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1. Introduction

Recently there has been much interest in the inverse spectral problem for the one
dimensional Sturm–Liouville problem

Ky 00CqyZ ly; x2½0;l Þ;

where l may be either finite or infinite. More precisely the problem is to
recover q from spectral data. Borg (1946) and Levinson (1949) showed when q
was real that it is uniquely determined by the associated Titchmarsh–Weyl
function. Local versions of this theorem have recently been proved by Simon
(1999), Gesztesy & Simon (2000) and Bennewitz (2001), the latter theorem
being the result of an elegant and short proof. In the case of complex q, Brown
et al. (2002) have shown, using a method modelled on the approach in
Bennewitz (2001), that the local Borg theorem is still true. In the case of real
q mention must also be made of the famous result of Gel’fand & Levitan
(1951) who showed that q could be determined by the spectral function which
in the case of a finite interval can itself be determined by two sets of
eigenvalues.

The study of the Sturm–Liouville problem on an interval has been extended
to its consideration on trees. This has been motivated by quantum models in
both physics and chemistry see for instance (Exner et al. 1988; Gerasimenko
1988; Gerasimenko & Pavlov 1988; Bulla & Trenkler 1990). In the case of real
coefficients the self-adjoint extensions of symmetric operators on trees have
been studied by Carlson in Carlson (1998) and their self-adjoint extensions
characterized. Treelike domains have been used to model the scattering
problem for partial differential equations (Melnikov & Pavlov 2001), while in a
series of papers (Evans & Saitō 2000; Evans et al. 2001) the authors study
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PDE problems on domains with fractal boundaries and reduce the study of
these problems to ones on trees. Further, a recent result of Carlson (1997) has
shown that on an infinite homogeneous tree the spectrum of the free Laplacian
consists of bands and gaps and possibly eigenvalues. Sobolev & Solomyak
(2002) have studied the effect of introducing a real perturbation of the zero
potential on such an infinite homogeneous tree when the coupling constant
tends to infinity. A further impetus has been given to these studies by the
requirements in micro electronics fabrication problems, in particular the
construction of quantum switches and other nano-computational devices (see
Mikhailova et al. 2002; Mikhaylova & Pavlov 2002; Pavlov 2002) where
scattering problems on trees have been studied. In a recent paper, Pivovarchik
(2000) considers the inverse spectral problem of the recovery of the coefficients
of the Sturm–Liouville problem on a domain consisting of three intervals
together with appropriate interface and boundary conditions. He shows that
given the spectrum of the problem on the tree together with the Dirichlet
problems on each edge, the coefficients of the Sturm–Liouville problem may be
recovered. For further references the reader may consult the January 2004
issue of Waves in Random Media where a special section on quantum graphs
appeared.

The approach in Borg (1946) and Levinson (1949) is to show that the
Titchmarsh–Weyl m-function determines uniquely the function q in the case of a
one-dimensional Schrödinger equation. Nachman et al. (1988) have shown an
analogous result in the case of a multi-dimensional Schrödinger equation on a
bounded domain using the Dirichlet-to-Neumann map instead of the m-function.
Curtis & Morrow (1990, 1991) have a similar result for the (combinatorial)
problem of a resistor network. We will show here that this is the right idea also
for treelike domains following the approach in Bennewitz (2001) and Brown et al.
(2002).

More precisely, in this paper we shall study the inverse spectral problem for
the Sturm–Liouville problem

Ky 00Cqjy Z ly; x2½0;1�;

on each branch of a finite tree where the qj are complex-valued and integrable
and where continuity and Kirchhoff type conditions for the solutions and their
derivatives are imposed at the internal branch points. We shall follow the
approach in Brown et al. (2002) adapted to the tree domain with the m -function
being replaced by the Dirichlet-to-Neumann map. The main result of this paper
is the following theorem (cf. §§2 and 3 for precise definitions).

Theorem 1.1. Let q be a complex-valued integrable potential supported on a
simply connected finite tree. Then the associated (generalized) Dirichlet-to-
Neumann map uniquely determines the potential almost everywhere on the tree.

