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Abstract
It is well known that knowing the Dirichlet–Dirichlet eigenvalues and the
Dirichlet–Neumann eigenvalues determines uniquely the potential of a one-
dimensional Schrödinger equation on a finite interval. We investigate here how
well a potential may be approximated if only N of each type of eigenvalues are
known to within an error ε.

1. Introduction

In this paper, we consider a stability result for the inverse problem associated with the Sturm–
Liouville equation

−y ′′ + q0(x)y = λy, x ∈ (0, 1),

in which the potential q0 ∈ L2(0, 1) is allowed to be complex valued and the spectral data
consists of the first N Dirichlet–Dirichlet eigenvalues and the first N Dirichlet–Neumann
eigenvalues, determined to within an accuracy ε.

With only finite given spectral data, the inverse problem will have infinitely many
solutions, and a stability result may therefore seem either meaningless or impossible.

The usual philosophy in the numerical analysis literature is to construct recovery
algorithms which select one of the infinitely many possible solutions. Numerical experiments
are then carried out in which finite spectral data are generated from some known potential
and the quality of the recovery procedure is assessed according to how closely the recovered
potential approximates the original one in some norm.

This process cannot be meaningful unless one can prove that all of the infinitely many
solutions to the finite data inverse problems are ‘close’, in some suitable sense. In this paper,
we show that such a result does indeed hold, albeit in a rather weak norm. This norm can be
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strengthened using interpolation space estimates if one has further a priori information about
the potential to be recovered; however, without such information our weak result appears to
be reasonably tight, as we demonstrate with a numerical example.

There is a vast literature on numerical methods for inverse Sturm–Liouville problems.
One approach is to discretize the problem on a finite difference grid and then solve an inverse
eigenvalue problem for a matrix: see the review article of Chu [3] for methods for inverse
matrix eigenproblems. The discretization approach does not work unless one is prepared
either to ‘correct’ the spectral data by adding approximations to the finite difference errors
before doing the recovery (see [12]) or use a special finite difference grid which minimizes
these errors to start with (see [1]). Another approach is based on the transformation operators
of Levitan and is due to Rundell and Sacks [15]. A further approach may be found in [2] and
is based on a variational idea of Knowles. For reviews of reconstruction methods for inverse
Sturm–Liouville problems see Rundell [14] and McLaughlin [8].

Stability results are rather less common, even with full spectral data. Ryabushko [16]
estimates the difference in L2([0, 1]) of two potentials q1 and q2 whose average value is
zero and for which the Dirichlet–Dirichlet eigenvalues λn(qj ) and the Dirichlet–Neumann
eigenvalues µn(qj ) are known:

‖q1 − q2‖2 � C(‖λ(q1) − λ(q2)‖2 + ‖µ(q1) − µ(q2)‖2).

Another result in that direction is due to McLaughlin [7]: when the average values of the
potentials are zero, then there is a local diffeomorphism between potentials in L2([0, 1]) and
sequences {λn − n2π2, ρn} in �2 × �2, where {ρn} are the ‘norming constants’. One may
also find in Pöschel and Trubowitz [13] a formula for the derivative of the potential with
respect to one eigenvalue, which yields stability in L2([0, 1]) subject to perturbation of finitely
many eigenvalues. The results which come closest in spirit to our main result here are those
of Hochstadt [5] and Hitrik [4]. The former concerns the extent to which the potential is
determined when one spectrum is completely known and only finitely many members of the
other spectrum are known while the second deals with an inverse scattering problem on the
full line where finitely many values of the reflection coefficient are known.

Notation. Throughout this paper we shall find it convenient to use the notation f (n,m)(x0, y0)

to denote the value at (x0, y0) of the partial derivative ∂n+mf

∂xn∂ym . The reason for this uncommon
choice of notation is that it will be particularly important to indicate the points at which partial
derivatives are evaluated.

By ‖·‖p we denote the standard norm in Lp([0, 1]) (with Lebesgue measure) or in Lp(N)

(with counting measure). Naturally, there can now be confusion about which case is present
in a given instance. In section 8, we also use certain Sobolev norms. These we indicate by
subscripts ‖·‖Hr for various values of r.

2. Statement of the main result

Assume q0 and q are complex-valued functions in L2([0, 1]). Let λj (q), j ∈ N denote the
eigenvalues of the boundary value problem

−y ′′ + qy = λy, y(0) = 0, y(1) = 0

and assume that they are repeated according to their algebraic multiplicities. Similarly, let
µj(q), j ∈ N be the eigenvalues of the boundary value problem

−y ′′ + qy = λy, y(0) = 0, y ′(1) = 0

also repeated according to their algebraic multiplicities. The quantities λj (q0) and µj(q0)

denote the eigenvalues of those problems where q is replaced by q0. We will always assume
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that these eigenvalues are labelled in such a way that identical values are adjacent and that
their moduli form nondecreasing sequences.

The solution of the initial value problem

−y ′′ + qy = λy, y(0) = 0, y ′(0) = 1

is denoted by s(λ, ·). Similarly s0(λ, ·) denotes the corresponding object for the potential q0.
Note that the λj (q) are the zeros of s(·, 1) while the µj(q) are the zeros of s ′(·, 1). Moreover,
the algebraic multiplicities of these eigenvalues are equal to their multiplicities as zeros of
these functions.

We will prove the following theorem.

