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1. Introduction

Recently there has been much interest in the inverse spectral problem for the one
dimensional Sturm—Liouville problem

-y +qy=2y, z€0,}),

where | may be either finite or infinite. More precisely the problem is to
recover ¢ from spectral data. Borg (1946) and Levinson (1949) showed when ¢
was real that it is uniquely determined by the associated Titchmarsh—-Weyl
function. Local versions of this theorem have recently been proved by Simon
(1999), Gesztesy & Simon (2000) and Bennewitz (2001), the latter theorem
being the result of an elegant and short proof. In the case of complex ¢, Brown
et al. (2002) have shown, using a method modelled on the approach in
Bennewitz (2001), that the local Borg theorem is still true. In the case of real
g mention must also be made of the famous result of Gel’fand & Levitan
(1951) who showed that ¢ could be determined by the spectral function which
in the case of a finite interval can itself be determined by two sets of
eigenvalues.

The study of the Sturm—Liouville problem on an interval has been extended
to its consideration on trees. This has been motivated by quantum models in
both physics and chemistry see for instance (Exner et al. 1988; Gerasimenko
1988; Gerasimenko & Pavlov 1988; Bulla & Trenkler 1990). In the case of real
coefficients the self-adjoint extensions of symmetric operators on trees have
been studied by Carlson in Carlson (1998) and their self-adjoint extensions
characterized. Treelike domains have been used to model the scattering
problem for partial differential equations (Melnikov & Pavlov 2001), while in a
series of papers (Evans & Saito 2000; Evans et al. 2001) the authors study
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PDE problems on domains with fractal boundaries and reduce the study of
these problems to ones on trees. Further, a recent result of Carlson (1997) has
shown that on an infinite homogeneous tree the spectrum of the free Laplacian
consists of bands and gaps and possibly eigenvalues. Sobolev & Solomyak
(2002) have studied the effect of introducing a real perturbation of the zero
potential on such an infinite homogeneous tree when the coupling constant
tends to infinity. A further impetus has been given to these studies by the
requirements in micro electronics fabrication problems, in particular the
construction of quantum switches and other nano-computational devices (see
Mikhailova et al. 2002; Mikhaylova & Pavlov 2002; Pavlov 2002) where
scattering problems on trees have been studied. In a recent paper, Pivovarchik
(2000) considers the inverse spectral problem of the recovery of the coefficients
of the Sturm-Liouville problem on a domain consisting of three intervals
together with appropriate interface and boundary conditions. He shows that
given the spectrum of the problem on the tree together with the Dirichlet
problems on each edge, the coefficients of the Sturm-Liouville problem may be
recovered. For further references the reader may consult the January 2004
issue of Waves in Random Media where a special section on quantum graphs
appeared.

The approach in Borg (1946) and Levinson (1949) is to show that the
Titchmarsh—Weyl m-function determines uniquely the function ¢ in the case of a
one-dimensional Schrodinger equation. Nachman et al. (1988) have shown an
analogous result in the case of a multi-dimensional Schrédinger equation on a
bounded domain using the Dirichlet-to-Neumann map instead of the m-function.
Curtis & Morrow (1990, 1991) have a similar result for the (combinatorial)
problem of a resistor network. We will show here that this is the right idea also
for treelike domains following the approach in Bennewitz (2001) and Brown et al.
(2002).

More precisely, in this paper we shall study the inverse spectral problem for
the Sturm—Liouville problem

—y" +qy =2y, z€[0]1],

on each branch of a finite tree where the ¢; are complex-valued and integrable
and where continuity and Kirchhoff type conditions for the solutions and their
derivatives are imposed at the internal branch points. We shall follow the
approach in Brown et al. (2002) adapted to the tree domain with the m-function
being replaced by the Dirichlet-to-Neumann map. The main result of this paper
is the following theorem (cf. §§2 and 3 for precise definitions).

Theorem 1.1. Let q be a complex-valued integrable potential supported on a
simply connected finite tree. Then the associated (generalized) Dirichlet-to-
Neumann map uniquely determines the potential almost everywhere on the tree.