Section 2 contains basic definitions and a formulation of the Sturm–Liouville
problem on a tree through interface conditions between the branches. Section 3
defines the Dirichlet-to-Neumann map while §4 discusses the structure of the
Green’s function for this problem. The Weyl solution is introduced in §5 and its
asymptotics are obtained. Section 6 shows how the Dirichlet-to-Neumann map
may be used to recover the coefficients of boundary edges while an induction
Proc. R. Soc. A (2005)
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argument in §7 shows how the remaining coefficients are also determined by the
map. An appendix contains the asymptotics of the basic solutions on an
interval.
2. Preliminaries

(a ) Trees

For jZ1,., r let ej be homeomorphisms defined on [0,1]. The Hausdorff space

T Zg
r

jZ1
fejðtÞ : t2½0;1�g;

is called a directed finite tree if it is simply connected and if ej(t)Zek(s) happens
only if jZk or if t, s2{0,1}. The points e1(0), e1(1),., er(0), er(1) are called
vertices. The set of all vertices is denoted byV. It contains precisely rC1 elements.
The images of the functions ej are called edges. The structure of the tree is described
uniquely by specifying the vertices connected by each edge, i.e. by the set

ððe1ð0Þ; e1ð1ÞÞ;.; ðerð0Þ; erð1ÞÞÞ2ðV!V Þr :
Avertex is called a boundary vertex if it belongs to only one edge. Such an edge will
be called a boundary edge. A vertex which belongs to several edges is called an
internal vertex. An edge both of whose endpoints are internal vertices is called an
internal edge. Without loss of generality we assume that the boundary edges are
labelled 1,.,n0 when n0 denotes the number of boundary vertices. We will also
assume that the boundary vertices are given by vjZej (0), jZ1,.,n0.

(b ) The interface conditions

An integrable function y on T may be represented as yZ(y1,., yr)
T, where

yj(t)Zy(ej(t)).
If q is an integrable function on T we are interested in problems associated

with the differential expression L given by ðLyÞðejðtÞÞZKy 00j ðtÞCqjðtÞyjðtÞ. We
impose the following requirements on y.

(i) For each j the functions yj and y 0j are absolutely continuous on [0,1].
(ii) For each j the functionKy 00j Cqjyj is in L2([0,1]).
(iii) y is continuous on T.
(iv) For each internal vertex vk the Kirchhoff conditionX

ejð1ÞZvk

y 0jð1ÞK
X

ejð0ÞZvk

y 0jð0ÞZ 0

holds.
Conditions (iii) and (iv) are called interface conditions.
If nk edges meet at vertex vk then these are precisely nk conditions. Therefore,

every internal edge gives rise to two conditions and every boundary edge gives
rise to one condition. Altogether there are therefore 2rKn0 interface conditions.

To represent the interface conditions we introduce next the following
operators which map C 1([0,1])n to C

n (any n):

E0y Z yð0Þ; E1y Z yð1Þ; D0y Z y 0ð0Þ; D1y Z y 0ð1Þ:
Proc. R. Soc. A (2005)
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The interface conditions are then given as IyZ0, where I is a (2rKn 0)!rmatrix
whose entries are zeros or GE0,.,GD1. Note that the first n0 columns of I
correspond to boundary edges. Therefore, these columns will not involve E0 or D0.

For example, for the tree given by ((v1, v4), (v2, v4), (v3, v4)) we have rZ3,
n0Z3 and

I Z

E1 KE1 0

0 E1 KE1

D1 D1 D1

0
B@

1
CA:

For the tree given by ((v1, v3), (v2, v4), (v3, v4)) we have rZ3, n0Z2 and

I Z

E1 0 KE0

D1 0 KD0

0 E1 KE1

0 D1 D1

0
BBBB@

1
CCCCA:

Denote by cj (l, $) and sj (l, $) the solutions ofKy 00j CqjyjZlyj satisfying initial
conditions cjðl; 0ÞZs 0jðl; 0ÞZ1 and c 0jðl; 0ÞZsjðl; 0ÞZ0. Note that cj($, x) and
sj($, x) are entire functions of growth order 1/2 at most. Now any solution
ofKy 00j CqjyjZlyj can be written as

yjðxÞZ ajcjðl; xÞCbjsjðl; xÞ;
when aj and bj denote appropriate constants. The column (a1,.,ar , b1,., br)

