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THE INVERSE RESONANCE PROBLEM
FOR JACOBI OPERATORS

B. M. BROWN, S. NABOKO and R. WEIKARD

Abstract

It is proved in this paper that super-exponentially decaying, possibly non-selfadjoint perturbations
of the free Jacobi operator are uniquely determined by the location of all their eigenvalues and
resonances.

1. Introduction

It is well known that the one-dimensional Schrödinger equation

−y′′ + qy = λy, x ∈ [0,∞)

has essential spectrum on [0,∞) together with possible negative eigenvalues when
q is real-valued with q(x) → 0 as x → ∞. In addition, it may possess resonance
poles whose presence is reflected in the properties of the spectral measure of the
associated operator in L2[0,∞) (and, as such, may be observable in laboratory
experiments). The spectral points of the operator may be characterized in terms
of the limiting behavior of the so-called Titchmarsh–Weyl m-function as the now
complex-valued spectral parameter approaches the real line. The Titchmarsh–Weyl
function is itself defined in terms of the Jost function, and the resonance poles are
the zeros of the analytic continuation of the Jost function to the second Riemann
sheet, provided that such a continuation exists. Poles that are close to the real line
can be manifested also by a local change in the spectral measure which gives rise to
the phenomenon of spectral concentration. These notions of spectral concentration
and resonance poles have been the subject of much study (see [12, 19, 1, 5, 14]),
as has the region to which analytic continuation is possible [2, 3]. When q has
super-exponential decay, it is known that such continuation is possible to all of the
second Riemann sheet.

The inverse problem in the presence of resonances has also been studied. The
first result goes back to Marchenko, who showed that when (1+x)q(x) ∈ L1[0,∞),
then q is uniquely determined by the scattering phase, eigenvalues and norming
constants [13], these quantities being determined at least for compactly supported
potentials by the Jost function. Further, in some recent work [6] a more-general
approach to this problem has been proposed. The formulation of that method allows
even complex-valued potentials to be considered, and it is applicable whenever the
concept of a resonance makes sense. However, the method requires that rather
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precise information be available on the asymptotic distribution of the resonance
poles; this information is available only when q has compact support or is exp(−x2),
and this leads to some technical problems in the analysis. The example contained
in [6] shows that if the potential q has compact support, then the eigenvalues and
resonance poles uniquely determine q. In [4] this result has been extended to a class
of perturbations of algebro-geometric potentials.

In this paper we turn our attention to related problems, but this time focusing
on Jacobi matrices. There are, of course, many papers that deal with the problem
of the recovery of the Jacobi matrix, given the eigenvalues (see, for example, [9, 18,
7, 15]). Further, there has been some discussion of the recovery of the coefficients
of the matrix, given the scattering data [8], which should be viewed as a discrete
analogue of the famous Marchenko result [13] for differential equations. In addition,
the non-selfadjoint Jacobi matrix has been treated, and it has been shown that its
coefficients can be recovered from the generalized spectral function [10, 11].

In this work we extend our approach, developed in [6], and we show that, given
the eigenvalues and resonances of the associated operator, we can determine the
coefficients of the Jacobi matrix up to certain similarity transformations. This result
for Jacobi matrices is more embracing than the result given in [6] for differential
equations, because in that work the authors need good asymptotic information on
the location of the eigenvalues for each specific problem. However, in the discrete
setting we are able to prove a theorem that covers all coefficients that are eventually
super-exponentially small.

Section 2 contains the basic definitions needed to define the Jacobi operator
and the Titchmarsh–Weyl m-function. It also discusses the required similarity
transformation. Section 3 is devoted to the main theorem of the paper, while
Section 4 contains a discussion of the inverse problem when super-exponential
coefficients are present.