Section 2 contains basic definitions and a formulation of the Sturm-Liouville
problem on a tree through interface conditions between the branches. Section 3
defines the Dirichlet-to-Neumann map while §4 discusses the structure of the
Green’s function for this problem. The Weyl solution is introduced in §5 and its
asymptotics are obtained. Section 6 shows how the Dirichlet-to-Neumann map
may be used to recover the coefficients of boundary edges while an induction
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argument in §7 shows how the remaining coefficients are also determined by the
map. An appendix contains the asymptotics of the basic solutions on an
interval.

2. Preliminaries

(a) Trees
For j=1,...,r let ¢; be homeomorphisms defined on [0,1]. The Hausdorff space

T = jgl{ej(t) steo1]},

is called a directed finite tree if it is simply connected and if €,(t)=¢(s) happens
only if j=Fk or if ¢,s€{0,1}. The points €,(0), €(1),...,€(0), €(1) are called
vertices. The set of all vertices is denoted by V. It contains precisely r+ 1 elements.
The images of the functions ¢; are called edges. The structure of the tree is described
uniquely by specifying the vertices connected by each edge, i.e. by the set

((e1(0),€1(1)), -, (6:(0), €,(1))) E(V X V).
A vertex is called a boundary vertex if it belongs to only one edge. Such an edge will
be called a boundary edge. A vertex which belongs to several edges is called an
internal vertex. An edge both of whose endpoints are internal vertices is called an
internal edge. Without loss of generality we assume that the boundary edges are
labelled 1, ..., ng when ny denotes the number of boundary vertices. We will also
assume that the boundary vertices are given by v;=¢;(0), j=1, ..., ng

(b) The interface conditions

An integrable function y on T may be represented as y= (v, ..., y,.)T, where
w1 =yle(0).

If ¢ is an integrable function on T we are interested in problems associated
with the differential expression L given by (Ly)(¢;(t)) ==/ (t) + ¢;(t)y;(t). We
impose the following requirements on y.

(i) For each j the functions Ui ; and y are absolutely continuous on [0,1].
(ii) For each j the function —y/ + g;y; is in L*([0,1]).
i

)
)
(iii) y is continuous on T.
(iv) For each internal vertex v, the Kirchhoff condition

> oY= > yi(0) =0

€;(1)=v; €(0)=1y;

holds.

Conditions (iii) and (iv) are called interface conditions.

If v;, edges meet at vertex v, then these are precisely v, conditions. Therefore,
every internal edge gives rise to two conditions and every boundary edge gives
rise to one condition. Altogether there are therefore 2r —n interface conditions.

To represent the interface conditions we introduce next the following
operators which map C'([0,1])" to C" (any n):

Eyy = y(O), FEy = y(l), Dyy = y/(O), Dyy = y'(l).
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The interface conditions are then given as Zy=0, where Z is a (2r—n() X r matrix
whose entries are zeros or +Fy, ..., +D;. Note that the first ny columns of Z
correspond to boundary edges. Therefore, these columns will not involve Ey or D.

For example, for the tree given by ((vi, vy), (vo, v4), (v3, v4)) we have r=3,
no=3 and

E, —E, 0
I = 0 El _El
Dy Dy D
For the tree given by ((v, v3), (v2, v4), (v3, v4)) we have r=3, ng=2 and
B, 0 -—E
|0 -n
0 B -E
0 D, D

Denote by ¢;(4, ) and s;(4, -) the solutions of —yj + ¢;3; = Ay; satisfying initial
conditions ¢;(4,0) = s}(1,0)=1 and ¢j(4,0) = s;(,0) = 0. Note that ¢;(-, ) and
si(+, =) are entire functions of growth order 1/2 at most. Now any solution

of =y} + ¢;y;= Ay, can be written as
yi(z) = a;c;(A, z) + bjsi(4, @),
when a; and b; denote appropriate constants. The column (ay, ..., a,, by, ..., bT)T
will be denoted by £.
We introduce the following matrices