Theorem 2.1. Assume q0 and q are complex-valued functions in L2([0, 1]) with the same
mean value. Define aj = |λj (q) − λj (q0)| and bj = |µj(q) − µj(q0)| and let ε0 � 0 and
N0 ∈ N be fixed. Then there exists a constant C, depending only on q0, ε0 and N0 such that
the following is true:

If 0 � ε � ε0, N � N0 and max{a1, . . . , aN , b1, . . . , bN } � ε then∣∣∣∣
∫ x

0
(q(t) − q0(t)) dt

∣∣∣∣ � C exp(‖q‖2)

(
ε log N +

‖a‖2 + ‖b‖2

N1/2

)

for all x ∈ [0, 1].

3. The transformation operator

It is well known (see, e.g., [6]) that solutions of the differential equation −y ′′ + q0y = λy can
be transformed to solutions of the corresponding equation with q0 replaced by q by means of
an integral operator, the so-called transformation operator, when q, q0 ∈ L1([0, 1]). To give
a more precise definition, we introduce the sets

D0 = {y ∈ AC([0, 1]) : y ′ ∈ AC([0, 1]),−y ′′ + q0y ∈ L2([0, 1]), y(0) = 0}
and

D = {Y ∈ AC([0, 1]) : Y ′ ∈ AC([0, 1]),−Y ′′ + qY ∈ L2([0, 1]), Y (0) = 0}.
Then the transformation operator K : L2([0, 1]) → L2([0, 1]) is of the form

Y (x) = (Ky)(x) = y(x) +
∫ x

0
K(x, t)y(t) dt, (1)

it maps D0 to D, and the kernel K is determined by the requirement −(Ky)′′ + qKy =
K(−y ′′ + q0y) for all y ∈ D0.

Define a function K0 by

K0(x, t) = 1

2

∫ (x+t)/2

(x−t)/2
(q(s) − q0(s)) ds (2)

and suppose that a function H exists with the following properties:

(1) H(x, ·) ∈ AC([0, x]) for all x ∈ (0, 1] and H(·, t) ∈ AC([t, 1]) for all t ∈ [0, 1). The
same is true for H(1,0) and H(0,1).

(2) H(2,0)(x, t) − H(0,2)(x, t) − (q(x) − q0(t))H(x, t) = (q(x) − q0(t))K0(x, t) almost
everywhere in {(x, t) : 0 � t � x � 1}.

(3) H(x, 0) = 0.
(4) (H (1,0) + H(0,1))(x, x) = 0 almost everywhere in [0, 1].
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Then, proceeding as Levitan in [6] with appropriate modifications, one shows that the operator
K defined by setting K = K0 + H is the desired transformation operator. From these
considerations, it is also clear that the given conditions on H are necessary.

We remark also that K satisfies the Volterra equation

K(x, t) = 1

2

∫ (x+t)/2

(x−t)/2
(q(s) − q0(s)) ds

+
∫ (x+t)/2

(x−t)/2

∫ (x−t)/2

0
(q(α + β) − q0(α − β))K(α + β, α − β) dβ dα

which is solved by the series

K(x, t) =
∞∑

n=0

Kn(x, t)

where the Kn are defined inductively by

Kn(x, t) =
∫ (x+t)/2

(x−t)/2

∫ (x−t)/2

0
(q(α + β) − q0(α − β))Kn−1(α + β, α − β) dβ dα

and K0 is given by (2).
Since K(x, 0) = 0, it is possible (and later useful) to extend K to the set

S := {(x, t) : 0 � |t | � x � 1}
by setting K(x,−t) = −K(x, t). We will henceforth assume that S is the domain of K.

We prove next that K may be obtained by solving an initial value problem with initial
conditions given on the line x = 1. Let f = K(1, ·) and g = Kx(1, ·) and note that f and g

are odd functions on [−1, 1]. Also, f is absolutely continuous and g is integrable. Let

K̃0(x, t) = 1

2

∫ x+t−1

x−t−1
(f ′(s) + g(s)) ds (3)

and

K̃n(x, t) = 1

2

∫ 1

x

∫ t−x+u

t+x−u

(q(u) − q0(v))K̃n−1(u, v) dv du (4)

for (x, t) ∈ S. We will study the series

K̃(x, t) =
∞∑

n=0

K̃n(x, t). (5)

Lemma 3.1. If K̃0 is bounded in S, then the series (5) is uniformly convergent, and hence its
sum solves the integral equation

k(x, t) = K̃0(x, t) +
1

2

∫ 1

x

∫ t−x+u

t+x−u

(q(u) − q0(v))k(u, v) dv du (6)

in the set S.

Proof. Define Q = (‖q‖2
2 + ‖q0‖2

2

)1/2
and note that

∫ 1

x

∫ t−x+u

t+x−u

|q(u) − q0(v)|2 dv du � 4(1 − x)

∫ 1

x

|q(u)|2 du + 4
∫ 1

x

‖q0‖2
2 du � 4(1 − x)Q2

(7)
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and∫ 1

x

∫ t−x+u

t+x−u

(1 − u)n dv du = 2
∫ 1

x

(1 − u)n(u − x) du = 2(1 − x)n+2

(n + 1)(n + 2)
� 2(1 − x)n+2

(n + 1)2
. (8)

We need estimates on the functions K̃j in (5). Since K̃0 is bounded we obtain, using the
Cauchy–Schwarz inequality and inequalities (7) and (8),

|K̃1(x, t)| � 1

2
‖K̃0‖∞

∫ 1

x

∫ t−x+u

t+x−u

|q(u) − q0(v)| dv du� Q‖K̃0‖∞(1 − x)3/2.