T

will be denoted by x.
We introduce the following matrices

Ceðl; xÞZdiagðc1ðl; xÞ;.; cn 0
ðl; xÞÞ;

Seðl; xÞZdiagðs1ðl; xÞ;.; sn 0
ðl; xÞÞ;

Ciðl; xÞZdiagðcn 0C1ðl; xÞ;.; crðl; xÞÞ;
Siðl; xÞZdiagðsn 0C1ðl; xÞ;.; srðl; xÞÞ;

and the block matrices

Cðl; xÞZ diagðCeðl; xÞ;Ciðl; xÞÞ
and

Sðl; xÞZdiagðSeðl; xÞ; Siðl; xÞÞ:
Then we have

yðxÞZ ðCðl; xÞ;Sðl; xÞÞx:
3. The generalized Dirichlet-to-Neumann map

We will show below that for all but countably many values of l there will be a
unique solution of LyZly satisfying the Dirichlet boundary conditions yj(0)Zfj
for jZ1,.,n0. One may then compute the values gjZKy 0jð0Þ. The relationship
between the fj and the gj is linear and is called the Dirichlet-to-Neumann map.
Instead of Dirichlet and Neumann data we will consider general linear boundary
Proc. R. Soc. A (2005)
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conditions described by n0 pairs ða0
j ;ajÞ and n0 pairs ðb0

j ;bjÞ which satisfy the
relationship

a0
jbjKajb

0
j Z 1; ð3:1Þ

for jZ1,.,n0. More precisely, given the unique solution of LyZly satisfying the
non-homogeneous boundary conditions a0

jyjð0ÞKajy
0
jð0ÞZ fj (which exists for all

but countably many values of l) we compute the values gjZb0
jyjð0ÞKbjy

0
jð0Þ and

call the corresponding linear map the generalized Dirichlet-to-Neumann map
which we will denote by L. The goal of this section is to compute it.

The boundary conditions are described by the equation AyZf, where A is the
n0!r matrix (boundary operator)

AZ

a0
1E0Ka1D0 0 . 0 0 . 0

« « « «

0 . 0 a0
n 0
E0Kan 0

D0 0 . 0

0
BB@

1
CCA;

and where fZðf1;.; fn 0
ÞT2C

n 0 . We also define the matrices

BZ

b0
1E0Kb1D0 0 . 0 0 . 0

« « « «

0 . 0 b0
n 0
E0Kbn 0

D0 0 . 0

0
BB@

1
CCA;

as well as

AZAðC ;SÞZ ðdiagða0
1;.;a0

n 0
Þ; 0n 0!ðrKn 0Þ; diagðKa1;.;Kan 0

Þ; 0n 0!ðrKn 0ÞÞ;
and

B ZBðC ;SÞZ ðdiagðb0
1;.; b0

n 0
Þ; 0n 0!ðrKn 0Þ; diagðKb1;.;Kbn 0

Þ; 0n 0!ðrKn 0ÞÞ:
Finally, let

MZ
A
I

 !
;

and

MðlÞZMðCðl; xÞ; Sðl; xÞÞ:
The 2r!2r matrix M is of central importance. Its determinant det M is an entire
function of l whose zeros are the eigenvalues of the boundary value problem
determined by the aj and a0

j . Hence there are at most countably many eigenvalues
which cannot have a finite accumulation point. Note that MxZPf, where

P Z
In 0!n 0

0ð2rKn 0Þ!n 0

 !
;

when x is the vector of coefficient of the basis functions cj and sj as described in §2b.
Now we have

g ZBy ZBðC ;SÞxZBxZBMK1Pf :

Hence the generalized Dirichlet-to-Neumann map is

LðlÞZBMðlÞK1P:
Proc. R. Soc. A (2005)
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4. Green’s function

We want to obtain a solution of the non-homogeneous system of equations
LyZh, where h2L2(T ) and where y is subject to the homogeneous boundary
conditions AyZ0 as well as the interface conditions IyZ0.