Ce(4,7) = diag(ci (4, 2), ..., ¢, (4, 7)),
Se(A, ) = diag(s, (4, 2), ..., 8,,(4, 7)),
G x) = diag(en 11(2 2), ..oy ¢, 2)),
Si(4, z) = diag(s,,+1(4,2), ..., 5,(4, 2)),
and the block matrices
C(Aa .’L’) = dlag( Ce(x7 .T), CZ<A7 I))
and
S(Av LIZ) = dlag(Se()L, .'17), Sz’(xa .T))
Then we have

y(z) = (C(4, ), S(4,2))§.

3. The generalized Dirichlet-to-Neumann map

We will show below that for all but countably many values of A there will be a
unique solution of Ly= Ay satisfying the Dirichlet boundary conditions y;(0)=f;
for j=1,...,n9. One may then compute the values g;= —y;(O) The relationship
between the f; and the g; is linear and is called the Dirichlet-to-Neumann map.
Instead of Dirichlet and Neumann data we will consider general linear boundary
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conditions described by ng pairs (af, ;) and ng pairs (8}, 8;) which satisfy the
relationship
o=y =1, (3.1)

for j=1, ..., ng. More precisely, given the unique solution of Ly= Ay satisfying the
non-homogeneous boundary conditions «jy;(0) —e;y;(0) = f; (whlch exists for all
but countably many values of ) we compute the values g; = 8;y,(0) —6,4;(0) and
call the corresponding linear map the generalized Dirichlet-to-Neumann map
which we will denote by 4. The goal of this section is to compute it.

The boundary conditions are described by the equation Ay=f, where A is the
noXr matrix (boundary operator)

aiEO _alDO 0 . 0 0 0
A= : : : - s
0 0 Ol;l(]EO _anODO 0 0
and where f= (fi, ...,an)T e C™. We also define the matrices
B1E,—B:Dy, 0 ... 0 0 0
@ = ) ) . ’
0 0 :8'/1LUE0_;8"“D0 0 0
as well as

A= A(Ca S) = (dlag(allv EERY) a{no)7 OnOX(r—no)a dia'g(_alv '--7_an0)7 OnUX(r—no))7
and

B = @(07 S) = (dlag(ﬁ/h 76n0) noX(r—ng)» dlag( 1817 6n0) noX(r —ng))
Finally, let

and
M(2) = M(C(4, ), 5(4, z)).
The 27X 2r matrix M is of central importance. Its determinant det M is an entire

function of A whose zeros are the eigenvalues of the boundary value problem

determined by the a; and a}. Hence there are at most countably many eigenvalues

which cannot have a finite accumulation point. Note that M&= Pf, where

P = < InOXno >7
O(QT—nO)XnU

when £ is the vector of coefficient of the basis functions c;and s; as described in §20.
Now we have

g =®By = B(C,S)¢ = B = BM ' Pf.
Hence the generalized Dirichlet-to-Neumann map is
A(X) = BM(2)'P.

Proc. R. Soc. A (2005)
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4. Green’s function

We want to obtain a solution of the non-homogeneous system of equations
Ly=h, where h€ L*(T) and where y is subject to the homogeneous boundary
conditions Ay=0 as well as the interface conditions Zy=0.

Let h(t) denote the column (h(e (%)), ..., h(e,(t)))". Define

A S(2,t)
K(A z,t) = diag(k; (4, z, t), ..., k. (A, 2, 1)) = (C(4, ), S(A, z)) (—C()L t)>7

where
ki(A, z,t) = ci(A z)s;(A, t) —s;(4, 2) ¢;(A, )

and
T

KA z) = JO K(2, z, t)h(t)dt.

Then the general solution of Ly=h may then be represented as
y(z) = (C(A,7),5(A 7)) + K(A, z).
Since My=0 is equivalent to M+ MK=0 we obtain
y=—(C,YM MK + K.

