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Abstract
The potential of a discrete half-line Schrödinger operator is uniquely
determined by the location of its Dirichlet eigenvalues and resonances. In
a practical setting one can expect only to know a finite number of these. In
this paper we give an estimate for the difference of two potentials (one of them
finitely supported) for which eigenvalues and small resonances are the same
but which may differ with respect to their large resonances.

1. Introduction

The famous Gelfand–Levitan theorem on the inverse spectral problem states that the (real-
valued) potential q of the equation −y ′′ + qy = λy on [0,∞) is uniquely determined by the
spectral function. Similarly, Marchenko’s inverse scattering theorem states that q is uniquely
determined by the scattering phase, the location of the eigenvalues and the norms of those
eigenfunctions with a given asymptotic3. Korotyaev [5], Brown, Knowles and Weikard [1],
and Brown and Weikard [3] pointed out situations where the potential is uniquely determined
by just the location of all eigenvalues and resonances. Later Brown, Naboko and Weikard [2]
established an analogous result for a certain class of Jacobi operators. (We mention in passing
that the methods in [1–3] allow the treatment of complex-valued potentials.)

While the spectral function or the scattering phase cannot be obtained directly from
laboratory measurements the eigenvalues and the resonances are fundamental objects in
quantum physics. Eigenvalues and at least small resonances can be observed in the laboratory.
Moreover, asymptotics of resonances suggest that large resonances are physically unimportant.
Thus, in a practical setting, only finitely many data are given and the inverse problem is then
expected to have infinitely many solutions. The usual philosophy in the numerical analysis
literature in such circumstances is to construct recovery algorithms which select one of the
infinitely many possible solutions. Numerical experiments are then carried out in which finite

3 Both theorems require the condition
∫ ∞

0 (1 + x)|q(x)| dx < ∞ to be satisfied.
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spectral data are generated from some known potential, and the algorithm is declared to be
good or bad according to how well it manages to recover the selected potential in some norm.
This process is meaningless unless one can prove that all of the infinitely many solutions to
the finite data inverse problems are ‘close’, in some suitable sense. The point of this paper is
to establish such a result in the case of a discrete Schrödinger equation. We emphasize that
the corresponding result for the continuous Schrödinger equation on a half-line appears to be
an unsolved problem. To the best of our knowledge the present result provides the first proof
of a stability result for an inverse resonance problem.

The analogous result for the classical problem of −y ′′ + qy = λy on the compact interval
[0, 1] was treated in [6], where we established an error bound for sup

{∣∣ ∫ x

0 (q − q0) dt
∣∣ :

x ∈ [0, 1]
}

for the case when the first N Dirichlet–Dirichlet eigenvalues and the first N
Dirichlet–Neumann eigenvalues for q and q0, respectively, coincide to within an error of ε.

Another result, close in spirit to the present one, is that of Hitrik [4], which concerns an
inverse scattering problem in L2(R) when finitely many values of the reflection coefficient are
known.

We denote the set of complex-valued sequences defined on N0 and N by C
N0 and C

N,
respectively. Let Q be a bounded sequence in C

N. An operator

J: C
N0 → C

N

such that

(Jy)(n) = y(n − 1) + Qny(n) + y(n + 1), n ∈ N

is called a discrete Schrödinger or Jacobi operator. The sequence Q is called the potential
associated with J. We are interested in the equation Jy = λŷ, where ŷ denotes the restriction
of y ∈ C

N0 to N. In the following our notation will not distinguish anymore between y and ŷ

as the meaning is always clear from the context.

Definition 1. Let C be the family of Jacobi operators J with bounded potentials for which
there exists a function ψ : C × N0 → C with the following properties.

(1) For every nonzero complex number z the functions ψ(z, ·) and ψ(1/z, ·) are nontrivial
solutions of the difference equation Jy = (z + 1/z)y.

(2) For some p �= 0 and all z ∈ C − {0}:
W(z) = ψ(z, 0)ψ(1/z, 1) − ψ(1/z, 0)ψ(z, 1) = p(1/z − z).