Let h(t) denote the column (h(e1(t)),.,h(er(t)))
T. Define

K̂ðl; x; tÞZ diagðk1ðl; x; tÞ;.; krðl; x; tÞÞZ ðCðl; xÞ; Sðl; xÞÞ
Sðl; tÞ

KCðl; tÞ

 !
;

where

kjðl; x; tÞZ cjðl; xÞsjðl; tÞKsjðl; xÞcjðl; tÞ
and

Kðl; xÞZ
ðx
0
K̂ðl; x; tÞhðtÞdt:

Then the general solution of LyZh may then be represented as

yðxÞZ ðCðl; xÞ;Sðl; xÞÞxCKðl; xÞ:
Since MyZ0 is equivalent to MxCMKZ0 we obtain

y ZKðC ; SÞMK1MK CK :

Before we proceed we need to determine the vector MK. To this end we write
MZM0CM1, where M0 involves the operators E0 and D0 only while M1

involves the operators E1 and D1 only. Then we have M0KZ0. Suppressing the
l-dependence for a while we see that

E1K Z

ð1
0
K̂ð1; tÞhðtÞdt Z

ð1
0
ðE1K̂ð$; tÞÞhðtÞdt;

and, since K̂ðx; xÞZ0;

D1K ZE1 K̂ðx; xÞhðxÞC
ðx
0
K̂

0ðx; tÞhðtÞdt
� �

Z

ð1
0
ðD1K̂ð$; tÞÞhðtÞdt:

Therefore,

MK ZM1K Z

ð1
0
ðM1K̂Þh dt Z

ð1
0
ðMKM0Þ

S

KC

 !
ðtÞhðtÞdt;

where M0ZM0(C, S).
Let H be the Heaviside function, i.e. H(t) equals zero or one depending on

whether t is negative or positive. Then

yðxÞZ
ð1
0

KðCðl; xÞ; Sðl; xÞÞðIKMðlÞK1M0ðlÞÞ
Sðl; tÞ

KCðl; tÞ

 !"

CHðxKtÞK̂ðl; x; tÞ
#
hðtÞdt:
Proc. R. Soc. A (2005)
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The Green’s function G is now the term in brackets in the integrand on the right-
hand side of this equation. Since K̂ðl; t; tÞZ0 we have

Gðl; t; tÞZKðCðl; tÞ;Sðl; tÞÞðIKMðlÞK1M0ðlÞÞ
Sðl; tÞ

KCðl; tÞ

 !

Z ðCðl; tÞ; Sðl; tÞÞMðlÞK1M0ðlÞ
Sðl; tÞ

KCðl; tÞ

 !
:

Next let 1%k%n0. Then

Gk;kðl; t; tÞZ ckðl; tÞskðl; tÞ½MðlÞK1M0ðlÞ�k;k Cskðl; tÞ2½MðlÞK1M0ðlÞ�kCr;k

Kckðl; tÞ2½MðlÞK1M0ðlÞ�k;kCrKckðl; tÞskðl; tÞ½MðlÞK1M0ðlÞ�kCr;kCr :

Since the only entry in column k of M0 is a0
kE0KakD0 situated in row k we

obtain that the kth and (kCr)th columns of M0(l) equal a0
kek and Kakek,

respectively.1 Hence

Gk;kðl; t; tÞZ ððMK1Þk;kckðl; tÞCðMK1ÞkCr ;kskðl; tÞÞða0
kskðl; tÞCakckðl; tÞÞ:

If we compute the determinant of M by expanding with respect to row k (which
contains at most two non-zero entries) we obtain

detM Za0
kdet mrk;kðMÞKðK1Þrakdet mrk;kCrðMÞ;

where mrk,j(M ) denotes the minor of M obtained by deleting row k and column j.
The minors may be expressed by the corresponding entries of MK1. Therefore,

1Za0
kðMK1Þk;kKakðMK1ÞkCr;k :

Since we also have

Lk;k Z b0
kðMK1Þk;kKbkðMK1ÞkCr;k ;

we obtain

ðMK1Þk;k Z bkKakLk;k and ðMK1ÞkCr;k Z b0
kKa0

kLk;k :