2. Preliminaries

2.1. Jacobi operators

Throughout this paper, we assume that

(a1, a2, . . .), (b1, b2, . . .), and (c1, c2, . . .)

are bounded complex-valued sequences such that the products
∞∏

n=1

an and
∞∏

n=1

cn

converge absolutely to nonzero numbers. In particular, none of the numbers an or
cn is equal to zero. Set a0 = 1. We consider here the Jacobi operator given by

(Jf)(n) = an−1f(n − 1) + bnf(n) + cnf(n + 1), n ∈ N,

and the difference equation

(Jf)(n) = µf(n), n ∈ N, (2.1)

where µ is a complex parameter.
The case where all an and cn are equal to 1 and all bn are equal to 0 is called the

free Jacobi operator.
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2.2. Similarity of Jacobi operators

Let u : N0 −→ C − {0} : n �→ un be a sequence such that u0 = u1 = 1 and
∞∑

n=1

∣∣∣∣un+1

un
− 1

∣∣∣∣ < ∞.

Under this assumption, the sequences n �→ un and n �→ 1/un are convergent, and
hence bounded.

Given such a sequence n �→ un , define

ãn =
un

un+1
an , b̃n = bn , and c̃n =

un+1

un
cn .

Note that ancn = ãn c̃n , and that the products
∏∞

n=1 ãn and
∏∞

n=1 c̃n are absolutely
convergent.

Conversely, given sequences n �→ an , n �→ ãn , n �→ cn , and n �→ c̃n such that the
corresponding infinite products converge absolutely and ancn = ãn c̃n for all n ∈ N,
define u0 = u1 = 1 and

un+1 =
n∏

k=1

c̃k

ck
=

n∏
k=1

ak

ãk

to obtain a sequence n �→ un with the properties mentioned above.
The operator J associated with the sequences n �→ an , n �→ bn , and n �→ cn and

the operator J̃ associated with the sequences n �→ ãn , n �→ b̃n , and n �→ c̃n are
similar in the sense that

(Jf)(n) = u−1
n J̃(uf)(n) for all n ∈ N.

(More formally, J ◦ ι is similar to J̃ ◦ ι where ι : �2(N) −→ {f ∈ �2(N0) : f(0) = 0}
is the isomorphism that assigns the vector (0, f(1), f(2), . . .) to (f(1), f(2), . . .).) In
particular, any Jacobi operator under consideration is similar to one where an = cn

and Re(an ) � 0 for all n ∈ N.

2.3. The m-function

Let c(µ, ·) and s(µ, ·) denote those solutions of (2.1) satisfying the initial
conditions c(µ, 0) = s(µ, 1) = 1 and c(µ, 1) = s(µ, 0) = 0.

Under the given circumstances, the equation Jy = µy has at most one linearly
independent square summable solution. This solution is called a Weyl solution. The
Weyl m-function is then defined for any µ for which a Weyl solution exists, as the
coefficient m for which Ψ(µ, ·) = c(µ, ·) + ms(µ, ·) is a Weyl solution (m may be
infinity if s(µ, ·) is square summable). Note that

m(µ) =
Ψ(µ, 1)
Ψ(µ, 0)

.

We also define M(z) = m(z + 1/z) when 0 < |z| < 1. We are interested in
potentials for which M may be extended meromorphically to the entire complex
plane.

If J and J̃ are similar, the similarity being established by a sequence n �→ un ,
and if n �→ Ψ(µ, n) is a Weyl solution of Jy = µy, then n �→ unΨ(µ, n) is a Weyl
solution of J̃y = µy, and vice versa. Moreover, J and J̃ have the same m-function.
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One can therefore expect only to retrieve a Jacobi operator from its m-function up
to similarity.

Let Σ denote a fixed open sector of the complex plane whose vertex is at the
origin, and let LΣ denote the set of those Jacobi expressions satisfying the following
conditions: (i) a0 = 1, (ii) an = cn �= 0 for n ∈ N, (iii)

∑∞
n=1 1/|an | = ∞, and

(iv) the intersection of Σ and the closed convex hull of the set {an−1+bn +an −ran :
n ∈ N, r � 0} is bounded. The following theorem is proved in [16].

Theorem 2.1. Let J and J̃ be two Jacobi expressions in LΣ, and let m and
m̃ be the associated m-functions. Let R be a ray in Σ emanating from the origin.
Then the following statement holds: m(µ) − m̃(µ) = O(µ−2N −1) on R if and only
if bn = b̃n and a2

n−1 = ã2
n−1 for n ∈ {1, . . . , N}.

Since we may assume that Re(an ) � 0, we see that all the Jacobi matrices under
consideration here are contained in LΣ if Σ = {λ : | arg(λ)| < α} and α < π.

