite growth order.
6 Throughout the paper we will use the following notation for derivatives: if f is a function of several variables we
will use ḟ and f ′ to denote the derivative of f with respect to the first and last variable, respectively. If f is a function
of two variables f (j,k) denotes the function obtained by differentiating j times with respect to the first variable and k
times with respect to the second.
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(5) There exists a ray such that ψ(z, 0)/zg tends to 1 as z tends to infinity along the ray.
(6) There is an integer p and a sequence of circles t �→ rn exp(it) such that rn tends to infinity

and |(ψ ′/ψ)(rn exp(it), 0)|r−p−1
n tends to zero uniformly for t ∈ [0, 2π ].

Theorem 1. Let W ∈ C[z] be an odd polynomial of degree 2g + 1 and assume that q is a
potential in CW with ψ being the function from definition 1 establishing that fact. If W(z) = 0
implies ψ(z, 0) 	= 0 then the zeros of ψ(·, 0) and their multiplicities determine q uniquely.

Proof. It is well known that, in the self-adjoint case, the Titchmarsh–Weyl m-function
determines the potential q (see Bennewitz [1] for a rather concise proof). It was shown in
[4] that this remains true even if q is complex-valued at least as long as it is of class I. Since,
of course, M determines m, we only have to show that the given information suffices to
determine M.

It follows from condition (3) that

M(z) = ψ ′(z, 0)

ψ(z, 0)
.

Condition (4) implies that M is meromorphic and that its poles are the zeros of ψ(·, 0). We
denote the poles of M by the pairwise distinct numbers z1, z2, . . . and we use n1, n2, . . . for
their respective multiplicities. The zeros are labelled such that |z1| � |z2| � · · ·.

Let hz(µ) = (z/µ)p+1/(z − µ). Also define γn(t) = rn exp(it) for t ∈ [0, 2π ] and
Bn = {z : |z| < rn}. Then, by the residue theorem,

1

2π i

∫
γn

hz(µ)M(µ) dµ = −M(z) +
p∑

k=0

M(k)(0)

k!
zk +

∑
zj ∈Bn

reszj
(hzM)

if 0 	= |z| < rn and if z is none of the poles of M. According to condition (6) the integral on
the left-hand side tends to zero as n tends to infinity proving firstly the convergence of the
series and secondly that

M(z) =
p∑

k=0

M(k)(0)

k!
zk +

∞∑
j=1

reszj
(hzM). (1)

Suppose we had already determined the infinite series on the right-hand side of
equation (1). We can then find the polynomial

∑p

k=0 M(k)(0)zk/k! from the asymptotic
behaviour of the m-function along some ray since m(z2) = iz + o(1) as z tends to infinity
along certain rays (see theorem 6 of [2]).

Thus the theorem is proved once we determine the residues of hzM at the poles of M. To
do this let

fj (µ) = (µ − zj )
nj

ψ(µ, 0)
.

Then

reszj
(hzM) = 1

(nj − 1)!
(ψ ′(·, 0)hzfj )

(nj −1)(zj )

= 1

(nj − 1)!

nj −1∑
r=0

(
nj − 1

r

)
ψ(r,1)(zj , 0)(hzfj )

(nj −1−r)(zj ),

and this quantity may be computed once we know the function ψ(·, 0) (and hence the functions
fj ) and the numbers ψ(r,1)(zj , 0) for r = 0, . . . , nj −1. We will now show that this information
can be obtained from the given data.
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Firstly, ψ(·, 0) is given through Hadamard’s factorization theorem as

ψ(z, 0) = zk exp(ϑ(z))

∞∏
j=1

Eρ(z/zj )
nj ,

where k and ρ are integers, ϑ is a polynomial and

Eρ(z) = (1 − z) exp

(
z +

z2

2
+ · · · +

zρ

ρ

)
.

The number ρ is to be chosen such that
∑∞

j=1 nj |zj |−ρ+1 is finite. This is always possible since
otherwise ψ(·, 0) would not have finite growth order. The polynomial ϑ may be determined
from the asymptotic behaviour of ψ(·, 0), given in condition (5), and we have k = 0 since
ψ(0, 0) 	= 0 (zero is a root of W ).

Secondly, taking r derivatives of the equation

ψ(z, ·)ψ ′(−z, ·) − ψ(−z, ·)ψ ′(z, ·) = W(z),

with respect to z and evaluating them at zj gives that

ψ(r,1)(zj , 0)ψ(−zj , 0) = −W(r)(zj ) −
r−1∑
s=0

(−1)r−nr!