Hence

Gk;kðl; t; tÞZ ðqkðl; tÞKLk;k4kðl; tÞÞ4kðl; tÞ;
where

qkðl; tÞZbkckðl; tÞCb0
kskðl; tÞ

and

4kðl; tÞZakckðl; tÞCa0
kskðl; tÞ:

Note qk($, t) and fk($, t) are entire functions of growth order 1/2 at most.
5. Weyl solutions

Fix k2{1,.,n0}. Let j(k, l, $) be the solution of the problem LyZly, IyZ0,
AyZek . We call this solution the Weyl solution for the boundary vertex k. The
Weyl solutions are uniquely determined for any l which is not an eigenvalue of
1We denote the vector whose entries are zero save for a 1 at position k by ek .
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the boundary value problem determined by the aj and a0
j . Recall that these are

the roots of the determinant of M and hence the poles of L.

Lemma 5.1. Fix k, j2{1,.,n0}. The Weyl solution for the boundary vertex k
satisfies

jjðk; l; tÞZ dj;kqjðl; tÞKLj;kðlÞ4jðl; tÞ:

Proof. Note that jjðk; l; $ÞZajqjðl; $ÞCbj4jðl; $Þ for appropriate values of aj
and bj . Hence, using equation (3.1)

dj;k Za0
jjjðk; l; 0ÞKajj

0
jðk; l; 0ÞZ aj

and

Lj;k Z ðLekÞj Zb0
jjjðk; l; 0ÞKbjj

0
jðk; l; 0ÞZKbj :

&

In the following lemma and its proof we will use different conventions on labelling
and orienting boundary vertices and boundary edges of trees as before. We will
designate one of the boundary vertices as the root of the tree and denote it by v0.
All other boundary vertices will then be called branch tips. The edge attached to
the root, denoted by e0, will be called the stem. Nothing will be assumed about
the orientation of boundary edges. Note that every vertex v is connected to
another vertex v0 by a unique sequence of edges. The number of these edges will
be called the distance between v and v 0 and will be denoted by d(v, v0). The
number

h Zmaxfdðv; v0Þ : v is a vertex of the treeg
is called the height of the tree with respect to the root v0. (The height of a tree
depends on which boundary vertex is designated as root.)

We denote the outward normal derivative of a differentiable function y :
ð0;1Þ/C at one of the end points by _yð0Þ and _yð1Þ, i.e. we define

_yðpÞZ
Klimt/0 y

0ðtÞ if pZ 0;

limt/1 y
0ðtÞ if pZ 1:

(

Finally, we will call a ray in the complex plane admissible if it emanates from
zero and lies otherwise in the open upper half plane.

Lemma 5.2. Suppose T is a tree with root v0 and j(l, $) satisfies the differential
equation LyZly and the interface conditions IyZ0. Also assume that j(l, $) is
zero at the branch tips but not identically zero on T. Then, as

ffiffiffi
l

p
tends to infinity

along an admissible ray,

_j0ðpÞ
j0ðpÞ

ZKi
ffiffiffi
l

p
COð1Þ; ð5:1Þ

where j0(l, t)Zj(l, e0(t)) and p2{0,1} is such that e0(p)Zv0.

Proof. The proof is by induction on the height of the tree. Assume that the
height of T with respect to v0 is one (i.e. T is an interval). If v0Ze0(1) then
Proc. R. Soc. A (2005)
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j0(l, t)Zb0s0(l, t) for some non-zero b0 and, using lemma A 1,

_j0ðl; 1Þ
j0ðl; 1Þ

Z
s 00ðl; 1Þ
s0ðl; 1Þ

ZKi
ffiffiffi
l

p
COð1Þ:

If v0Ze0(0) then j0ðl; tÞZa 0c 0ðl; tÞCb0s0ðl; tÞ; where a 0c 0ðl; 1ÞCb0s0ðl; 1ÞZ0.
Using again lemma A 1 we find

_j0ðl; 0Þ
j0ðl; 0Þ

Z
Kb0
a 0

Z
c 0ðl; 1Þ
s0ðl; 1Þ

ZKi
ffiffiffi
l

p
COð1Þ:

Next assume that equation (5.1) is true for every tree whose height is at most n and
that T has height nC1 with respect to v0. In addition to the stem itself there are k
subtrees attached to the internal endpoint v1 of the stem.We designate v1 to be the
root of each of these subtrees and we assign labels 1,., k to their stems. We also
assume that v1Zej(1) for jZ1,., [ and v1Zej(0) for jZ[C1,., k.