Before we proceed we need to determine the vector M K. To this end we write
M=My+M;, where M, involves the operators Fy, and D, only while M;
involves the operators F; and D; only. Then we have MyK=0. Suppressing the
A-dependence for a while we see that

1
ElK:J
0

K(1,t)h(t)dt = Jl(Elf((-, t))h(t)dt,
0
and, since f((x, z)=0,

DK = E, [f((x, z)h(zx) + J

R, t)h(t)dt] _ Jl(le((-, £)h(1)dt.

0

Therefore,

1 1

0 0

MK = MK = J (M, K)h dt = J (M—MO)< Z) (t)h(t)dt,

where My=M,(C, §).
Let H be the Heaviside function, i.e. H(t) equals zero or one depending on
whether ¢ is negative or positive. Then

y(z) = Jl

0

SO, 1)
—C(L 1)

+ H(z—t)K(A, =, t)] h(t)dt.
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The Green’s function I' is now the term in brackets in the integrand on the right-
hand side of this equation. Since K(A,t,t)=0 we have

. S(,t)
It t) =—=(C(A1),S(2, 1)) (I — M(2) MO(M(—C(A t))

o[ S0
= (CO1), SG, )M M (D) (—cu i ) |

Next let 1<k<ng. Then
(At 1) = cp(A, t)s(A, 1) [M(A)_IMO(A)]k,k + s5;(4, t)2[M(A)_1MO(A)]k+r,k

— e (4, ) (M) My (D) perr — (A, )55 (A, O)[M(A) ™ Mo(A)] et -

Since the only entry in column k of My is a}E,—a;D, situated in row k we
obtain that the kth and (k+r)th columns of My(d) equal aje, and —ayey,
respectively.! Hence
Iy (At 1) = ((M_l)k,kck(la t) + (M_l)kw,kSk(/\, t)) (s (A, t) + (2, 1))
If we compute the determinant of M by expanding with respect to row k (which
contains at most two non-zero entries) we obtain
det M = aﬁcdet mrk’k(M) - (—1)rakdet mrhkﬂ(M),

where mry, (M) denotes the minor of M obtained by deleting row k and column j.
The minors may be expressed by the corresponding entries of M ~*. Therefore,

1= (M) — (M) g
Since we also have
Ay =B (M) = Bu(M )y,

we obtain
(Mil)iak =0 —op Ay, and (Mil)k+7-,k = 5lk _a;c/lk,k‘
Hence
Tp(A 1) = (0p(A, 1) — g 10i(A, 1)) 91 (4, 1),
where
016(/17 t) = ﬁkck(xa t) + 6/k5k(ka t)
and

(pk(Aa t) == akck(/\, t) + a%sk(l, t)
Note 6,(-, t) and ¢,(-, t) are entire functions of growth order 1/2 at most.

5. Weyl solutions
Fix k€{1,...,no}. Let Y(k, A, ) be the solution of the problem Ly=21y, Zy=0,
Ay=¢; . We call this solution the Weyl solution for the boundary vertex k. The
Weyl solutions are uniquely determined for any A which is not an eigenvalue of

!'We denote the vector whose entries are zero save for a 1 at position k by ey.
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the boundary value problem determined by the «; and oz]/-. Recall that these are

the roots of the determinant of M and hence the poles of A.

Lemma 5.1. Fix k, j€{1,...,nq}. The Weyl solution for the boundary vertex k
satisfies

%‘(k, Aa t) = 6]’,/«0]'(}’ t) _Aj,k(x)(pj(kv t)'

Proof. Note that ¥;(k, 4, -) = a;0;(4, -) + b;p;(4, -) for appropriate values of a;
and b;. Hence, using equation (3.1)

5j,k = (X;l//](k, /1, O) _Ol]\[/;(k, A, 0) = a,]«
and
A = (Aey); = Biw;(k, 2,0) —B;y;(k, 2,0) = —b;.
[ |