(r − n)!n!
ψ(s,1)(zj , 0)ψ(r−s,0)(−zj , 0)

as long as r � nj − 1 since zj is a zero of ψ(·, 0) = 0 of order nj . We know that
ψ(−zj , 0) 	= 0 since ψ(zj , ·) and ψ(−zj , ·) are linearly independent. Hence the numbers
ψ(0,1)(zj , 0), . . . , ψ(nj −1,1)(zj , 0) may be computed recursively. �

4. Algebro-geometric potentials

Let L be the differential expression L = −d2/dx2 + q. A meromorphic function q is called
algebro-geometric (or an algebro-geometric potential) if there exists an ordinary differential
expression P of odd order which commutes with L. The reason behind this choice of words is
that, according to the results of Burchnall and Chaundy [5, 6], the differential expressions P and
L commute if and only if there exists a polynomial Q in two variables such that Q(P,L) = 0.

In this section we consider potentials which are either rational functions or else simply
periodic meromorphic functions of period p bounded at the ends of the period strip. We define

ξ(x) =
{
x in the rational case
p

2π i ((exp(2π ix/p) − 1)) in the periodic case

and

P(x) = ξ ′(x)

ξ(x)2
(2)

or explicitly

P(x) =
{

1/x2 in the rational case(
2π i
p

)2
exp(2π ix/p)/(exp(2π ix/p) − 1)2 in the periodic case.

Note that, as p tends to infinity, ξ(x) tends to x. It will be convenient to refer to the rational
case as the case where p is infinite.

Remarks.

(1) P(x) tends to zero if x tends to the ends of the period strip (defining the whole complex
plane as the period strip if p is infinite). Moreover, the principal part of P at zero
equals 1/x2.
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(2) It was shown in [17] that the potential q0 is algebro-geometric if and only if all solutions
of the equation −y ′′ + q0y = λy are meromorphic for all complex numbers λ provided
that q0 is either rational or else simply periodic, meromorphic and bounded at the ends of
the period strip. This provides a simple criterion by which one may determine whether a
potential is algebro-geometric.

Theorem 2. Suppose that q0 is a rational function bounded at infinity or a simply periodic
meromorphic function bounded at the ends of the period strip and that q0 is algebro-geometric.
Then the following statements hold:

(1) q0(x) = λ0 +
∑m

j=1 sj (sj + 1)P(x − xj ) for a suitable choice of the parameters
λ0,m, s1, . . . , sm (we let m = 0 if q0 is constant) and suitable pairwise distinct (modulo
the period in the periodic case) points x1, . . . , xm.

(2) There is a non-negative integer g and there are rational functions r0, . . . , rg−1 such that
ψ0(z, x) = (zg + rg−1(ξ(x))zg−1 + · · · + r0(ξ(x))) exp(izx) is a solution of the equation
−y ′′ + (q0 − λ0)y = z2y.

(3) The Wronskian W of ψ0(z, ·) and ψ0(−z, ·) is an odd polynomial in C[z] of degree 2g +1.
In the rational case its only zero is z = 0, i.e., W(z) = −2(iz)2g+1. In the periodic case
all zeros of W are simple.

Proof. Statement (1) was proved in [17]. It was proved in [18] that −y ′′ + q0y = λy has at
least one solution ψ0(z, ·) of the form given. It is then a straightforward calculation to show
that ψ0(−z, ·) also yields a solution. This gives statement (2). Statement (3) was proved
in [8]. �

These results enable us to show that q0 is in CW where W is the Wronskian just introduced:
theorem 2 shows the validity of condition (1). Condition (2) is satisfied by definition. If q0 is
rational then ψ0(z, ·) is square integrable for any z in the upper half plane. In the periodic case
exp(izx) decays faster than any power of ξ(x) provided that Im(z) is sufficiently large. Hence
ψ0(z, ·) is square integrable for any z with sufficiently large imaginary part. This proves that
condition (3) holds. Obviously ψ0(·, 0) as well as ψ ′

0(·, 0) are polynomials and hence entire
functions of growth order zero. Condition (5) holds for any ray in the complex plane. Since

M(z) = ψ ′(z, 0)

ψ(z, 0)
= iz + O(z−1)

condition (6) is satisfied with p = 1. The circles may eventually be chosen arbitrarily as M
has only finitely many poles.