(3) ψ(z, ·) is square summable for all z in some nonempty open subset of the unit disk |z| < 1.
(4) ψ(·, 0) and ψ(·, 1) are entire functions and ψ(·, 0) has growth order zero.
(5) There is a number A and a sequence of circles γn : t �→ rn exp(it) such that rn tends to

infinity and ∣∣∣∣ψ(z, 1)

ψ(z, 0)

∣∣∣∣ � A|z|

for all z on the given circles.

Without loss of generality, we assume from now on that ψ(0, 0) �= 0 and, in fact,
ψ(0, 0) = 1. For, if ψ ∈ C and ψ(·, 0) has a zero at zero of order k then the function
(z, n) �→ z−kψ(z, n) is also in C. The only fact whose validity is not obvious is that
z �→ z−kψ(z, 1) is still entire. This follows since ψ(z, 1)/ψ(z, 0) is the Titchmarsh–Weyl
m-function for λ = z + 1/z which tends to zero as z tends to zero4 so that ψ(·, 1) has a zero
at zero of order k + 1 at least.
4 See, e.g., [7, theorem 4.2] taking into account that the definition of m is slightly different there.
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If ψ(z, ·) is square summable it is called the Jost solution of the difference equation
Jy = (z + 1/z)y. The function ψ(·, 0) is called the Jost function. The following theorem is a
special case of theorem 3.1 proved in [2].

Theorem 1.1. Assume that J, a Jacobi operator with bounded potential Q, is in C and let ψ

be the function from definition 1 establishing that fact. Then the zeros of ψ(·, 0) and their
multiplicities determine uniquely the quantities Qn for all n ∈ N.

In this paper we require the potential Q of the Jacobi operator J not only to be bounded
but to be super-exponentially decaying. More precisely, we make the following assumption
throughout the remainder of the paper for any potential under consideration.

Hypothesis 1. There are numbers C > 0 and β > 1 such that |Qm| � C exp(−mβ) for all
m ∈ N.

In this circumstance J is in the class C, i.e., there is a function ψ : C × N0 → C so
that, as a corollary, the zeros of ψ(·, 0) determine Q uniquely. This follows, as a special case,
from [2, theorem 4.4]. In appendix A, we give an independent proof which constructs the
function ψ and shows that p = 1 in condition (2) of definition 1. In view of condition (3)
of definition 1 and the proof of theorem A.1, a value of λ = z + 1/z is an eigenvalue or a
resonance if ψ(z, 0) = 0 and either |z| < 1 or |z| � 1, respectively. The zeros of ψ(·, 0) are
denoted by zn. They are repeated according to their multiplicity and ordered so that |zn| is
monotone nondecreasing. Since ψ(0, 0) = 1 and ψ(·, 0) has growth order zero, Hadamard’s
factorization theorem gives us now that

ψ(z, 0) =
∞∏

n=1

(
1 − z

zn

)
.

Let K(n,m) denote the Taylor coefficients of ψ(z, n) − zn, i.e., let ψ(z, n) = zn +∑∞
m=0 K(n,m)zm and define, for n,m � 1,

(�K)(n,m) = K(n − 1,m) + K(n + 1,m) − K(n,m + 1) − K(n,m − 1).

Lemma 1.2. Let ψ be the function constructed in appendix A. If |z| � 1/2, then
|ψ(z, n) − zn| � |z|n(e2|z|β(n) − 1), where β(n) = ∑∞

m=n+1 |Qm|. Moreover, the Taylor
coefficients K(n,m) have the following properties:

(1) if m � n then K(n,m) = 0;
(2) K(n, n + 1) = −∑∞

m=n+1 Qm, and
(3) (�K)(n,m) + QnK(n,m) = 0 for 1 � n < m.

Proof. We use the notation introduced in appendix A. Note that for |z| < 1 we may estimate∑m−n−1
k=0 |z|2k+1 by |z|/(1 − |z|2). Since 1 − |z|2 � 1/2 when |z| � 1/2, one proves by

induction that ∣∣(T k
z e

)
(n)

∣∣ � (2|z|β(n))k

k!

which gives the stated estimate.
Since ϕ(·, n) is entire and ψ(z, n) = znϕ(z, n) it is clear that K(n,m) = 0 if m < n.