In the following lemma and its proof we will use different conventions on labelling
and orienting boundary vertices and boundary edges of trees as before. We will
designate one of the boundary vertices as the root of the tree and denote it by v.
All other boundary vertices will then be called branch tips. The edge attached to
the root, denoted by ¢y, will be called the stem. Nothing will be assumed about
the orientation of boundary edges. Note that every vertex v is connected to
another vertex v/ by a unique sequence of edges. The number of these edges will
be called the distance between v and v' and will be denoted by d(v, v). The
number

h = max{d(v, vy) : vis a vertex of the tree}

is called the height of the tree with respect to the root vy. (The height of a tree
depends on which boundary vertex is designated as root.)

We denote the outward normal derivative of a differentiable function y :
(0,1) — C at one of the end points by ¢(0) and ¢(1), i.e. we define

, —lim, o ¢/(¢) if p =0,
y(p) =4 , :
lim,_,; y'(t) ifp=1.

Finally, we will call a ray in the complex plane admissible if it emanates from
zero and lies otherwise in the open upper half plane.

Lemma 5.2. Suppose T is a tree with root vy and Y(A, -) satisfies the differential
equation Ly= Ay and the interface conditions Ty=0. Also assume that Y(A, -) is
zero at the branch tips but not identically zero on T. Then, as V/A tends to infinity
along an admissible ray,

Yo(p)
¥o(p)
where Yo(4, ) =y(4, €(t)) and p€{0,1} is such that ey(p)=vp.

Proof. The proof is by induction on the height of the tree. Assume that the
height of T with respect to vy is one (i.e. T is an interval). If yy=¢y(1) then

==V + 0(1), (5.1)
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Yo(4, t)=Dbyso(4, t) for some non-zero by and, using lemma A 1,

%(Aa 1) 5’0(/17 1) V7
= =—Vvi+ O(1).
W01~ whD) o)
If vg=¢€0(0) then Y (A, t) = agcy(A, t) + bysy(A, t), where agcy(4, 1)+ bysy(4,1) =0.
Using again lemma A 1 we find

1..00(/\» 0) _ —by _ co(41) .

¥o(4,0) ag so(4,1) Wi o).
Next assume that equation (5.1) is true for every tree whose height is at most n and
that T has height n+ 1 with respect to vy. In addition to the stem itself there are k
subtrees attached to the internal endpoint v; of the stem. We designate v; to be the
root of each of these subtrees and we assign labels 1, ..., k to their stems. We also
assume that v, =¢,(1) for j=1, ..., £and v; =¢,(0) for j=0+1, ..., k.

First, assume again vy=¢€p(1). Then (A, t)= agco(4,t) + bysy(A, t), where

ap=y(4, v;) and where , )
b= ViA1= Y ¥(A0
=1

j=0+1

Employing the induction hypothesis we obtain by/a,=—ikv/A+ O(1) and thus,
using lemma A 1,

‘LO(Aa ]-) . aoclo(l, 1) =+ bOSIO(A, ]_) .
YoM, 1) ageo(A,1) + byso(A,1) iVA+ 0(1).

If, however, vy=¢€y(0) then (A, t)= agcq(A,t)+ bysy(4,t), where agcq(A, 1)+
boso(4,1) = ¥(A, v;) and where, using the induction hypothesis,

aoc (A, 1) + bys'y(A,1) Z s Zx//] A1) = (ikVA + O(1)y(4, v).

j=0+1

Solving for aq and by and a final apphcatlon of lemma A 1 gives

"LO()UO) _
‘Po(AaO)_a—o_ \/—+0()

The preceding lemma has the following immediate corollary for a Weyl solution
if t=0. For t€(0,1) one simply has to apply the lemma to the tree whose stem is
€1([t,1]) rather than €,([0,1]).

Corollary 5.3. If k€{1,...,no} and t€]0,1) then

k)
—‘fp:((k : t)) =iV + 0(1),

as VA tends to infinity along an admissible ray.