5. Compactly supported perturbations of base potentials

5.1. Transformation operators

Throughout this section we require the following hypothesis to be satisfied.

Hypothesis 1. q and q0 are locally integrable functions on [0,∞) and there exists a positive
number R such that the support of q − q0 is contained in [0, R].

Under this hypothesis the integrals∫ (t−x)/2

0
|q(α − β) − q0(α + β)| dβ

are bounded by a positive number G as long as (t + x)/2 � α � R and 0 � x � t .
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Let � = {(t, x) ∈ R
2 : 0 � x � t} and �0 = {(t, x) ∈ R

2 : 0 � x � t � 2R − x}. For
(t, x) ∈ � define

K0(t, x) = 1

2

∫ ∞

(t+x)/2
(q(s) − q0(s)) ds

and, for n ∈ N,

Kn(t, x) =
∫ ∞

(t+x)/2

∫ (t−x)/2

0
(q(α − β) − q0(α + β))Kn−1(α + β, α − β) dβ dα.

Lemma 1. If (q, q0) satisfies hypothesis 1 then, for every nonnegative integer n,

|Kn(t, x)| � 1

2

Gn

n!

[
R − t + x

2

]n

+

∫ R

(t+x)/2
|q(s) − q0(s)| ds,

where [a]+ denotes the positive part of a. In particular, Kn(t, x) = 0 if t + x � 2R.

Proof. The lemma will be proved by induction on n. The statement is true for n = 0. Assume
now that it holds for n − 1.

If t + x � 2R then Kn−1(α − β, α + β) = 0 for all (α, β) in the domain of integration and
hence Kn(t, x) = 0.

If t + x � 2R we obtain

|Kn(t, x)| �
∫ R

(t+x)/2

∫ (t−x)/2

0
|q(α − β) − q0(α + β)||Kn−1(α + β, α − β)| dβ dα

� 1

2

Gn−1

(n − 1)!

∫ R

(t+x)/2
(R − α)n−1

∫ R

α

|q(s) − q0(s)| dsG dα

� 1

2

Gn

(n − 1)!

∫ R

(t+x)/2
|q(s) − q0(s)| ds

∫ R

(t+x)/2
(R − α)n−1 dα.

�

Because of this lemma the function

K(t, x) =
∞∑

n=0

Kn(t, x)

is well defined for 0 � x � t and satisfies the integral equation

K(t, x) = 1

2

∫ R

(t+x)/2
(q(s) − q0(s)) ds

+
∫ R

(t+x)/2

∫ t−x

0
(q(α − β) − q0(α + β))K(α + β, α − β) dβ dα.

We also define

H(t, x) =
∫ R

(t+x)/2

∫ t−x

0
h(α, β) dβ dα =

∞∑
n=1

Kn(t, x),

where

h(α, β) = (q(α − β) − q0(α + β))K(α + β, α − β)

so that

K(t, x) = K0(t, x) + H(t, x).
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Lemma 2. If (q, q0) satisfies hypothesis 1 the following statements hold:

(i) K is continuous on � and H is continuously differentiable on �.
(ii) For x ∈ [0, R] the functions K(·, x),H (1,0)(·, x), and H(0,1)(·, x) are uniformly absolutely

continuous on [x,∞). For t ∈ (0,∞) the functions K(t, ·), H(1,0)(t, ·) and H(0,1)(t, ·)
are uniformly absolutely continuous on [0, t]. Moreover,

H(2,0)(t, x) − H(0,2)(t, x) = −(q(x) − q0(t))K(x, t). (3)

Proof. If f is an absolutely continuous function both x �→ f (x + t) and t �→ f (x + t) are
uniformly absolutely continuous. Hence this is the case for K0(·, x) and K0(t, ·). Next one
proves by induction that Kn(·, x) and Kn(t, ·) are continuously differentiable and that their
derivatives converge uniformly.

Next note that

H(1,0)(t, x) = −1

2

∫ (t−x)/2

0
h((t + x)/2, β) dβ +

1

2

∫ R

(t+x)/2
h(α, (t − x)/2) dα

and

H(0,1)(t, x) = −1

2

∫ (t−x)/2

0
h((t + x)/2, β) dβ − 1

2

∫ R

(t+x)/2
h(α, (t − x)/2) dα.