Also z �→ Tz is continuous and T0 = 0. Thus, letting z tend to zero in Tzϕ(z, ·) = ϕ(z, ·) − e
shows that ϕ(0, n) = 1 and K(n, n) = 0 for all n. This proves (1).
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Because of this we have now

K(n, n + 1) = ϕ̇(0, n) = lim
z→0

ϕ(z, n) − 1

z
= lim

z→0

1

z
(Tzϕ(z, ·))(n)

= − lim
z→0

∞∑
m=n+1

Qmϕ(z,m)

m−n−1∑
k=0

z2k = −
∞∑

m=n+1

Qm.

This proves (2).
The difference equation satisfied by ψ(z, ·) shows next that

0 = (Qn + K(n − 1, n) − K(n, n + 1))zn +
∞∑

m=n+1

{K(n − 1,m) + K(n + 1,m) + QnK(n,m)

−K(n,m − 1) − K(n,m + 1)}zm

for all n ∈ N which proves (3). �

Lemma 1.3. Suppose that Q is finitely supported, more precisely assume that, for some N, the
potential Q satisfies Qn = 0 for n > N but QN �= 0 (we include also the case Q = 0 whence
N = 0). Then ψ(·, n) is a polynomial of degree at most 2N − n − 1 when n < N . When
n � N then ψ(z, n) = zn.

Proof. We know from lemma 1.2 that ψ(z, n) = zn when n � N and |z| � 1/2 (and hence
for all z). We need to prove that K(n,m) = 0 for m � 2N − n. This is certainly true when
n � N . Employing the identity (�K)(n,m) + QnK(n,m) = 0 which holds for 1 � n < m

and induction prove our claim. �

In section 2 we prove that a potential Q is pointwise small if it has no eigenvalues and
if all resonances are large, equivalently, if all zeros of ψ(·, 0) are large. In section 3 we
compare two potentials Q and Q̃ where Q̃ is finitely supported. We show there that, if all
the eigenvalues and resonances of Q̃ are also eigenvalues and resonances of Q and if all other
resonances of Q are comparatively large, then Q − Q̃ is pointwise small. We illustrate these
results in some basic examples presented in appendix B.

2. Potentials with only very large resonances

In this section we are interested in the case where there are no eigenvalues and only very large
resonances. More precisely, we require subsequently that

∑∞
n=1 1/|zn| = ε � 1/4. Recall that

the reciprocals of the zeros of an entire function of growth order zero are always summable.
In view of lemma 1.2 the key to bounding the potential Q is to bound the Taylor coefficients
K(n,m). The following lemma is a first step in this direction.

Lemma 2.1. Suppose that
∑∞

n=1 1/|zn| = ε. Then the Taylor coefficients of ψ(z, 0)−1 satisfy

|K(0,m)| �
(eε

m

)m

� 3εm.

Proof. By Cauchy’s formula for Taylor coefficients, we have

K(0,m) = 1

2π i

∫
|z|=R

ψ(z, 0)

zm+1
dz

for any R > 0. Thus

|K(0,m)| � R−m sup{|ψ(z, 0)| : |z| = R}.
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But

|ψ(z, 0)| �
∞∏

n=1

(
1 +

|z|
|zn|

)
�

∞∏
n=1

exp(|z|/|zn|) � exp(|z|ε).

The choice R = m/ε gives the best estimate on K(0,m). �

In order to obtain estimates on K(n,m) for n > 0 we proceed by induction. The induction
step is provided by the following lemma.

Lemma 2.2. Suppose that |K(n,m)| � a(4/3)nεm+n for some a ∈ (0, 3], ε ∈ (0, 1/4], n ∈ N0

and all m � n + 1. Then |K(n + 1,m)| � a(4/3)n+1εm+n+1 for all m � n + 2.

Proof. Define the potential Q̂ by Q̂m = Qm+n. The Jost solution ψ̂ associated with Q̂ is given
by ψ̂(z, k) = z−nψ(z, k + n). This, in turn, means that K̂(k,m) = K(k + n,m + n). Thus, by
assumption, |K̂(0,m)| � a(4/3)nεm+2n.