Theorem 5.4. If k€{1,...,n¢} and t€]0,1) then the diagonal Green’s function
T'ii(A, t, t) tends to zero as VA tends to infinity along an admissible ray.

Proof. By lemma 5.1 we have I'y;(4,t,t)=y;(k, A t)i(A,t) and that the
Wronskian of . (k, A, -) and ¢x(A, -) equals the Wronskian of 6y(k, A, -)
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and ¢4(%, -) and hence 1. Therefore, as v/A tends to infinity,

— - - =—2ivVa+ 0(1),
I‘k,k(ka ta t) wk(ka A7 t)gok(A? t) ng(Av t) kl/k(k7 Aa t) ( )
using lemma A 1 for the first term and corollary 5.3 for the second. [ |

6. The potential on the boundary edges

Theorem 6.1. The (generalized) Dirichlet-to-Neumann map determines
uniquely the potential almost everywhere on the boundary edges.

Proof. Fix k€{1,...,no} and t€[0,1). Suppose g and § are two potentials on T
giving rise to the same (generahzed) Dirichlet-to-Neumann map. Associated with
g are the functions 8, @, ¥ and /1 just like 6, ¢, ¥ and A are associated with ¢.
From lemma A 1 we know that oA, 1)/ Pr(A, t) tends to one as A tends to infinity.
This fact and theorem 5.4 yield

g(A) = @k(x7 t)“pk(k’lv Aa t) _(Pk(x, t)@k(ka A) t) - 07
as v/A tends to infinity along an admissible ray. Recall that . (k, -, -) = 0, — 4 1.y,
and, by assumption, Ay, = 4} ;. Therefore we find that

As noted earlier all of the four terms appearing here on the right-hand side are
entire functions of growth order 1/2 when viewed as functions of A. Thus g is an
entire function of growth order 1/2, which tends to zero along the positive and the
negative imaginary axis (for instance). The Phragmén-Lindel6f theorem implies
that ¢ is bounded in C, so it is constant by Liouville’s theorem and in fact
identically equal to zero, i.e.

(Pk(A; t) (pdk(;{’ t)
Since t€[0,1) was arbitrary this equation holds for all ¢€10,1) and for all A €C.
Differentiating both sides with respect to ¢ gives @ (4, )% = @, (A, t)*. Differentiat-
ing once more gives ¢}(4,t)/oL(A, t)=@"1(A, t)/@,(A, t). Differentiating a third
time gives finally

almost everywhere on [0,1]. [ |

7. Pruning the tree

Theorem 7.1. Let T be a tree with ng boundary edges, q a potential on T and A
the associated Dirichlet-to-Neumann map. Let v* be a vertex such that all but one
of the edges attached to v* are boundary edges. Assume the number of these
boundary edges is " and that the labels of their boundary vertices are no—r"+1,

., no. Let T be the tree with the boundary edges Just mentioned removed so that
its boundary vertices are vy, v, ..., v, =, and v*. Then the Dirichlet-to-Neumann
map A" for T™ is uniquely determmed by A and the restriction of the potential q
to the boundary edges attached to v™.
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Proof. We have to compute the values A"f* for an arbitrary vector
f*eC™ . We will do this for any value of A which is not an eigenvalue for
the Dirichlet problem for Tnor an eigenvalue for the Dirichlet problem for 7. It is
clearly sufficient to consider only these A as we are missing at most countably many.
Note that we may assume that the functions ce(4, -) and s¢(A, -), and hence
the function Y,(j, A, ) = 0g¢e(A, -) —Ag;(A)5(4, -) are known for all A € C and all
Le{ny—r*+1,...,n} since we know the potentials on the corresponding edges.