First, assume again v0Ze0(1). Then j0ðl; tÞZa 0c 0ðl; tÞCb0s0ðl; tÞ, where
a0Zj(l, v1) and where

b0 Z
X[
jZ1

j0
jðl; 1ÞK

Xk
jZ[C1

j0
jðl; 0Þ:

Employing the induction hypothesis we obtain b0=a 0ZKik
ffiffiffi
l

p
COð1Þ and thus,

using lemma A 1,

_j0ðl; 1Þ
j0ðl; 1Þ

Z
a 0c

0
0ðl; 1ÞCb0s

0
0ðl; 1Þ

a 0c 0ðl; 1ÞCb0s0ðl; 1Þ
ZKi

ffiffiffi
l

p
COð1Þ:

If, however, v0Ze0(0) then j0ðl; tÞZa 0c 0ðl; tÞCb0s0ðl; tÞ, where a 0c 0ðl; 1ÞC
b0s0ðl; 1ÞZjðl; v1Þ and where, using the induction hypothesis,

a 0c
0
0ðl; 1ÞCb0s

0
0ðl; 1ÞZ

Xk
jZ[C1

j0
jðl; 0ÞK

X[
jZ1

j0
jðl; 1ÞZ ðik

ffiffiffi
l

p
COð1ÞÞjðl; v1Þ:

Solving for a0 and b0 and a final application of lemma A 1 gives

_j0ðl; 0Þ
j0ðl; 0Þ

Z
Kb0
a 0

ZKi
ffiffiffi
l

p
COð1Þ:

&

The preceding lemma has the following immediate corollary for a Weyl solution
if tZ0. For t2(0,1) one simply has to apply the lemma to the tree whose stem is
ek([t,1]) rather than ek([0,1]).

Corollary 5.3. If k2{1,.,n0} and t2[0,1) then

j0
kðk; l; tÞ

jkðk; l; tÞ
Z i

ffiffiffi
l

p
COð1Þ;

as
ffiffiffi
l

p
tends to infinity along an admissible ray.

Theorem 5.4. If k2{1,.,n0} and t2[0,1) then the diagonal Green’s function

Gk,k(l, t, t) tends to zero as
ffiffiffi
l

p
tends to infinity along an admissible ray.

Proof. By lemma 5.1 we have Gk;kðl; t; tÞZjkðk; l; tÞ4kðl; tÞ and that the
Wronskian of jk(k, l, $) and fk(l, $) equals the Wronskian of qk(k, l, $)
Proc. R. Soc. A (2005)
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and fk(l, $) and hence 1. Therefore, as
ffiffiffi
l

p
tends to infinity,

1

Gk;kðl; t; tÞ
Z

1

jkðk; l; tÞ4kðl; tÞ
Z

40
kðl; tÞ

4kðl; tÞ
K

j0
kðk; l; tÞ

jkðk; l; tÞ
ZK2i

ffiffiffi
l

p
COð1Þ;

using lemma A 1 for the first term and corollary 5.3 for the second. &
6. The potential on the boundary edges

Theorem 6.1. The (generalized) Dirichlet-to-Neumann map determines
uniquely the potential almost everywhere on the boundary edges.