When we insert the Taylor expansions of ψ̂(·, 0) and ψ̂(·, 1) into

ψ̂(z, 0)ψ̂(1/z, 1) − ψ̂(1/z, 0)ψ̂(z, 1) = 1/z − z

we obtain that the relationship

K̂(1,m) = K̂(0,m + 1) +
∞∑

j=2

(K̂(0, j + m) − K̂(0, j − m))K̂(1, j)

must necessarily hold for all m ∈ N. Ignoring the equation for m = 1 and defining xm =
K̂(1,m + 1), hm = K̂(0,m + 2), and Fm,j = K̂(0, j + m + 2) − K̂(0, j − m) we arrive at the
system

x = h + Fx. (1)

Since the K(1,m) are Taylor coefficients they must be superexponentially decaying as m
tends to infinity. Therefore we seek our solution x in Hε = {y ∈ C

N : ε−m|ym| is bounded}.
The function y �→ ‖y‖ = sup{ε−m|ym| : m ∈ N} provides a norm for Hε. One now checks
easily that F is a bounded linear operator from Hε to itself and that ‖F‖ � aε2(1 + ε2)/

(1− ε2) � 1/4. Also ‖h‖ � a(4/3)nε2n+2. Thus, system (1) has a unique solution x for which
‖x‖ � a(4/3)n+1ε2n+2. This gives now the desired estimate on K(n + 1,m) = K̂(1,m−n) =
xm−n−1. �

Theorem 2.3. Suppose Q satisfies hypothesis 1. Let zn denote the zeros of the associated Jost
function and assume that

∑∞
n=1 1/|zn| = ε � 1/4. Then

|K(n,m)| � 3(4/3)nεm+n.

Moreover, the potential Q satisfies

|Qn| � 3(4/3)nε2n−1.

Proof. The first statement is proved by induction. The validity of the statement for n = 0
follows from lemma 2.1 and the induction step is provided by lemma 2.2 with a = 3.

Since, by lemma 1.2,
∑∞

m=n+1 Qm = −K(n, n+ 1) the second statement follows from the
first with the aid of the triangle inequality. �
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3. Perturbation of a finitely supported potential

Suppose that Q̃ is a potential with support in {1, 2, . . . , N} and that Q is a potential which
satisfies hypothesis 1. We denote the associated Jost solutions by ψ̃ and ψ , respectively.
According to lemmas 1.2 and 1.3, we have

ψ̃(z, n) = zn +
2N−n−1∑
j=n+1

T (n, j)zj

for appropriate coefficients T (n, j). We also assume that the zeros of ψ̃(·, 0) are also zeros
of ψ(·, 0) but that the latter function has possibly other very large zeros. More precisely, we
assume that5

ψ(z, 0) = ψ̃(z, 0)

∞∏
n=1

(1 − z/zn),

where
∑∞

n=1 |zn|−1 = ε. We then define quantities K(n,m) by setting

ψ(z, n) = ψ̃(z, n) +
∞∑

m=n+1

K(n,m)zm.

In the following we mimic the approach of section 2, getting first an estimate on
the K(0,m) from the main hypothesis and then on the K(1,m) by using the Wronskian
relationship. Again an induction argument allows us to get the estimates on the K(n,m) for
n � 2. Naturally, more details will be involved.

Lemma 3.1. There exists a constant M0 depending only on Q̃ such that

|K(0,m)| � M0

{
ε if 1 � m � 2N

εm+1−2N if m � 2N.

Proof. When cm,m � 1, denotes the mth Taylor coefficient of
∏∞

n=1(1 − z/zn) then, as in
lemma 2.1, |cm| � 3εm. Note that

K(0,m) = cm +
2N−1∑
j=1

T (0, j)cm−j

when we agree to set cm = 0 for m � 0. Our claim follows now from the triangle inequality.
�

We now set out to estimate the coefficients K(1,m). Since

ψ(z, 0)ψ(1/z, 1) − ψ(1/z, 0)ψ(z, 1) = 1

z
− z = ψ̃(z, 0)ψ̃(1/z, 1) − ψ̃(1/z, 0)ψ̃(z, 1) (2)

we may compare coefficients in the resulting Laurent series. Comparing the coefficients of z0

gives a triviality but the coefficients for zm, where m �= 0 give conditions the K(1,m) have to
obey. In fact, the coefficients of zm and z−m give identical conditions, namely

0 = K(1,m) − K(0,m + 1) −
∞∑

j=2

(T (0, j + m) − T (0, j − m) + K(0, j + m)

−K(0, j − m))K(1, j) +
∞∑

j=1

(T (1, j + m) − T (1, j − m))K(0, j) (3)

5 We can allow for ψ(·, 0) to have only finitely many zeros by setting 1/zn = 0 for sufficiently large n.
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if we agree to set T (j, k) = 0 unless k ∈ {1 + j, . . . , 2N − 1 − j}. We will consider
these equations only for m � 2 (the equation for m = 1 will be discarded) and shift indices
accordingly.