We shall prove by induction that

|K̃j (x, t)| � ‖K̃0‖∞
Qj(1 − x)3j/2

j !
(9)

for j ∈ N. We just established this estimate for j = 1, so it remains only to show that if we
assume (9) then we can derive the corresponding estimate with j replaced by j +1. Proceeding
as before, i.e., using Cauchy–Schwarz and inequalities (7) and (8), we have

|K̃j+1(x, t)| � ‖K̃0‖∞
Qj

2j !

∫ 1

x

∫ t+u−x

t+x−u

|q(u) − q0(v)|(1 − u)3j/2 dv du

� ‖K̃0‖∞
Qj+1(1 − x)(3j+3)/2

(j + 1)!

which is the required result. Thus, (9) holds for all j � 1.
Thus, the series (5) is uniformly and absolutely convergent, and hence determines the

solution of the integral equation (6). �

Lemma 3.2. K̃(x, t) = K(x, t).

Proof. Define H̃ (x, t) = K̃(x, t) − K0(x, t) and recall that K(x, t) = K0(x, t) + H(x, t).
We will use the following abbreviations:

I1(x, t) = H(0,1)(x, t) + H(1,0)(x, t)

=
∫ (x−t)/2

0

(
q

(
x + t

2
+ β

)
− q0

(
x + t

2
− β

))
K

(
x + t

2
+ β,

x + t

2
− β

)
dβ,

Ĩ 1(x, t) =
∫ 1

x

q(s)K̃(s, t − x + s) ds −
∫ t−x+1

t

q0(s)K̃(x − t + s, s) ds,

Ĩ 2(x, t) =
∫ 1

x

q(s)K̃(s, x + t − s) ds −
∫ t

t+x−1
q0(s)K̃(x + t − s, s) ds.

Since

f ′(s) + g(s) = K(0,1)(1, s) + K(1,0)(1, s) = 1

2
(q − q0)

(
1 + s

2

)
+ I1(1, s)

we obtain

H̃ (x, t) = 1

2

∫ x+t−1

x−t−1
I1(1, s) ds +

1

2

∫ 1

x

∫ t+u−x

t+x−u

(q(u) − q0(v))K̃(u, v) dv du

which is absolutely continuous in either variable. Thus,

H̃ (1,0)(x, t) = 1
2 (I1(1, x + t − 1) − I1(1, x − t − 1) − Ĩ 1(x, t) − Ĩ 2(x, t))

and

H̃ (0,1)(x, t) = 1
2 (I1(1, x + t − 1) + I1(1, x − t − 1) + Ĩ 1(x, t) − Ĩ 2(x, t))
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are also absolutely continuous. Differentiating further gives

H̃ (2,0)(x, t) − H̃ (0,2)(x, t) − (q(x) − q0(t))H̃ (x, t) = (q(x) − q0(t))K0(x, t).

By construction H(1, t) = H̃ (1, t) and H(1,0)(1, t) = H̃ (1,0)(1, t). Hence, the function H −H̃

is a solution of the Cauchy problem

k(2,0)(x, t) − k(0,2)(x, t) − (q(x) − q0(t))k(x, t) = 0, k(1, t) = 0, k(1,0)(1, t) = 0.

For the given Cauchy data k satisfies the integral equation

k(x, t) = 1

2

∫ 1

x

∫ t−x+u

t+x−u

(q(u) − q0(v))k(u, v) dv du

since, after several changes of variables,∫ 1

x

∫ t−x+u

t+x−u

(k(2,0)(u, v) − k(0,2)(u, v)) dv du = 2k(x, t).

But lemma 3.1 shows now that k = 0 identically. �

Theorem 3.3. Suppose that q, q0 ∈ L2([0, 1]). Then∣∣∣∣
∫ x

0
(q − q0)(s)ds

∣∣∣∣ = 2|K(x, x)| � 4 exp(‖q‖2 + ‖q0‖2)‖K̃0‖∞.

Proof. Since K(x, x) = ∑∞
n=0 K̃n(x, x), the claim follows immediately from the estimate

|K̃n(x, x)| � ‖K̃0‖∞Qj/j ! obtained in the proof of lemma 3.1. �

4. Asymptotic properties of the function s0

Define s0,0(λ, x) = sin(zx)/z where z2 = λ. While this definition does not depend on the
choice of a branch for the root, we will henceforth assume that Im(z) � 0. One proves by
induction that the kth derivative of s0,0 with respect to its first argument is given by

s
(k,0)
0,0 (λ, x) = fk(zx) e−izx + gk(zx) eizx

z2k+1
(10)

where fk and gk are polynomials of degree k. This implies that∣∣s(k,0)
0,0 (λ, x)

∣∣ � ck eIm(z)x |z|−k−1 (11)

for appropriate constants ck, k ∈ N0, c0 = 1. Similarly, one obtains∣∣s(k,1)
0,0 (λ, x)

∣∣ � ck eIm(z)x |z|−k. (12)

The following lemma shows that similar estimates hold for the function s0, i.e., the
solution of the initial value problem −y ′′ + q0y = λy, y(0) = 0, y ′(0) = 1, if λ is sufficiently
large.