3. The main theorem

Definition 3.1. Let C be the family of Jacobi operators J satisfying the
conditions mentioned in Section 2.1 for which there exists a function ψ : C×N0 −→
C with the following properties.

(1) For every nonzero complex number z, the functions ψ(z, ·) and ψ(1/z, ·) are
nontrivial solutions of the difference equation Jy = (z + 1/z)y.

(2) There exists a nonzero number p such that

ψ(z, 0)ψ(1/z, 1) − ψ(1/z, 0)ψ(z, 1) = p

(
1
z
− z

)

for all z ∈ C − {0}.
(3) ψ(z, ·) is square summable for all z in some nonempty open subset of the

unit disk |z| < 1.
(4) ψ(·, 0) and ψ(·, 1) are entire functions, and ψ(·, 0) has growth order zero.
(5) There exist a number A and a sequence of circles γn : t �→ rn exp(it) such

that rn tends to infinity and ∣∣∣∣ψ(z, 1)
ψ(z, 0)

∣∣∣∣ � A|z|

for all z on the given circles.

Theorem 3.1. Assume that J , a Jacobi operator associated with the sequences
n �→ an , n �→ bn and n �→ cn , is in C, and let ψ be the function from Definition 3.1
establishing that fact. Then the zeros of ψ(·, 0) and their multiplicities determine
uniquely the quantities bn and ancn for all n ∈ N.

Proof. It is well known that the Titchmarsh–Weyl m-function determines the
bn and the ancn in the selfadjoint case (where an = cn > 0). By Theorem 2.1, this
is also true in the present case, taking into account the similarity transformations
mentioned above. Since, of course, M determines m, we have only to show that the
given information suffices to determine M .
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Next note that, without loss of generality, we may assume that ψ(0, 0) = 1. It
follows from condition (3) that

M(z) =
ψ(z, 1)
ψ(z, 0)

.

Condition (4) implies that M is meromorphic, and that its poles are the zeros of
ψ(·, 0). We denote the poles of M by the pairwise distinct numbers z1, z2, . . . , and
we use n1, n2, . . . for their respective multiplicities. The poles are labelled such that
|z1| � |z2| � . . . .

Let hz (µ) = (z/µ)2/(z − µ). Also define γn (t) = rn exp(it) for t ∈ [0, 2π] and
Bn = {z : |z| < rn}. Note that z = 0 is not a pole of M . Therefore, by the residue
theorem,

1
2πi

∫
γn

hz (µ)M(µ)dµ = −M(z) + M(0) + M ′(0)z +
∑

zj ∈Bn

reszj
(hzM)

if 0 �= |z| < rn and if z is none of the poles of M . According to condition (5),
the integral on the left tends to zero as n tends to infinity, proving firstly the
convergence of the series and secondly that

M(z) = M(0) + M ′(0)z +
∞∑

j=1

reszj
(hzM). (3.1)

Next we will determine the residues of hzM at the poles of M . To do this, let

fj (µ) =
(µ − zj )nj

ψ(µ, 0)
.

Then

reszj
(hzM) =

1
(nj − 1)!

(ψ(·, 1)hzfj )(nj −1)(zj )

=
nj −1∑
r=0

r∑
s=0

αr,sψ
(r)(zj , 1)h(s)

z (zj )f
(nj −1−r−s)
j (zj ),

where the αr,s are certain rational numbers. Therefore each of the residues of hzM
may be computed once we know the function ψ(·, 0) (and hence the functions fj )
and the numbers ψ(r)(zj , 1) for r = 0, . . . , nj − 1.

Since ψ(0, 0) = 1, and since ψ(·, 0) has growth order zero, Hadamard’s
factorization theorem shows that

ψ(z, 0) =
∞∏

k=1

(1 − z/zk )nk.

Next, letting ψ(1/z, 0) = ζ0(z), ψ(1/z, 1) = ζ1(z) and W (z) = 1/z − z, we see
from condition (2) that

ψ(z, 0)ζ1(z) − ζ0(z)ψ(z, 1) = pW (z). (3.2)

Taking r � nj − 1 derivatives of this equation and evaluating at zj gives
r∑

�=0

(
r

�

)
ψ(�)(zj , 1)ζ(r−�)

0 (zj ) = −pW (r)(zj ).