Again, the K(1,m) must be superexponentially decaying as m tends to infinity. Therefore
the sequence m �→ K(1,m + 1) must be an element of C

2N−2 ⊕ Hε, where we think of C
2N−2

as a normed space with the supremum norm and, as before, of Hε as a vector space normed by
‖y‖ = sup{ε−m|ym| : m ∈ N}, where 0 < ε < 1. According to this decomposition we may
express equations (3) as(

A0 + A1 B

C I + D

)(
x

y

)
=

(
g

h

)
.

More explicitly, we have xm = K(1,m + 1), ym = K(1, 2N − 1 + m),

A0;m,j = δm,j + T (0, j − m) − T (0, j + m + 2),

A1;m,j = K(0, j − m) − K(0, j + m + 2),

Bm,j = T (0, 2N − 2 + j − m) + K(0, 2N − 2 + j − m) − K(0, 2N + j + m),

Cm,j = −K(0, 2N + j + m),

Dm,j = T (0, j − m) + K(0, j − m) − K(0, 4N − 2 + m + j),

and

gm = K(0,m + 2) +
2N−2∑
j=2

T (1, j)K(0, j + m + 1) −
2N−2∑
j=m+2

T (1, j)K(0, j − m − 1),

hm = K(0,m + 2N) +
2N−2∑
j=2

T (1, j)K(0, 2N − 1 + m + j).

The following two lemmas can now be derived easily when the K(0,m) satisfy the
estimate stated in lemma 3.1.

Lemma 3.2. There is a positive constant M ′, depending only on Q̃, such that ‖g‖ � M ′ε and
‖h‖ � M ′ε.

Lemma 3.3. The operators B : Hε → C
2N−2, C : C

2N−2 → Hε, and D : Hε → Hε are all
bounded. In fact, if 0 < ε < 1 there is a constant M ′′, depending only on Q̃, such that ‖B‖ �
M ′′ε/(1 − ε), ‖C‖ � M ′′ε2/(1 − ε) and ‖D‖ � M ′′ε/(1 − ε).

Note that for N = 1 we deal only with the equation (I + D)y = h which shows that
‖y‖ � 2M ′ε, provided ε is small enough so that M ′′ε/(1 − ε) � 1/2. In the general case, we
have the equation (I + D)y = h − Cx. Assuming again that M ′′ε/(1 − ε) � 1/2 we obtain
y = (I + D)−1(h − Cx). Using this result, the equation (A0 + A1)x + By = h becomes

(A0 + A1 − B(I + D)−1C)x = g − B(I + D)−1h.

Here the right-hand side is a vector whose norm is of order ε. We will show below that the
matrix A0 is invertible. The norm of its inverse depends only on the coefficients T (0,m), i.e.,
on the potential Q̃. Each entry of A1 and hence the norm of A1 is of order ε. Therefore ‖x‖
is of order ε, i.e., each one of the coefficients K(1, 2) = x1, . . . , K(1, 2N − 1) = x2N−2 is of
order ε. This, in turn, implies that the norm of y = (I + D)−1(h − Cx) is also of order ε, i.e.,
K(1, 2N − 1 + m) = ym is of order εm+1 for all m ∈ N.
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To prove the invertibility of A0 consider the case when the K(0,m) are all zero. In this
case our system becomes(

A0 B0

0 I + D0

) (
x

y

)
=

(
0
0

)
,

where B0 and D0 are obtained from B and D, respectively, by setting K(0, ·) = 0. Again, the
norm of D0 is small so that we must have y = 0 which implies that also A0x = 0. Let x be
any solution of this equation. Then ψ(z, 1) − ψ̃(z, 1) = ∑2N−2

m=1 xmzm+1 has at least a double
zero at zero and equation (2) becomes

z−2ψ(z, 0)

2N−3∑
m=0

xm+1z
−m = z2ψ(1/z, 0)

2N−3∑
m=0

xm+1z
m.