Proof. Fix k2{1,.,n0} and t2[0,1). Suppose q and ~q are two potentials on T
giving rise to the same (generalized) Dirichlet-to-Neumann map. Associated with
~q are the functions ~q, ~4, ~j and ~L just like q, f, j and L are associated with q.
From lemma A1 we know that 4kðl; tÞ= ~4kðl; tÞ tends to one as l tends to infinity.
This fact and theorem 5.4 yield

gðlÞZ ~4kðl; tÞjkðk; l; tÞK4kðl; tÞ ~jkðk; l; tÞ/0;

as
ffiffiffi
l

p
tends to infinity along an admissible ray. Recall that jkðk; $; $ÞZqkKLk;k4k

and, by assumption, Lk;kZ ~Lk;k. Therefore we find that

gðlÞZ ~4kðl; tÞqkðl; tÞK4kðl; tÞ ~qkðl; tÞ:
As noted earlier all of the four terms appearing here on the right-hand side are
entire functions of growth order 1/2 when viewed as functions of l. Thus g is an
entire function of growth order 1/2, which tends to zero along the positive and the
negative imaginary axis (for instance). The Phragmén–Lindelöf theorem implies
that g is bounded in C, so it is constant by Liouville’s theorem and in fact
identically equal to zero, i.e.

qkðl; tÞ
4kðl; tÞ

Z
~qkðl; tÞ
~4kðl; tÞ

:

Since t2[0,1) was arbitrary this equation holds for all t2[0,1) and for all l2C.
Differentiating both sides with respect to t gives 4kðl; tÞ2Z ~4kðl; tÞ2. Differentiat-
ing once more gives 40

kðl; tÞ=4kðl; tÞZ ~40
kðl; tÞ= ~4kðl; tÞ. Differentiating a third

time gives finally

qkðtÞKlZ
400
k ðl; tÞ

4kðl; tÞ
Z

~400
k ðl; tÞ
~4kðl; tÞ

Z ~qkðtÞKl;

almost everywhere on [0,1]. &
7. Pruning the tree

Theorem 7.1. Let T be a tree with n0 boundary edges, q a potential on T and L
the associated Dirichlet-to-Neumann map. Let v� be a vertex such that all but one
of the edges attached to v � are boundary edges. Assume the number of these
boundary edges is r� and that the labels of their boundary vertices are n0Kr �C1,
.,n0. Let T

� be the tree with the boundary edges just mentioned removed so that
its boundary vertices are v1; v2;.; vn 0Kr� , and v �. Then the Dirichlet-to-Neumann
map L� for T � is uniquely determined by L and the restriction of the potential q
to the boundary edges attached to v �.
Proc. R. Soc. A (2005)
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Proof. We have to compute the values L�f � for an arbitrary vector
f �2C

n 0Kr�C1. We will do this for any value of l which is not an eigenvalue for
the Dirichlet problem forT nor an eigenvalue for the Dirichlet problem forT �. It is
clearly sufficient to consider only these l as we aremissing atmost countablymany.
Note that we may assume that the functions c[(l, $) and s[(l, $), and hence
the function j[ðj; l; $ÞZd[;jc[ðl; $ÞKL[;jðlÞs[ðl; $Þ are known for all l2C and all
[2fn 0Kr�C1;.; n 0g since we know the potentials on the corresponding edges.

Next we want to show that there is a k2fn 0Kr�C1;.;n 0g such that
jðk; l; v�ÞZjkðk; l; 1Þs0. Assume that j(n0, l, v �)Z0. Since l is not an
eigenvalue for T � we have that jðn 0; l; $ÞjT� is the zero function. Hence there
must be a k2fn 0Kr�C1;.; n 0K1g such that jðn 0; l; $Þjekð½0;1�Þ is not
identically equal to zero. For this k we have, using lemma 5.1,

0Zjðn 0; l; v
�ÞZjkðn 0; l; 1ÞZKLk;n 0

ðlÞskðl; 1Þ;
i.e. sk(l, 1)Z0 and thus ck(l, 1)s0. Hence

jkðk; l; 1ÞZ ckðl; 1ÞKLk;kðlÞskðl; 1ÞZ ckðl; 1Þs0:

Now define

cðl; $ÞZgjðk; l; $ÞC
Xn 0Kr�

jZ1

f �j jðj; l; $Þ;

for some number g yet to be determined. Then c(l, $) has Dirichlet data given by
the vector

f Z ðf �1 ;.; f �n 0Kr� ; 0;.; 0ÞCgek2C
n 0 ;

and cðl; $ÞjT� has Dirichlet data given by the vector f � provided that
f �n 0Kr�C1Zcðl; v�Þ, i.e. if

f �n 0Kr�C1 Zgjkðk; l; 1ÞKskðl; 1Þ
Xn 0Kr�

jZ1

Lk;j fj :