Assume now that zj �= 1/zj . Then ζ0(zj ) �= 0 because ψ(zj , ·) and ψ(1/zj , ·)
are linearly independent. Since ζ0 and its derivatives are known functions, we
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know their values at zj , and therefore we may compute the numbers ψ(zj , 1),
ψ′(zj , 1), . . . , ψ(nj −1)(zj , 1) recursively. Note that each one equals p times a known
quantity independent of p. If zj = 1/zj , then the first derivative of equation (3.2)
gives

2ψ′(zj , 0)ζ1(zj ) = −2p.

This proves that necessarily nj = 1 and ψ(zj , 1) = ζ1(zj ) = −p/ψ′(zj , 0), again a
multiple of p.

Since the function z �→ h
(s)
z (zj ) is of order z2 as z tends to zero, regardless of s,

the same is therefore true of the function z �→
∑∞

j=1 reszj
(hzM). Therefore we now

find that M(z) = M(0) + M ′(0)z + pz2G(z), where G is analytic at zero and does
not depend on p.

Since the asymptotic behavior of the m-function is m(z + 1/z) = z + O(z2) as z
tends to zero (see [16] for a proof in the non-selfadjoint setting) we see, furthermore,
that M(0) = 0 and M ′(0) = 1. Thus the theorem is proved once we show that the
number p is also determined from the zeros of ψ(·, 0). Since M(z) = z + pz2G(z),
condition (2) implies that

1 +
p

z
G(1/z) = z2 + pz3G(z) +

p(1 − z2)
ψ(z, 0)ψ(1/z, 0)

.

Hence, if ψ(·, 0) is not bounded, then there is a sequence n �→ wn converging to
zero such that 1 + pG(1/wn )/wn tends to zero; that is,

−p−1 = lim
n→∞

G(1/wn )/wn .

If, on the other hand, ψ(·, 0) is bounded, it must be constant and hence identically
equal to 1. In this case M(z) = z, so that the value of p is not even needed.

4. Super-exponentially decaying perturbations of the free Jacobi operator

The free Jacobi equation

y(n − 1) + y(n + 1) = (z + 1/z)y(n), n ∈ N,

has the solution

s0(z,m, n) =
z

1 − z2
(zm−n − zn−m ).

Lemma 4.1. The following statements hold.

(1) If 1/Z � |z| � Z where Z � 2, then

|s0(z,m, n)| � 4
3Z3|m−n |−3.

(2) If |z| � 1/2, then

|s0(z,m, n)| � 4
3 |z|

−|m−n |+1.

(3) If |z| � 2, then

|s0(z,m, n)| � 4
3 |z|

|m−n |−1.
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Proof. Since s0(z, n, n) = 0 and s0(z,m, n) = −s0(z, n,m), we may assume that
m > n. Note that

s0(z,m, n) = −
(

1
z

)m−n−1 m−n−1∑
k=0

z2k .

To prove statement (1), we estimate both |z| and 1/|z| by Z and use the fact
that Z2/(Z2 − 1) � 4/3 if Z � 2. To prove statement (2), we estimate the sum
by 4/3, the value of the geometric series for 1/2. To prove statement (3), note that
s0(z,m, n) = s0(1/z,m, n).

Define

K(z,m, n) = (am − 1)s0(z,m + 1, n) + bm s0(z,m, n) + (cm−1 − 1)s0(z,m − 1, n),

ψ0(z, n) =
zn

an
,

and

ψk+1(z, n) =
1
an

∞∑
m=n+1

K(z,m, n)ψk (z,m).

Let α = sup{1/|an | : n ∈ N} and

γm = max{|am − 1|, |bm |, |cm−1 − 1|},
where we set c0 = 1 (even though it is never needed). We will make the following
assumption for the remainder of this section. There exist C > 0 and β > 1 such
that γm � C exp(−mβ ) for all m ∈ N. Then ‖γ‖1 � C.

Lemma 4.2. Suppose that Z � 2, and define N = �(5 log Z)1/(β−1)	. If 1/Z �
|z| � Z, then

|ψk (z, n)| � α(8αC)k

{
Z4N −3n if 0 � n � N − k,

Z−4n−k if n � N − k + 1.