Since ψ(·, 0) is a polynomial of degree 2N − 1 with ψ(0, 0) = 1, this shows that x2N−2 must
be zero, so that the ψ(·, 1) − ψ̃(·, 1) has at most 2N − 4 non-vanishing zeros. Now note that
ψ(·, 0) has at least 2N − 3 zeros different from 0 and ±1 and that, if z0 is one of those, then
ψ(1/z0, 0) �= 0. All of these must also be zeros of ψ(·, 1)− ψ̃(·, 1). Hence ψ(·, 1) = ψ̃(·, 1),
i.e., x = 0 is the only solution of A0x = 0.

Thus we have the validity of the following lemma.

Lemma 3.4. Suppose that

|K(0,m)| � M0

{
ε if 1 � m � 2N

εm+1−2N if m � 2N.

Then there are constants ε1 � 1/2 and M1 � M0, depending only on Q̃, such that the Taylor
coefficients K(1,m) of ψ(·, 1) − ψ̃(·, 1) satisfy

|K(1,m)| � M1

{
ε if 2 � m � 2N − 1

εm+2−2N if m � 2N − 1

provided that ε � ε1.

To obtain estimates on K(n,m) for 2 � n � N we proceed again by induction as in the
proof of lemma 2.2. This gives the existence of an εn � εn−1 and an Mn � Mn−1 such that

|K(n,m)| � Mn

{
ε if n + 1 � m � 2N − n

εm+n+1−2N if m � 2N − n

as long as ε � εn. The numbers Mn and εn depend only on Q̃.
Next we define Q̂ by Q̂m = QN+m and let ψ̂ be the associated Jost solution and K̂(n,m)

its Taylor coefficients. Then, as before, K̂(k,m) = K(N + k,N + m) and, in particular,
K̂(0,m) = K(N,N + m) and |K̂(0,m)| � MNεm+1. If ε � εN+1 = min{εN, 3/MN } we get
from lemma 2.2, using a = εMN , that |K̂(n,m)| � MN(4/3)nεm+n+1, i.e.,

|K(n,m)| = |K̂(n − N,m − N)| � MN(4/3)n−Nεm+n+1−2N .

Since Qn − Q̃n = K(n, n + 1) − K(n − 1, n) we obtain now our final result.

Theorem 3.5. Suppose that Q̃ is a potential with support in {1, 2, . . . , N} and that Q is a
potential which satisfies hypothesis 1 and that their Jost functions satisfy

ψ(z, 0) = ψ̃(z, 0)

∞∏
n=1

(1 − z/zn),
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where
∑∞

n=1 |zn|−1 = ε. Then there exist constants µ > 0 and M > 1, depending only on Q̃,
such that

|Qn − Q̃n| � M

{
ε if n � N

(4/3)n−N−1ε2(n−N) if n � N + 1

provided ε � µ.

Proof. Choose µ = εN+1 and M = 2MN . �
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Appendix A. Construction of the Jost solutions

In [2, section 4], Jost solutions are constructed for a class of Jacobi operators which are more
general than those considered here. This culminates in theorem 4.4 which implies that the
Jacobi operator J with a potential satisfying hypothesis 1 is in the class C. Below we give an
independent proof of this fact, which is shorter, less technical, and gives additional information
on the function ψ it constructs. Some additional properties of ψ were deduced in lemma 1.2.

Theorem A.1. Let J be a discrete Schrödinger operator with potential Q. Suppose that there
are numbers C > 0 and β > 1 such that |Qm| � C exp(−mβ) for all m ∈ N. Then J is an
element of the class C defined in definition 1.

Proof. Fix R � 2 and let 
 = {z ∈ C : |z| < R}. Since
∑m−n−1

k=0 |z|2k+1 � 4
3R2m−2n−1 �

R2m−2n whenever z ∈ 
 and since α(R) = ∑∞
m=1 |Qm|R2m is finite, due to our decay condition

on the sequence Q, we may define the bounded operator

Tz : �∞(N0) → �∞(N0) : (Tzy)(n) = −
∞∑

m=n+1

m−n−1∑
k=0

Qmz2k+1y(m).