Uniform absolute continuity of these functions is then shown directly using the uniform
absolute continuity of K. The last claim follows by direct computation. �

Theorem 3. Assume that hypothesis 1 is satisfied, that y0 and y ′
0 are locally absolutely

continuous on [0,∞) and that −y ′′
0 + q0y0 is locally square integrable there. Then the

function y, given by

y(x) = y0(x) +
∫ 2R

x

K(t, x)y0(t) dt,

and its derivative are locally absolutely continuous on [0,∞) while −y ′′ +qy is locally square
integrable there. Moreover, if −y ′′

0 + q0y0 = z2y0, then −y ′′ + qy = z2y.

Proof. Since y is continuously differentiable we only have to show that y ′ is locally absolutely
continuous and that −y ′′ + qy is locally square integrable.

One computes

y ′(x) = y ′
0(x) − K(x, x)y0(x) +

∫ 2R

x

K
(0,1)
0 (t, x)y0(t) dt +

∫ 2R

x

H (0,1)(t, x)y0(t) dt.

The preceding lemma shows that the last term on the right-hand side is locally absolutely
continuous. The substitution t + x = 2u shows that the third term on the right-hand side is
also locally absolutely continuous and that its derivative is

1

2
(q − q0)(x)y0(x) −

∫ 2R

x

K
(0,1)
0 (t, x)y ′

0(t) dt.

Therefore

y ′′(x) = y ′′
0 (x) − K(x, x)y ′

0(x) − (K(1,0) + K(0,1))(x, x)y0(x) +
1

2
(q − q0)(x)y0(x)

−
∫ 2R

x

K
(0,1)
0 (t, x)y ′

0(t) dt − H(0,1)(x, x)y0(x) +
∫ 2R

x

H (0,2)(t, x)y0(t) dt.
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Two integrations by parts show that∫ 2R

x

K
(0,1)
0 (t, x)y ′′

0 (t) dt = −K(x, x)y ′
0(x) + H(1,0)(x, x)y0(x)

−
∫ 2R

x

K
(1,0)
0 (t, x)y ′

0(t) dt +
∫ 2R

x

H (2,0)(t, x)y0(t) dt.

Using K
(1,0)
0 = K

(0,1)
0 and equation (3) yields

−y ′′(x) + q(x)y(x) = −y ′′
0 (x) + q0(x)y0(x) +

∫ 2R

x

K(t, x)(−y ′′
0 (t) + q0(t)y(t)) dt,

which completes the proof of the theorem. �

Hypothesis 2. For some nonnegative integer n the functions q and q0 have the properties:

(i) q ∈ ACn([0, R]) and q0 ∈ ACn([0, 2R]).
(ii) q(j)(R) = q

(j)

0 (R) for j = 0, . . . , n − 1 but q(n)(R) 	= q
(n)
0 (R).

Lemma 3. Suppose that the hypotheses 1 and 2 are satisfied. Then the following statements
hold:

(i) K ∈ Cn(�) and K ∈ Cn+1(�0).
(ii) K(n+1,0)(2R, 0) = −(q − q0)

(n)(R)/2n+2 	= 0.
(iii) If (t, x) ∈ �0 and k + � = n + 1 then K(k,�)(·, x) ∈ AC([x, 2R − x]) and K(k,�)(t, ·) ∈

AC([0, t]).

Proof. Since q and q0 are n times continuously differentiable every derivative of order r of∫ R

(t+x)/2(q − q0)(s) ds is given by

− 1

2r
(q − q0)

(r−1)((t + x)/2)

provided that 1 � r � n + 1 and that (t, x) ∈ �0. We therefore have to investigate only the
function H. Let �′

0 = {(α, β) ∈ R
2 : 0 � β � α � R}. Induction shows that h ∈ Cr−1(�′

0)

implies that there are numbers ak,�,j , bk,� and ck,� such that

H(k,�)(t, x) =
k+�−2∑
j=0

ak,�,j h
(j,k+�−2−j)

(
t + x

2
,
t − x

2

)
+ bk,�

∫ (t−x)/2

0
h(k+�−1,0)

(
t + x

2
, β

)
dβ

+ ck,�

∫ R

(t+x)/2
h(0,k+�−1)

(
α,

t − x

2

)
dα (4)

provided that 1 � k + � = r . On the other hand

h(k,�)(α, β) =
∑

ν,µ�0
ν+µ�k+�

gk,�,ν,µK(ν,µ)(α + β, α − β), (5)

where

gk,�,ν,µ = ãk,�,ν,µq(k+�−ν−µ)(α − β) + b̃k,�,ν,µq
(k+�−ν−µ)