Proof. From Lemma 4.1, we find that

|K(z,m, n)| � 4γm Z3m−3n

if m > n. Moreover, γm � CZ−5m , provided that m � N + 1. Note that
∞∑

m=k+1

a−m � 2a−k−1 � a−k

if a > 2.
We prove the lemma by induction on k. If 0 � n � N − 1, then

|ψ1(z, n)| � 4α2
N∑

m=n+1

γm Z4m−3n + 4α2
∞∑

m=N +1

γm Z4m−3n

� 4α2CZ4N −3n + 4α2CZ−3n
∞∑

m=N +1

Z−m

� 8α2CZ4N −3n ,

where we used |z| � Z and, for the second sum, γm � CZ−5m .
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If n � N , we obtain

|ψ1(z, n)| � 4α2
∞∑

m=n+1

γm Z4m−3n

� 4α2CZ−3n
∞∑

m=n+1

Z−m

� 8α2CZ−4n−1.

Assuming now the validity of the inequality in our statement for some k ∈ N, we
obtain, for 0 � n � N − k − 1:

|ψk+1(z, n)| � 4α2(8αC)k
N −k∑

m=n+1

γm Z4N −3n + 4α2C(8αC)k
∞∑

m=N −k+1

Z−m−3n−k

� 4α2C(8αC)kZ4N −3n + 4α2C(8αC)kZ−3n−N

� α(8αC)k+1Z4N −3n ,

where we used γm � ‖γ‖1 � C. For n � N − k, we find that

|ψk+1(z, n)| � 4α2(8αC)k
∞∑

m=n+1

γm Z−m−3n−k � α(8αC)k+1Z−4n−k−1,

again using γm � C.

Lemma 4.3. Let a > 1 and N = �(log a)1/(β−1)	. If |z| � 1/2, then

|ψk (z, n)| � α(8αC)k

{
|z|n if 0 � n � N − k,

|z|na−n−k if n � N − k + 1.

Proof. The proof of this lemma is practically identical to the proof of the
previous one, except that we now use the estimates

|K(z,m, n)| � 4γm |z|n−m for m > n

and
γm � Ca−m for m � N + 1.

Theorem 4.4. Suppose that there exist C > 0 and β > 1 such that

γm = max{|am − 1|, |bm |, |cm−1 − 1|} � C exp(−mβ )

for all m ∈ N. Then the associated Jacobi operator is in the class C defined in
Definition 3.1. Moreover, this operator is uniquely determined by the location of
its eigenvalues and resonances (repeated according to their multiplicities) up to
similarity.

Proof. Let ψk , k ∈ N0, be the functions defined above, and note that they
are entire functions. We find from Lemma 4.2 that ψ(z, n) =

∑∞
k=0 ψk (z, n) is

absolutely and uniformly convergent in the annulus {z : 1/Z � |z| � Z} if Z �
max{2, 16αC}, since

∞∑
k=N −n+1

|ψk (z, n)| � αZ−4n
∞∑

k=1

(8αC)kZ−k

where N = �(5 log Z)1/(β−1)	. Hence ψ(·, n) is an analytic function on C − {0}.
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Lemma 4.2 shows that zero is a removable singularity of ψ(·, n) since, choosing
there a � 16αC, we have

∞∑
k=N ′−n+1

|ψk (z, n)| � α(|z|/a)n ,

where N ′ = �(log 16αC)1/(β−1)	.
Standard arguments now show that ψ(z, ·) satisfies the Volterra equation

ψ(z, n) =
zn

an
+

1
an

∞∑
m=n+1

K(z,m, n)ψ(z,m),

as well as the Jacobi equation

an−1ψ(z, n − 1) + bnψ(z, n) + cnψ(z, n + 1) = (z + 1/z)ψ(z, n), n ∈ N.

To see the latter, replace ψ(z, n − 1) by the series above, and use

K(z,m, n − 1) + K(z,m, n + 1) = (z + 1/z)K(z,m, n).

After a little algebra, one finds that the equation is satisfied if K(z, n, ·) satisfies
the initial conditions K(z, n, n − 1) = −(z + 1/z)(an − 1) − bn and K(z, n, n) =
cn−1 − an . Solving the difference equation under these initial conditions gives the
above expression for K. Thus ψ satisfies condition (1) of Definition 3.1.