Let e(n) = 1 for all n ∈ N0. Then T k
z e ∈ �∞(N0) for all k ∈ N0. Note that

|(Tze)(n)| � R−2n

∞∑
m=n+1

|Qm|R2m � α(R)R−2n.

Defining β(n) = ∑∞
m=n+1 |Qm| one may show by induction that

∣∣(T k
z e

)
(n)

∣∣ � α(R)R−2n β(n)k−1

(k − 1)!

for all k ∈ N. This induction proof uses that
∑∞

m=n+1 |Qm|β(m)k−1 � β(n)k/k which follows
after a summation by parts using that the sequence β(m) is non-negative and non-increasing.

Thus j �→ ∑j

k=0

(
T k

z e
)
(n) is a Cauchy sequence whose limit we will denote by ϕ(z, n).

Since |ϕ(z, n) − 1| � α(R)R−2n eβ(n), it follows that ϕ(z, ·) ∈ �∞(N0). Since R may be
arbitrarily large, ϕ(z, n) is defined for every z ∈ C.
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Next note that, by the continuity of Tz,

(Tzϕ(z, ·))(n) = ϕ(z, n) − 1

and that therefore

ϕ(z, n + 1) − ϕ(z, n) = (Tzϕ(z, ·))(n + 1) − (Tzϕ(z, ·))(n) =
∞∑

m=n+1

Qmz2m−2n−1ϕ(z,m).

A simple computation shows now that the sequence n �→ znϕ(z, n) solves the Jacobi equation
Jy = (z + 1/z)y, i.e., the function ψ defined by ψ(z, n) = znϕ(z, n) satisfies property (1) of
definition 1.

The estimate |ϕ(z, n) − 1| � α(R)R−2n eβ(n) also shows that limn→∞ ϕ(z, n) = 1. This
and the fact that the Wronskian W(z) of ψ(z, ·) and ψ(1/z, ·) is constant show that

ψ(z, n)ψ(1/z, n + 1) − ψ(1/z, n)ψ(z, n + 1)

= 1

z
ϕ(z, n)ϕ(1/z, n + 1) − zϕ(1/z, n)ϕ(z, n + 1)

converges to 1/z− z as n tends to infinity. This proves property (2) of definition 1 with p = 1.
Because the sequence ϕ(z, ·) is bounded and since n �→ zn is square summable when

|z| < 1 we have that ψ(z, ·) is square summable for |z| < 1. This proves property (3) of
definition 1.

Next, the fact that the series defining T k
z e and ϕ(z, n) converge absolutely and uniformly

in compact subsets of 
 shows that the functions ϕ(·, n) as well as the functions ψ(·, n) are
entire. To estimate their growth note that

|ψ(z, n)| � α(R)R−n eβ(n) � α(R) e‖Q‖1

when |z| = R. The growth of ψ(·, n) is therefore determined by the growth of α as function
of R. Define N = 	(3 log R)1/(β−1)
. Then |Qm| � CR−3m when m � N + 1 so that

α(R) =
N∑

m=1

|Qm|R2m +
∞∑

m=N+1

|Qm|R2m � N‖Q‖∞R2N + C

∞∑
m=N+1

R−m

� N‖Q‖∞ exp((3 log R)β/(β−1)) +
CR

R − 1
.

Since this has growth order zero we proved property (4) of definition 1.
To prove property (5) we use the already established condition (2). We find∣∣∣∣ψ(z, 1)

ψ(z, 0)

∣∣∣∣ =
∣∣∣∣ψ(1/z, 1)

ψ(1/z, 0)
− W(z)

ψ(z, 0)ψ(1/z, 0)

∣∣∣∣ . (A.1)

Thus we need lower bounds on |ψ(z, 0)| and |ψ(1/z, 0)| and an upper bound on |ψ(1/z, 1)|
at least for z lying on certain circles. By a theorem of Wiman [8] the minimum modulus of an
entire function of growth order less than 1/2 is unbounded. Hence there exists a sequence of
circles with radius rn such that rn tends to infinity and min{|ψ(z, 0)| : |z| = rn, n ∈ N} � 1.
To obtain the other estimates note that