Lemma 4.1. Given q0 ∈ L1([0, 1]) there are positive constants ηk, η̃k, k ∈ N0, depending
only on ‖q0‖1, such that∣∣s(k,0)

0 (λ, x) − s
(k,0)
0,0 (λ, x)

∣∣ � ηk|z|−k−1 eIm(z)x
(
e
∫ x

0 |q0(t)/z|dt − 1
)

(13)

and ∣∣s(k,1)
0 (λ, x) − s

(k,1)
0,0 (λ, x)

∣∣ � η̃k|z|−k eIm(z)x
(
e
∫ x

0 |q0(t)/z|dt − 1
)

(14)

for all x ∈ [0, 1], all k ∈ N0, and all λ satisfying |λ| � 1.
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Proof. Define

g0(z, t) = e−t Im(z)|s0(λ, t) − s0,0(λ, t)|.
Replacing s0 by s0,0 + (s0 − s0,0) under the integral in the variation of constants formula

s0(λ, t) = s0,0(λ, t) +
∫ t

0
s0,0(λ, t − u)q0(u)s0(λ, u) du

one finds

g0(z, t) � 1

|z|
∫ t

0
|q0(u)|g0(z, u) du +

1

|z|2
∫ t

0
|q0(u)| du. (15)

Let φ(t) = ∫ t

0 |q0(u)/z| du, move the first term on the right of (15) to the left, and multiply by
|q0(t)| exp(−φ(t)). This will produce total derivatives on either side so that integration from
0 to x yields

e−φ(x)

∫ x

0
|q0(t)|g0(z, t) dt �

(
1 − e−φ(x) − e−φ(x) 1

|z|
∫ x

0
|q0(t)| dt

)
.

Using this estimate in (15) gives inequality (13) for k = 0 with η0 = 1. Thus, using the
triangle inequality, we also see that

|s0(λ, x)| � e‖q0‖1 eIm(z)x

|z| .

Now assume that∣∣s(�,0)
0 (λ, x)

∣∣ � β� eIm(z)x

|z|�+1

for � = 0, . . . , k − 1 and certain constants β� which may depend on ‖q0‖1. Then define

gk(z, t) = e−t Im(z)
∣∣s(k,0)

0 (λ, t) − s
(k,0)
0,0 (λ, t)

∣∣.
The kth λ-derivative of the variation of constants formula and (11) give

gk(z, t) �
k∑

j=0

(
k

j

)
cj

|z|j+1

∫ t

0
|q0(u)|∣∣e−u Im(z)s

(k−j,0)

0 (λ, u)
∣∣ du.

Using the induction hypothesis for the terms with j > 0 and the triangle inequality in the term
with j = 0 yields

gk(z, t) � 1

|z|
∫ t

0
|q0(u)|(gk(z, u) + e−u Im(z)

∣∣s(k,0)
0,0 (λ, u)

∣∣) du+
k∑

j=1

(
k

j

)
cjβk−j

|z|k+2

∫ t

0
|q0(u)| du

� 1

|z|
∫ t

0
|q0(u)|gk(z, u) du +

ηk

|z|k+2

∫ t

0
|q0(u)| du

where

ηk = ck +
k∑

j=1

(
k

j

)
cjβk−j .

Proceeding as before we arrive at the estimate

gk(z, x) � ηk

|z|k+1
(eφ(x) − 1)

which is inequality (13) for k. The induction is complete after realizing that (13) implies that
∣∣s(k,0)

0 (λ, x)
∣∣ � βk eIm(z)x

|z|k+1

when one chooses βk = ck + ηk exp(‖q0‖1).
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The variation of constants formula implies also

s
(k,1)
0 (λ, x) = s

(k,1)
0,0 (λ, x) +

k∑
j=0

(
k

j

) ∫ x

0
s
(j,1)

0,0 (λ, x − u)q0(u)s
(k−j,1)

0 (λ, u) du.

The triangle inequality and previous estimates give

∣∣s(k,1)
0 (λ, x) − s

(k,1)
0,0 (λ, x)

∣∣ � eIm(z)x

k∑
j=0

(
k

j

) ∫ x

0
|q0(u)| cj

|z|k+1
(ηk−j (e

φ(t) − 1) + ck−j ) du.

Since ck−j � ηk−j we obtain inequality (14) if we choose η̃k = ∑k
j=0

(
k

j

)
cjηk−j . �

Remark 4.2.

(1) As a corollary to this proof, there exist constants βk depending only on ‖q0‖1 such that

∣∣s(k,0)
0 (λ, x)

∣∣ � βk eIm(z)x

|z|k+1
.

(2) The eigenvalues λj (q0), µj (q0), λj (q) and µj(q) lie in a horizontal strip in the complex
plane. For λ = z2 in this strip, Im(z) � 0 is bounded above, and hence

∣∣s(k,0)
0 (λ, x)

∣∣ � Ck

|z|k+1
. (16)

We shall use this fact in several places later in this paper.
(3) Using (12) and (14) one may prove similarly that

∣∣s(k,1)
0 (λ, x)

∣∣ � C̃k

|z|k . (17)

Lemma 4.3. Fix k ∈ N0. There is a positive number Mk depending only on ‖q0‖1 such that

∣∣s(k,0)
0 (λ, x) − s

(k,0)
0 (λj (q0), x)

∣∣ � Mk

jk+2
|λ − λj (q0)|

and
∣∣s(k,1)

0 (λ, x) − s
(k,1)
0 (λj (q0), x)

∣∣ � Mk

jk+1
|λ − λj (q0)|

for all x ∈ [0, 1] and all j ∈ N provided that |λ − λj (q0)| � 1.