Since jk(k, l, 1)s0 we may (and will) choose g such that this condition is
satisfied. Therefore

ðL�f �Þj Z ðLf Þj for j Z 1;.; n 0Kr�:

Moreover, by the Kirchhoff conditions,

ðL�f �Þn 0Kr�C1 ZK
Xn 0

[Zn 0Kr�C1

c0
[ðl; 1Þ

ZK
Xn 0

[Zn 0Kr�C1

gj0
[ðk; l; 1ÞC

Xn 0Kr�

jZ1

fjj
0
[ðj; l; 1Þ

" #
;

where the right-hand side involves only known quantities. &

We are now in a position to prove theorem 1.1.

Proof of theorem 1.1. Let L be the generalized Dirichlet-to-Neumann map
given. Then the Dirichlet-to-Neumann map LD–N itself is given by

LDN Z ðbKLaÞK1ðb0KLa0Þ:
Proc. R. Soc. A (2005)
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Hence we may assume without loss of generality that the given map is the
Dirichlet-to-Neumann map. Theorem 6.1 gives q on the boundary edges. If we
can show the existence of an internal vertex with the properties of the vertex v �

in theorem 7.1 we may use that theorem to show that the Dirichlet-to-Neumann
map is now given on the tree where certain edges are removed. Induction then
completes the proof.

To show the existence of v � recall the concepts introduced before lemma 5.2
and designate any boundary vertex as the root of the tree. Suppose that the tree
has height h with respect to the root. Then any vertex whose distance from the
root is hK1 (we may, of course, assume that hO1) has the properties of v �, i.e. all
but one of the edges attached to it are boundary edges. &

We are indebted to the referees for many useful comments which led to a greatly improved
presentation and the abolition of a number of mistakes.
Appendix A. Asymptotics of basic solutions

Lemma A 1. Let q2L1([0,1]). Suppose that u(l, $) solves the equation Ky00C
qyZly. Define

u0ðl; xÞZ uðl; 0Þcosð
ffiffiffi
l

p
xÞCu 0ðl; 0Þ sinð

ffiffiffi
l

p
xÞffiffiffi

l
p

and cðlÞZ juðl; 0ÞjC ju 0ðl; 0Þj=j
ffiffiffi
l

p
j. Then, for all x2[0,1] and all complex ls0,

juðl; xÞKu0ðl; xÞj;
ju 0ðl; xÞKu 0

0ðl; xÞj
j
ffiffiffi
l

p
j

%cðlÞexjImð
ffiffi
l

p
Þj exp

ðx
0

qðtÞffiffiffi
l

p
����

����dt
� �

K1

� �
:

Proof. Without loss of generality we choose the root of l in the open upper
half plane or the positive real axis. Let zZ

ffiffiffi
l

p
and define

gðz; tÞZ eKt ImðzÞjuðl; tÞKu0ðl; tÞj:

Replacing u by u0C(uKu0) in the variation of constants formula

uðl; tÞZ u0ðl; tÞC
ðt
0

sinðzðxKtÞÞ
z

qðtÞuðl; tÞdt;

one finds

gðz; tÞ% 1

jzj

ðt
0
jqðsÞjgðz; sÞdsC cðlÞ

jzj

ðt
0
jqðsÞjds: ðA 1Þ

Let fðtÞZ
Ð t
0 jqðsÞ=zjds, move the first term on the right of (A1) to the left, and

multiply with jq(t)jexp(Kf(t)). This will produce total derivatives on either side
so that integration from 0 to x yields

eKfðxÞ
ðx
0
jqðtÞjgðz; tÞdt%cðlÞjzj 1KeKfðxÞKeKfðxÞ 1

jzj

ðx
0
jqðtÞjdt

� �
:

Using this estimate in (A1) gives the desired estimate on uKu0. The statement on
u 0Ku 0

0 follows from this and the derivative of the variation of constants formula.&
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We remark that this proof is fairly standard and that it is included here for the
convenience of the reader.
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