‖T1/z‖ � ‖Q‖1
|1/z|

1 − |1/z|2 � 1

3
when z is sufficiently large. Since ϕ(z, ·) − 1 = Tzϕ(z, ·) we find

‖ϕ(1/z, ·)‖∞ − 1 � ‖ϕ(1/z, ·) − e‖∞ � 1
3‖ϕ(1/z, ·)‖∞

which implies ‖ϕ(1/z, ·)‖∞ � 3/2 and ‖ϕ(1/z, ·)−e‖∞ � 1/2. Therefore |ψ(1/z, 0)| � 1/2
and |ψ(1/z, 1)| � 3/(2|z|) always assuming that z is sufficiently large. From (A.1)∣∣∣∣ψ(z, 1)

ψ(z, 0)

∣∣∣∣ � 5

|z| + 2|z| � 3|z|



Stability for an inverse resonance problem 1687

on any of the above mentioned circles with sufficiently large radius. This establishes
property (5). �

Appendix B. Examples

We illustrate here our results with the most basic examples.

Example B.1 (single site potentials). If Qn = 0 for n � 2, we find ψ(z, 0) = 1 − Q1z.
This potential has one resonance or eigenvalue determined by z1 = 1/Q1. If this resonance is
very large then the potential is very small:

∑∞
n=1 1/|zn| = 1/|z1| = ε implies |Q1| = ε.

Example B.2 (double site potentials). If Qn = 0 for n � 3, we find

ψ(z, 0) = 1 − (Q1 + Q2)z + Q1Q2z
2 − Q2z

3 = (1 − z/z1)(1 − z/z2)(1 − z/z3).

Thus

Q2 = 1

z1z2z3
, Q1Q2 = z1 + z2 + z3

z1z2z3
, Q1 + Q2 = 1

z1
+

1

z2
+

1

z3
.

Note that this implies that z1, z2, and z3 cannot be chosen independently.

Assuming that all three resonances are very large, i.e.,
∑3

n=1 1/|zn| = ε, we find
Q2 = O(ε3) and Q1 = O(ε) as ε tends to zero since 1/|zj | � ε. This illustrates theorem 2.3.

We may also compare Q with a single-site potential Q̃ with a resonance or eigenvalue
determined by z1 = a. If Q has that same resonance or eigenvalue and if z2 and z3, determining
the other two, are very large then we have ε = 1/|z2| + 1/|z3| implying Q2 = O(ε2) and
Q1 − Q̃1 = Q1 − 1/a = O(ε) as ε tends to zero. This illustrates theorem 3.5.

Example B.3 (triple site potentials). If Qn = 0 for n � 4 we find

ψ(z, 0) = 1 − (Q1 + Q2 + Q3)z + (Q1Q2 + Q1Q3 + Q2Q3)z
2 − (Q2 + Q3 + Q1Q2Q3)z

3

+ (Q1Q3 + Q2Q3)z
4 − Q3z

5

= (1 − z/z1)(1 − z/z2)(1 − z/z3)(1 − z/z4)(1 − z/z5).

Again, assume first that all resonances are very large for another illustration of
theorem 2.3. Then 1/|zj | � ε = ∑5

n=1 1/|zn| for 1 � j � 5. This shows firstly that
Q3 = O(ε5) and Q1 + Q2 = O(ε). With these estimates established we get Q1Q2 = O(ε2)

and Q1Q2Q3 = O(ε7). Putting all this together we get Q2 = O(ε3) and Q1 = O(ε).
One can also assume that only z2, . . . , z5 are large and compare with a single-site potential

Q̃ for which Q̃1 = 1/z1. Or one can assume that only z4 and z5 are large and compare with a
double-site potential Q̃ with eigenvalues and/or resonances determined by z1, z2, and z3. In
accordance with theorem 3.5 one finds that Q3 = O(ε4) in the former case and Q3 = O(ε2)

in the latter case. After a bit of already tedious algebra one can also establish the predicted
estimates on Q1 − Q̃1 and Q2 − Q̃2 in either of these cases.
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[8] Wiman A 1915 Über eine Eigenschaft der ganzen Funktionen von Höhe null Math. Ann. 76 197–211
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