0 (α + β)

for certain numbers ãk,�,ν,µ and b̃k,�,ν,µ. Hence g ∈ Cr(�′
0) as long as k + l = r � n. This

shows that K ∈ Cn+1(�0). We know already that K is identically zero outside �0. To show
that K ∈ Cn(�) we need K(k,�)(t, x) = 0 when t + x = 2R and k + � � n. But

K(k,�)(t, x) = − 1

2k+�+1
(q − q0)

(k+�−1)((t + x)/2) + H(k,�)(t, x). (6)
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If t + x = 2R then the first term on the right-hand side is zero if k + � � n. Using
(4) and (5), the second term is expressed as a sum of terms involving expressions of the
form K(r,s)(R + β,R − β) where r + s � k + � − 1 so that one can show inductively that
H(k,�)(t, x) = 0 when t + x = 2R even if k + � = n + 1. This completes the proof of (i)
and (ii).

To prove (iii) we have to investigate (6) again but for variable t (or x) and k + � = n + 1.
The first term is absolutely continuous with respect to either variable in the stated intervals by
assumption. The second term is treated in the same way as H(1,0) or H(0,1) were treated in
lemma 2. �

5.2. The location of the resonances

In this section we want to study the asymptotic location of resonances for compactly supported
perturbations of algebro-geometric potentials. Therefore we assume henceforth the validity
of the following hypothesis.

Hypothesis 3. q0 is an algebro-geometric potential of the form

q0(x) = λ0 +
m∑

j=1

sj (sj + 1)P(x − xj ),

where P is the function defined in (2) and where {xj +np : n ∈ Z, j = 1, . . . , m}∩[0,∞) = ∅
(for infinite p this just means {xj : j = 1, . . . , m} ∩ [0,∞) = ∅).

q is a perturbation of q0 such that (q, q0) satisfies hypotheses 1 and 2.

Under this hypothesis q0 is real analytic on [0,∞). Moreover, the functions rj introduced
in theorem 2 satisfy the estimate

|rj (ξ(x))| � ρ

for some number ρ independent of j ∈ {0, . . . , g − 1} and x ∈ [0, 2R].
Recall that

ψ0(z, x) = (zg + rg−1(ξ(x))zg−1 + · · · + r0(ξ(x))) exp(izx)

and define

ϕ(z, x) =
∫ 2R

x

K(t, x)ψ0(z, t) dt =
g∑

j=0

zj

∫ 2R

x

K(t, x)rj (ξ(t)) exp(izt) dt

and

ψ(z, x) = ψ0(z, x) + ϕ(z, x).

Lemma 4. Suppose (q, q0) satisfies hypothesis 3 and let x ∈ [0,∞) be fixed. Then the
following statements hold:

(1) Let Im(z) be fixed. Then z−gϕ(z, x) tends to zero as Re(z) tends to ±∞.
(2) z−gϕ(z, x) tends to zero uniformly in Re(z) as Im(z) � 0 tends to ∞.

Proof. By the Riemann–Lebesgue lemma
∫ 2R

x
K(t, x)rj (ξ(t)) exp(izt) dt tends to zero as

Re(z) tends to infinity. This proves statement (1). To prove (2) note that

|z−gϕ(z, x)| �
g∑

j=0

|z|j−g

∫ 2R

0
|K(t, 0)||rj (ξ(t))| exp(−Im(z)t) dt � ρ eGR

2 Im(z)
‖q − q0‖1

if |z| � 1. �
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Lemma 5. Let ν be a positive number and c1 a non-zero complex number. Suppose that

ϕ(z, 0) =
∫ 2R

0
K(t, 0)ψ0(z, t) dt = zg(c1z

−ν exp(2izR)(1 + f1(z)) + f2(z)),

where |f1(z)| � 1/12 and |f2(z)| � 1/6 for all sufficiently large z in the closed lower half
plane Im(z) � 0. Then there is a number τ such that |ψ(z, 0)| � |z|g/3 for all z on the
semicircles given by |z| = (2nπ + τ)/(2R) and Im(z) � 0 and sufficiently large integers n.

Proof. Recall that ψ(z, 0) = ψ0(z, 0) + ϕ(z, 0) and that |z−gψ0(z, 0) − 1| � 1/12 when |z|
is sufficiently large.