Proof. Evidently,

s
(k,0)
0 (λ, x) − s

(k,0)
0 (λj (q0), x) =

∫ λ

λj (q0)

s
(k+1,0)
0 (µ, x) dµ.

Since Im
√

µ is bounded we may now use (16) with k replaced by k + 1 to obtain∣∣∣∣∣
∫ λ

λj (q0)

s
(k+1,0)
0 (µ, x) dµ

∣∣∣∣∣ � |λ − λj (q0)| M̃k

|√λj (q0)|k+2

for some constant M̃k , since |λ−λj (q0)| � 1. The first result of lemma 4.3 is then immediate.
The second result follows similarly from (17). �
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5. Riesz bases of generalized eigenfunctions

Let L be the operator defined by the boundary value problem

−y ′′ + q0y = λy, y(0) = 0, y(1) = 0

and suppose that λ is an eigenvalue of L with algebraic multiplicity ν. Then there are indices
κ , . . . , κ + ν − 1 such that λ = λκ(q0) = · · · = λκ+ν−1(q0). Define

ϕκ+j (x) =
j∑

k=0

γκ+j−k

k!
s
(k,0)
0 (λ, x), j = 0, . . . , ν − 1

where the γκ+j−k are to be determined. Note that ϕκ is an eigenfunction associated with λ and
that

(L − λ)ϕκ+j = ϕκ+j−1, j = 1, . . . , ν − 1,

i.e., the ϕκ+j form a Jordan chain of generalized eigenvectors for λ (recall that the geometric
multiplicity of λ equals one).

If λ is an eigenvalue of L then λ is an eigenvalue of L∗, the adjoint of L, which is the
operator associated with the boundary value problem

−y ′′ + q0y = λy, y(0) = 0, y(1) = 0.

If λ has algebraic multiplicity ν as an eigenvalue of L then λ also has algebraic multiplicity ν

as an eigenvalue of L∗. Define

ψκ+j (x) = κπ

(ν − 1 − j)!
s
(ν−1−j,0)

0 (λ, x), j = 0, . . . , ν − 1. (18)

Then,

(L∗ − λ)ψκ+j = ψκ+j+1, j = 0, . . . , ν − 2,

and ψκ+ν−1 is an eigenfunction of L∗ associated with λ, i.e., the ψκ+j form a Jordan chain of
generalized eigenvectors for λ. (Note, however, that the order is reversed when compared to
the ϕκ+j .)

It is well known that if λ1 �= λ2 then the algebraic eigenspace of L associated with λ1 and
the algebraic eigenspace of L∗ associated with λ2 are orthogonal.

Let A(κ) be the ν × ν-matrix with entries A(κ)j+1,k+1 = (ψκ+j , ϕκ+k). Since

(ψκ+j , ϕκ+k) = (ψκ+j , (L − λ)ϕκ+k+1) = ((L∗ − λ)ψκ+j , ϕκ+k+1) = (ψκ+j+1, ϕκ+k+1)

when 0 � j, k � ν − 2 we find that the entries in the diagonals (j − k is constant) of A(κ)

are constant. Since

(ψκ+ν−1, ϕκ+k) = (0, ϕκ+k+1) = 0

when 0 � k � ν − 2 we see that A(κ) is upper triangular. The ψj , j ∈ N are complete and
so, since we have shown that (ψj , ϕκ) = 0 if j �= κ , we conclude that (ψκ, ϕκ) �= 0. In
fact, we may choose the coefficients γκ+j , j = 0, . . . , ν − 1 in such a way that A(κ) becomes
the identity matrix. For this choice of the coefficients, the ψj and the ϕk form biorthogonal
sequences, i.e., (ψj , ϕk) = δj,k . In fact, due to our normalizations, both {ψj : j ∈ N} and
{ϕk : k ∈ N} form Riesz bases of L2([0, 1]) (see [11]).

For all sufficiently large j the eigenvalues λj (q0) are simple. In these cases, ϕj (x) =
γj s0(λj (q0), x). Now from lemma 4.1 we can see that

s0(λj (q0), x) = sin(
√

λj (q0)x)√
λj (q0)

+ O(|λj (q0)|−1), (19)
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where we have used the fact that the term exp
(∫ x

0 |q0(t)/z| dt
)−1 in (13) is O(1/|z|). Hence,

1 = (ϕj , ψj ) = O(γj/j) and so the constant γj in the expression ϕj (x) = γj s0(λj (q0), x)

must be O(j).
We now turn to the problem with eigenvalues µj(q0). In complete analogy with the results

already obtained, given the boundary value problem

−y ′′ + q0y = λy, y(0) = 0, y ′(1) = 0

we obtain biorthogonal sequences k 	→ θk and j 	→ ωj of (generalized) eigenfunctions of the
associated operator and its adjoint, respectively.

The following lemma gives uniform bounds on the eigen- and associated functions of the
first boundary value problem and on the integrals of the eigen- and associated functions of the
second boundary value problem.

Lemma 5.1. There is a positive constant B1 depending only on q0 such that

|ϕj (t)| � B1 and

∣∣∣∣
∫ t

0
θj (s) ds

∣∣∣∣ � B1/j

for all t ∈ [0, 1] and all j ∈ N.