Next we want to show that there is a k€{ng—r"+1,...,ny} such that
Y(k, A, v")=y(k,A, 1) #0. Assume that ¥(ng, A, v*)=0. Since A is not an
eigenvalue for T* we have that ¥(ng, A, -)|p+ is the zero function. Hence there
must be a k€{ny—r"+1,...,ng—1} such that ¥(ng,4, )| is not
identically equal to zero. For this k£ we have, using lemma 5.1,

0= ¢(n07 Aa U*) = wk(nOa ’17 1) = _Ak.,no(x)sk(kv 1)1
i.e. s(4, 1)=0 and thus ¢4(4, 1)#0. Hence
wk(ka Aﬂ 1) = Ck('L 1) _Ak,k(l)sk(xa 1) = Ck()\7 1) #0.

Now define
no—r"

X( ) = vk, 2, ) + D Y6 A ),
j=1

for some number v yet to be determined. Then x (4, -) has Dirichlet data given by
the vector

f = (fl*a" fng—r*?O )+’Y€kEC !

and x(A, )|z~ has Dirichlet data given by the vector f* provided that
f:;[)—T*-i-l = X(A; 'U*), le lf
7'7047‘
fn“—r 41— 71//k(k A, 1 Z A/cjf]

Since yi(k, A, 1)#0 we may (and will) choose y such that this condition is
satisfied. Therefore

(A*f*)J == (Af)j fOI'j == 1, ey g — T’*.
Moreover, by the Kirchhoff conditions,

no

(A*f*)no—r*-i-l = Z X%(A’ 1)

O=no—r*+1
o no—r*
=— Y |k A1) ZfMM |,
0=ny—r*+1
where the right-hand side involves only known quant1t1es. [ |

We are now in a position to prove theorem 1.1.

Proof of theorem 1.1. Let A be the generalized Dirichlet-to-Neumann map
given. Then the Dirichlet-to-Neumann map Ap y itself is given by

Apy = (8—Aa)™ (8 —4d).

Proc. R. Soc. A (2005)



3242 B. M. Brown and R. Weikard

Hence we may assume without loss of generality that the given map is the
Dirichlet-to-Neumann map. Theorem 6.1 gives ¢ on the boundary edges. If we
can show the existence of an internal vertex with the properties of the vertex v*
in theorem 7.1 we may use that theorem to show that the Dirichlet-to-Neumann
map is now given on the tree where certain edges are removed. Induction then
completes the proof.

To show the existence of v* recall the concepts introduced before lemma 5.2
and designate any boundary vertex as the root of the tree. Suppose that the tree
has height h with respect to the root. Then any vertex whose distance from the
root is h—1 (we may, of course, assume that A>1) has the properties of v*, i.e. all
but one of the edges attached to it are boundary edges. [ |

We are indebted to the referees for many useful comments which led to a greatly improved
presentation and the abolition of a number of mistakes.

Appendix A. Asymptotics of basic solutions

Lemma A 1. Let g€ L'([0,1]). Suppose that u(A, -) solves the equation —y" +
qy=Ay. Define
i A
uy(A, ) = u(A,0)cos(Vaz) + u'(2, O)%

and c(2) = |u(2,0)| + |’ (A,0)|/|VA|. Then, for all z€[0,1] and all complex A#0,

(2, 5) =t (2, )|, LA D TR DN o ) (exp{r %‘dt} - 1).

V2 0
Proof. Without loss of generality we choose the root of A in the open upper
half plane or the positive real axis. Let z= /2 and define

gz, t) = e O (2, 1) —ug(2, 1)].

Replacing u by ug+ (u—1wup) in the variation of constants formula

(B)u(A, H)dt,

0 z

u(ht) = u(A, t) + thq
one finds

o0 = | laolate s+ [ facoas (A1)
N 12 Jo

Let ¢(t)= [y |q(s)/2|ds, move the first term on the right of (A1) to the left, and
multiply with |g(¢)|exp(—¢(¢)). This will produce total derivatives on either side
so that integration from 0 to z yields

T

. (4 N
¥ [ a0l 0= (el (1= = [acojar).
0 z| Jo
Using this estimate in (A1) gives the desired estimate on u— ug. The statement on
u' — v/, follows from this and the derivative of the variation of constants formula. |l
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We remark that this proof is fairly standard and that it is included here for the
convenience of the reader.
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