We write x = Re(z), y = Im(z) and c1 = exp(σ + iκ) where σ, κ ∈ R. To prove the
lemma we distinguish three cases.

First case: |Im(z)| � (ν log(nπ/R) − σ − 2)/(2R). In this case ϕ(z, 0) is negligible
compared to zg since

|c1z
−ν exp(2izR)| = exp(σ − 2Ry − 2 log(nπ/R))

(
1 +

τ

2nπ

)−ν

� 1/6

for sufficiently large n. Hence |z−gϕ(z, 0)| � 25/72 � 5/12 but |z−gψ0(z, 0)| � 11/12
so that |z−gψ(z, 0)| � 1/2.
Second case: |Im(z)| � (ν log(nπ/R) − σ + 1)/(2R). Here the main contribution comes
from the term c1z

−ν exp(2izR). In fact, when n is sufficiently large,

|c1z
−ν exp(2izR)(1 + f1(z))| � 11

6 � 7
4 ,

while |z−gψ0(z, 0) + f2(z)| � 5/4 so that |z−gψ(z, 0)| � 1/2.
Third case: (ν log(nπ/R)−σ − 2)/(2R) � |Im(z)| � (ν log(nπ/R)−σ + 1)/(2R). We
obtain firstly that

|z−gψ(z, 0)| � |1 + c1z
−ν exp(2izR)| − 1

12 − 3
12 − 1

6 � 1
2 + Re(c1z

−ν exp(2izR)),

since |c1z
−ν exp(2izR)| � 3 when n is sufficiently large. Now let β =

arg(c1z
−ν exp(2izR)) = 2Rx + κ − ν arg(z) and note that arg(z) = 3π/2 ± π/2 +

arctan(y/x) where one has to choose the positive sign for positive x and the negative sign
for negative x (recall that y is negative in any case). After a small calculation one finds
that ±2Rx = 2nπ + τ + r(n) where r(n) = O(log(n)2/n) as n tends to infinity. This
implies that arctan(y/x) = O(log(n)/n) as n tends to infinity. Hence

cos(β) = cos

(
κ +

3νπ

2
±

(
τ +

νπ

2
+ r(n)

)
− ν arctan(y/x)

)

� −|sin(±r(n) − ν arctan(y/x))| � − 1

18
provided that τ is chosen in such a way that cos(κ + 3νπ/2 ± (τ + νπ/2)) is nonnegative
for either choice of the sign. This can be achieved by choosing τ such that τ + νπ/2
equals zero or π depending on whether cos(κ + 3νπ/2) is nonnegative or not. Therefore
we arrive at the following estimate:

Re(c1z
−ν exp(2izR)) � −3|sin(±r(n) − ν arctan(y/x))| � − 1

6 ,

which holds for sufficiently large n. �

Note that the estimates in the above proof were made to show that the circles can
be chosen to avoid the resonances which are asymptotically located near the points where
1 + c1z

−ν exp(2izR) = 0.
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We will now show that the hypothesis of lemma 5 can indeed be satisfied under the
hypothesis we made earlier.

Lemma 6. Suppose (q, q0) satisfies hypothesis 3. Then there is a number τ such that
|ψ(z, 0)| � |z|g/3 for all z on the semicircles given by |z| = (2nπ + τ)/(2R) and Im(z) � 0
and sufficiently large integers n.

Proof. We only have to prove that the hypothesis of lemma 5 is satisfied. To this end define

γ (t) = K(t, 0)

g∑
�=0

r�(ξ(t))z�−g

and consider the integral∫ 2R

0
γ (t) exp(izt) dt.

According to lemmas 2 and 3 this expression may be integrated by parts n + 1 times. Thus we
obtain

z−gϕ(z, 0) =
n+1∑
j=0

(−1)j γ (j)(t)
exp(izt)

(iz)j+1

∣∣∣∣
2R

0

+ (−1)n
∫ 2R

0
γ (n+2)(t)

exp(izt)

(iz)n+2
dt

=
n+1∑
j=0

γ (j)(0)

(−iz)j+1
− exp(2izR)

(−iz)n+2

(
γ (n+1)(2R) −

∫ 2R

0
γ (n+2)(t) exp(iz(t − 2R)) dt

)
,

since γ (2R) = · · · = γ (n)(2R) = 0. However,

γ (n+1)(2R) = − 1

2n+2
(q − q0)