Proof. The bound on ϕj follows from (19) and the observation that γj is O(j). We only
need consider (19) since the eigenvalues of the problem are eventually simple.

For the second bound, we can simply replace λj (q0) by µj(q0) in (19) and obtain, for
some constant �j ,

θj (x) = �js0(µj (q0), x) = �j

sin(
√

µj(q0)x)√
µj(q0)

+ �j (s0(µj (q0), x) − s0,0(µj (q0), x)). (20)

The term s0(µj (q0), x) − s0,0(µj (q0), x) is O(|µj(q0)|−1) = O(j−2) as we observed
previously, by using (13). The factor �j must then be O(j) as 1 = (θj , ωj ) = O(�j/j).
Integrating both sides, we obtain∫ x

0
θj (t) dt = �j

µj (q0)
(1 − cos(

√
µj(q0)x)) + O(1/j) � O(1/j).

This completes the proof. �

6. An interpolation error estimate

The last technical result which we shall require in the proof of theorem 2.1 is the following.

Lemma 6.1. Let S be an analytic function on a disc with centre z0 and radius 2. Let z1, . . . , zν

be ν points (not necessarily distinct) in a disc of radius ε (0 < ε < 1/2) centred at z0. Let p
be the unique polynomial of degree at most ν − 1 which interpolates S and its derivatives in
the usual way at the points z1, . . . , zν: namely, if the value of zj appears mj times in the list
z1, . . . , zν then p(n)(zj ) = S(n)(zj ) for n = 0, . . . , mj − 1. Let R = S − p. Then for each
0 � j � ν − 1,

|R(j)(z0)| � B2ε
ν−j sup

|ζ−z0|=1
|S(ζ )| (21)

where the constant B2 depends only on ν and not on ε, S or the positions of the points
z1, . . . , zν .
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Proof. Let ω(z) = ∏ν
j=1(z − zj ) and let � be the circle of centre z0, radius 1. Using the

Hermite formula for the difference R(z) = S(z) − p(z) (see, e.g., [10, p 69]) immediately
gives

R(z) = ω(z)

2π i

∫
�

S(ζ )

ω(ζ )(ζ − z)
dζ. (22)

On the circle �, we have |ω(ζ )| � 2−ν since all the points zj are at a distance at least 1/2
from �. We also have |ζ − z0| = 1 when ζ lies on �. Furthermore, since all the points zj are
at a distance less than ε from z0 it follows that |ω(z0)| � εν . Hence,

|R(z0)| � (2ε)ν sup
ζ∈�

|S(ζ )|,

which proves the inequality (21) for j = 0.
Differentiating (22) yields

R′(z) = ω′(z)
2π i

∫
�

S(ζ )

ω(ζ )(ζ − z)
dζ +

ω(z)

2π i

∫
�

S(ζ )

ω(ζ )(ζ − z)2
dζ.

The first term is now O(νεν−1) while the second is bounded by the same bound as the first: in
fact,

|R′(z0)| � εν−1(ν + ε)2ν sup
ζ∈�

|S(ζ )|.

The higher derivatives are dealt with analogously. �

7. Proof of theorem 2.1

In view of theorem 3.3, we plan to estimate the sup-norm of

K̃0(x, t) = 1

2

∫ x+t−1

x−t−1
(f ′(s) + g(s)) ds,

i.e., the suprema of |f (t)| and
∣∣∫ t

0 g ds
∣∣. The factor exp(‖q‖2 + ‖q0‖2) appearing in

theorem 3.3 contributes the factor of exp(‖q‖2) appearing in theorem 2.1; the remaining
constants will depend only on q0, as will become apparent in the proof.

Note that f = ∑∞
j=1 αjϕj where αj = (f, ψj ). We will show below that

|αj | � 2M(1 + ‖f ‖2)
aj

j
(23)

where aj = |λj (q) − λj (q0)| and where M is a constant depending only on q0. Since the ϕk

form a Riesz basis we have the existence of a positive number R such that

‖f ‖2
2 � R2

∞∑
j=1

|αj |2.

Thus,

‖f ‖2
2 � R2

∞∑
j=1

4M2(1 + ‖f ‖2)
2
a2

j

j 2
� 8R2M2

(
1 + ‖f ‖2

2

) ∞∑
j=1

a2
j

j 2

� 8R2M2
(
1 + ‖f ‖2

2

) (
π2ε2

6
+

‖a‖2
2

N2

)
,
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where we have used the assumption aj � ε for j = 1, . . . , N from the theorem. The inequality
in theorem 2.1 is claimed for sufficiently small ε and sufficiently large N. Thus, we may assume
without loss of generality that

8R2M2

(
π2ε2

6
+

‖a‖2
2

N2

)
� 1

2
.

We then get ‖f ‖2
2 �

(
1 + ‖f ‖2

2

)/
2, whence ‖f ‖2 � 1. From (23), it follows that

|αj | � 4M
aj

j
.

Therefore, using lemma 5.1, and defining M̂ to be the greater of the constant M in (23) and
the constant B1 appearing in lemma 5.1,

|f (t)| �
∞∑

j=1

|αj ||ϕj (t)| � 4M̂2
∞∑

j=1

aj

j
� 4M̂2(1 + log N)ε +

4M̂2‖a‖2

N1/2
.