Define p1 = 1 and, recursively, pn+1 = cnpn/an−1. If we denote the determinant
of the matrix (

f(n) g(n)
pn+1f(n + 1) pn+1g(n + 1)

)

by [f, g](n), then [y1, y2](n) is independent of n when y1 and y2 denote two solutions
of Jy = (z + 1/z)y. Choosing y1 = ψ(z, ·) and y2 = ψ(1/z, ·), we find that

p

(
1
z
− z

)
= pn+1(ψ(z, n)ψ(1/z, n + 1) − ψ(1/z, n)ψ(z, n + 1)),

for all n ∈ N.
Assume that Z � max{2, 16αC} and 1 < |z| � Z. We obtain from Lemma 4.2

that both |ψ(z,m)| and |ψ(1/z,m)| are bounded by 2αZm , provided that m > N =
�(5 log Z)1/(β−1)	. Therefore, if n � N , then∣∣∣∣ψ(z, n) − zn

an

∣∣∣∣ � α

∞∑
m=n+1

4γm Z3m−3n2αZm � 8α2CZ−4n ,

using γm � CZ−5m . With these estimates, it follows easily that

lim
n→∞

(ψ(z, n)ψ(1/z, n + 1) − ψ(1/z, n)ψ(z, n + 1)) =
1
z
− z

since limn→∞ anan+1 = 1. This implies, finally, that

p = lim
n→∞

pn+1 =
∞∏

n=1

cn

an
.

This proves the validity of condition (2).
Lemma 4.3 shows that ψ(z, ·) is square summable if 0 < |z| < 1/2. Hence ψ(z, ·)

is the Weyl solution for µ = z + 1/z. This proves condition (3).
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To establish condition (4), remember that we have shown before that the
functions ψ(·, n) are entire. Let z be sufficiently large, and let Z = |z|. Then
Lemma 4.2 gives

|ψ(z, 0)| � 1
an

+
N∑

k=1

α(8αC)k |z|4N +
∞∑

k=N +1

α(8αC)k |z|−k

� 1 + α + αN(8αC)N |z|4N ,

since the last sum converges to a number less than α, once |z| > 16αC. The growth
of this latter expression is equal to the growth of

|z|4N = exp(4N log |z|) � exp
(
(5 log |z|)β/(β−1)

)
,

which has growth order zero.
By a theorem of Wiman [17], the minimum modulus of an entire function of

growth order less than 1/2 is unbounded. Hence there exists a sequence n �→ rn such
that rn tends to infinity and min{|ψ(z, 0)| : |z| = rn , n ∈ N} � 1. For sufficiently
large z, we also have |ψ(1/z, 0)| � 1/2 and |M(1/z)| � 1. Therefore, using the
already established condition (2), we have

|M(z)| =
∣∣∣∣M(1/z) − pW (z)

ψ(z, 0)ψ(1/z, 0)

∣∣∣∣ � 1 + 2|pW (z)| � (1 + 4|p|)|z|

on any of the above-mentioned circles with sufficiently large radius. This establishes
condition (5).

The last statement now follows simply by an application of Theorem 3.1.
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9. G. Š. Gusĕinov, ‘The determination of the infinite Jacobi matrix from two spectra’, Mat.
Zametki, 23 (1978) 709–720.
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(1915) 197–211.

18. S. Yamazaki, ‘On specification of a class of infinite Jacobi matrices’, J. Phys. A 25 (1992)
L403–L408.

19. M. Zworski, ‘Distribution of poles for scattering on the real line’, J. Funct. Anal. 73 (1987)
277–296.

B. M. Brown
School of Computer Science
University of Wales, Cardiff
PO Box 916
Cardiff CF2 3XF
United Kingdom

Malcolm.Brown@cs.cf.ac.uk

R. Weikard
Department of Mathematics
University of Alabama at

Birmingham
Birmingham, AL 35294-1170
USA

rudi@math.uab.edu

S. Naboko
Department of Mathematical Physics
St. Petersburg State University
198904 St. Petersburg
Russia

naboko@math.uab.edu