(n)(R)

g∑
�=0

r�(ξ(2R))z�−g 	= 0

for all sufficiently large z.
The Riemann–Lebesgue lemma gives that

∫ 2R

0 γ (n+2)(t) exp(iz(t − 2R)) dt tends to zero
as Re(z) tends to infinity when Im(z) is fixed. A closer look at its proof reveals that this is in
fact true uniformly in Im(z) as long as Im(z) is bounded above. Hence there is a positive X
such that ∣∣∣∣

∫ 2R

0
γ (n+2)(t) exp(iz(t − 2R)) dt

∣∣∣∣ � |γ (n+1)(2R)|
12

as long as Im(z) � 0 and |Re(z)| � X. It is also obvious that∣∣∣∣∣∣
n+1∑
j=0

γ (j)(0)

(−iz)j+1

∣∣∣∣∣∣ � 1

6

if |z| is sufficiently large. �

5.3. The zeros of the Jost function determine the potential

Suppose that (q, q0) satisfies hypothesis 3 and let ψ0 and ψ be as before, in particular,

ψ(z, x) = ψ0(z, x) +
∫ 2R

x

K(t, x)ψ0(z, t) dt, (7)

ψ ′(z, x) = ψ ′
0(z, x) +

∫ 2R

x

K(0,1)(t, x)ψ0(z, t) dt (8)
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and

W(z) = ψ0(z, x)ψ ′
0(−z, x) − ψ ′

0(z, x)ψ0(−z, x).

Now define

s0(z, t, x) = 1

W(z)
(ψ0(−z, x)ψ0(z, t) − ψ0(z, x)ψ0(−z, t))

and F(z, t, x) = −s0(z, t, x)(q − q0)(t). Then ψ(z, ·) satisfies the integral equation
ψ(z, x) = ψ0(z, x) +

∫ R

x
F (z, t, x)ψ(z, t) dt . Therefore,

F ′(z, t, 0) = M0(z)F (z, t, 0) − ψ0(z, t)

ψ0(z, 0)
(q − q0)(t)

and

M(z) = M0(z) − 1

ψ0(z, 0)ψ(z, 0)

∫ R

0
ψ0(z, t)ψ(z, t)(q − q0)(t) dt, (9)

where, of course, M0(z) = ψ ′
0(z, 0)/ψ0(z, 0).

Theorem 4. Suppose that (q, q0) satisfies hypothesis 3 and that q0 ∈ CW for some odd
polynomial W . Then also q ∈ CW .

In particular, if none of the zeros of the Jost function ψ(·, 0) coincide with any of the zeros
of W then the zeros of ψ(·, 0) and their multiplicities determine q uniquely.

Proof. Theorem 3 proves the existence of a function ψ satisfying condition (1) of definition 1.
Conditions (2) and (3) are satisfied because they hold for ψ0(z, ·). Condition (4) follows from
equations (7) and (8). In particular, ψ(·, x) has growth order one since this is true for ψ0(·, x)

and since K(·, x) is compactly supported. Similarly, ψ ′(·, x) has growth order one. As z

tends to infinity along the imaginary axis ψ0(z, 0) approaches zg while, by lemma 4, ϕ(z, 0)

tends to zero. This implies condition (5).
We will now check condition (6) of the definition of the class CW . Suppose first that

Im(z) � 0. For sufficiently large z we obtain from lemma 4 that

1
2 |z|g � |ψ(z, t)|, |ψ0(z, t)| � 3

2 |z|g.
This and equation (9) give

|M(z) − M0(z)| � 9‖q − q0‖1.

To estimate M(z) for z in the lower half plane note that the Wronskian of ψ(z, ·) and
ψ(−z, ·) satisfies

W(ψ(z, ·), ψ(−z, ·)) = W(z).

Hence

M(z) = M(−z) − W(z)

ψ(z, 0)ψ(−z, 0)
.

If z is on the semicircles described in lemma 6 then, according to that lemma, |ψ(z, 0)| �
|z|g/3. This and the fact that |W(z)| � C|z|2g+1 imply that

|M(z) − M0(−z)| � |M(−z) − M0(−z)| +
|W(z)|

|ψ(z, 0)ψ(−z, 0)| � 9‖q − q0‖1 + 6C|z|.

The last statement of the theorem is now simply an application of theorem 1. �
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