It remains to show the validity of inequality (23). First note that equation (1) for x = 1
gives

s(λ, 1) = s0(λ, 1) +
∫ 1

0
f (t)s0(λ, t) dt (24)

where we recall that f (t) = K(1, t). Moreover, this equation may differentiated with respect
to λ arbitrarily many times. Now let

λ = λκ(q0) = · · · = λκ+ν−1(q0)

be an eigenvalue of multiplicity ν. We deal with the cases ν = 1 and ν > 1 separately.
For the case of a simple eigenvalue (ν = 1) we have, from (18) and from (24) evaluated

at λ = λk(q0),

ακ = (f, ψκ) = κπ

∫ 1

0
f (t)s0(λκ(q0), t) dt = κπs(λκ(q0), 1).

Likewise if we evaluate (24) at λ = λκ(q) we obtain

0 = s0(λκ(q), 1) +
∫ 1

0
f (t)s0(λκ(q), t) dt.

Subtracting,

ακ = −κπs0(λκ(q), 1) + κπ

∫ 1

0
f (t)(s0(λκ(q0), t) − s0(λκ(q), t)) dt

which we can also write as

ακ = κπ(s0(λκ(q0), 1) − s0(λκ(q), 1)) + κπ

∫ 1

0
f (t)(s0(λκ(q0), t) − s0(λκ(q), t)) dt

since s0(λκ(q0, 1) = 0. It now follows from elementary estimates that

|ακ | � κπ(1 + ‖f ‖1)‖s0(λκ(q0, ·) − s0(λκ(q), ·)‖∞.

Using lemma 4.3 with k = 0 and j = κ , we thus obtain

|ακ | � κπ(1 + ‖f ‖1)
M0

κ2
aκ .

The term ‖f ‖1 is bounded above by ‖f ‖2 since the problem is posed in L2(0, 1), and so (23)
follows with a suitable choice of M (e.g. πM0/2).
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Next consider the case of a multiple eigenvalue (ν > 1). Since the q0 problem has at
most finitely many multiple eigenvalues, we may assume without loss of generality that the
eigenvalue is one of the first N which are approximated with accuracy at least ε. We may
thus assume that there are ν eigenvalues λκ(q), . . . , λκ+ν−1(q), counted according to algebraic
multiplicity and therefore not necessarily distinct, in a disc of centre λκ(q0) and radius ε. For
each t, let p(λ, t) and p0(λ, t) be, respectively, the unique polynomials of degree at most
(ν − 1) interpolating s(λ, t) and s0(λ, t) at the points λκ(q), . . . , λκ+ν−1(q). From (24), we
know that

p(λ, 1) = p0(λ, 1) +
∫ 1

0
f (t)p0(λ, t) dt

for λ = λκ(q), . . . , λκ+ν−1(q) and hence for all λ, since both sides of the equation are
polynomials of degree at most ν − 1. We can therefore differentiate this formula ν − j − 1
times, for j = 0, . . . , ν − 1, and obtain

p(ν−1−j,0)(λ, 1) = p
(ν−1−j,0)

0 (λ, 1) +
∫ 1

0
f (t)p

(ν−1−j,0)

0 (λ, t) dt. (25)

We now observe that since s(λ, 1) = 0 at all of the points λκ(q), . . . , λκ+ν−1(q), the function
p(λ, 1) is identically zero. Thus, the left-hand side of (25) is identically zero, and in particular

0 = p
(ν−1−j,0)

0 (λκ(q0), 1) +
∫ 1

0
f (t)p

(ν−1−j,0)

0 (λκ(q0), t) dt. (26)

Now the coefficients ακ+j = (f, ψκ+j ) in the expansion of f is given, from (18), by

ακ+j = (f, ψκ+j ) = κπ

(ν − 1 − j)!

∫ 1

0
f (t)s

(ν−1−j,0)

0 (λκ(q0), t) dt, j = 0, 1, . . . , ν − 1.

By virtue of (26) and the fact that s
(ν−1−j,0)

0 (λj (q0), 1) = 0, we can write this equation in
terms of R(λ, t) := s0(λ, t) − p0(λ, t) as

ακ+j = κπ

(ν − 1 − j)!

∫ 1

0
f (t)R(ν−1−j,0)(λκ(q0), t) dt + R(ν−1−j,0)(λκ(q0), 1).

An application of lemma 6.1 allows us to deduce that

|ακ+j | � κπ

(ν − 1 − j)!
εj+1B22ν sup

|λ−λκ (q0)|=1
sup

t∈[0,1]
|s0(λ, t)|(1 + ‖f ‖1).

The term supt∈[0,1] |s0(λ, t)| is bounded by (16) since Im
√

λ is bounded. Since ‖f ‖1 � ‖f ‖2,
we obtain an estimate of the required form (23).

The estimate for
∣∣∫ t

0 g ds
∣∣ is obtained in a very similar way. We point out the main

differences. Instead of equation (24), we need

s ′(λ, 1) = s ′
0(λ, 1) +

∫ 1

0
g(t)s0(λ, t) dt

which follows from equation (1) after using that K(1, 1) = 0 (by the equality of the mean
values of q and q0). Next, we observe that

s ′(µj (q0), 1) =
∫ 1

0
g(t)s0(µj (q0), t) dt = (g, ωj )

jπ
,

since ωj = jπs0(µj (q0), ·). Also,

0 = s ′
0(µj (q), 1) +

∫ 1

0
g(t)s0(µj (q), t) dt.
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Since βj = (g, ωj ), we obtain

βj

jπ
=

∫ 1

0
g(t)[s0(µj (q0), t) − s0(µj (q), t)] dt + [s ′

0(µj (q0), 1) − s ′
0(µj (q), 1)].

Recalling that s ′
0 is s

(0,1)
0 , we may appeal to lemma 4.3 and thus obtain the estimate

|βj | � Cj

[
bj

j 2
‖g‖2 +

bj

j

]

where bj = |µj(q) − µj(q0)|. Bearing in mind that bj � ε for j = 1, . . . , N , we get

‖g‖2
2 � R2

∞∑
j=1

|βj |2 � 2R2C2{‖b‖2
2 +

(
ε2π2/6 + ‖b‖2

2

/
N2)‖g‖2

2

}
.

It then follows that ‖g‖2 � C̃‖b‖2 for some constant C̃, and hence for some positive
constant M̃ ,

|βj | � 4M̃bj .

Finally, using lemma 5.1, and taking M to be the greater of M̃ and the constant B1 appearing
in lemma 5.1, ∣∣∣∣

∫ t

0
g(s) ds

∣∣∣∣ = |(χ[0,t], g)| �
∞∑

j=1

|βj ||(χ[0,t], φj )| � 4M2
∞∑

j=1

bj

j

� 4M2(1 + log N)ε +
4M2‖b‖2

N1/2
.

This completes the proof.

8. Extensions and numerical results

We consider the possibility of improving the result in theorem 2.1 in two ways: by
strengthening the norm and by improving the factor of 1/

√
N in the error bound to something

smaller.
Strengthening the norm can be easily achieved if one is prepared to make a priori

assumptions about the boundedness of q − q0 in some stronger Sobolev space. We have the
following result.

Theorem 8.1. Suppose that q and q0 are complex-valued functions in L2([0, 1]) with the
same mean value. Suppose also that q − q0 lies in a bounded set in the Sobolev space
Hn([0, 1]), n � 0. Let aj = |λj (q) − λj (q0)| and bj = |µj(q) − µj(q0)|. Let ε0 � 0 and
N0 ∈ N be fixed. Then for each −1 � r � n there exists a constant C depending only on
ε0, N0, r and q0 such that the following statement is true.

If 0 � ε � ε0, N � N0 and max{a1, . . . , aN , b1, . . . , bN } � ε, then

‖q − q0‖Hr � C

[
ε log N +

‖a‖2 + ‖b‖2√
N

](n−r)/(n+1)

.

Proof. The hypothesis that q −q0 is bounded in Hn([0, 1]) means that q lies in a bounded set
in L2([0, 1]) determined by q0, since q0 ∈ L2([0, 1]). Thus, the term exp(‖q‖2) appearing in
theorem 2.1) can be absorbed into the constant C. The result is then immediate from standard
results in interpolation space theory, and in particular the inequality

‖f ‖H(1−θ)r+θs � C‖f ‖1−θ
Hr ‖f ‖θ

Hs ,

for 0 � θ � 1 (see, e.g., [9]). �
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Figure 1. Differences between Fourier eigenvalues and eigenvalues for q(x) = sin(kx) for
different values of k.

Note that q and q0 are not each required to be in Hn for this result: it is enough that
their difference possess the necessary smoothness. If one is using the technique of Rundell
and Sacks [15] for solving the inverse problem, for instance, then q − q0 will generally be
smoother than q0, and this improved error bound is then available.

The question of whether or not the factor of 1/
√

N is best possible is more difficult to
address. Consider the example

q0(x) = 0,

for which all the eigenvalues are known, and the sequence of potentials q(x) = sin(kx), k ∈ N,
for which

sup
x∈[0,1]

∣∣∣∣
∫ x

0
(q(t) − q0(t)) dt

∣∣∣∣ = 1

k
.

Fix ε > 0 and let N be (as a function of k) the number of eigenvalues approximated to within
ε. If our error bound is tight then we should have

1

k
� C

[
ε log(N) +

‖a‖2 + ‖b‖2√
N

]

for some positive constant k and therefore, in particular,

1

k
� C√

N
,

yielding N � Ck2. Is this seen in practice? The results in figure 1 suggest that this is not so.
It seems that one has only N � Ck, which would indicate that the term 1√

N
in the error bound

ought to be 1
N

.
However, in order to obtain such a bound one would need to have more subtle eigenvalue

asymptotics than the ones we have used, which are
√

λj = jπ + αj ,
√

µj = (j − 1/2)π + βj ,
with (αj ), (βj ) ∈ �2. In view of McLaughlin’s diffeomorphic relationship between these
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remainder sequences in �2 and the potentials in L2, better asymptotics would actually depend
on further smoothness assumptions on the potential.

Appendix. Riesz bases

Let H be a separable Hilbert space. The set {fn : n ∈ N} ⊂ H is called a Riesz basis of H if
its closed linear span equals H and if there exist positive constants r and R such that

r2
N∑

n=1

|cn|2 �
∥∥∥∥∥

N∑
n=1

cnfn

∥∥∥∥∥
2

� R2
N∑

n=1

|cn|2

for every sequence c : n 	→ cn in �2(N).
If {fn : n ∈ N} is a Riesz basis of H then there exists a unique Riesz basis {gn : n ∈ N} such

that (fn, gk) = δn,k for all n, k ∈ N. The sequences fn and gn are then called biorthogonal.
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