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616 HELFFER ET AL. 

B Some Remarks  on a Result  of Petkov and  Rober t  on t h e  
Counting Function in t h e  Context of Compact  Group Ac- 
t ions 627 

. . . . . . . . . . . . .  B.l Introduction and Principal Statements 627 
B.2 Sketch of a Proof of Theorem 10 . . . . . . . . . . . . . . . .  652- 
B.3 On the Initial Conditions Yielding Periodic Orbits of Regular- 

. - 
ized and Unregularized HamiItonians . . . . . . . . . . . . . .  634 

. . . . . . . . . . .  B.4 On the Vanishing of the Second Coefficient 635 

1 Introduction 
The Riesz mean problem for certain pseudodifferential operators with smooth 
symbols has been of recent interest [5], i.e., given, e.g., the Weyl symbol1 
p(h; x, t )  = p(x, [) = t2 + V(x) of a Schrcidinger operator with smooth 
potential V the problem is to compute 

where y is a non-negative number, el(h),e2(h), ... are eigenvalues of the 
Schrcdinger operator P ( h )  = opr (p )  := -h2A + V and E is some real 
number (energy) such that the energy surface p ; l ( { E ) )  is compact. In par- 
ticular a leading expression of order h-", n the dimension of the underlying 
space, is obtained under the assumption that E is a non-critical value of 
the principal symbol, plus correction terms o(h-"+I), if the corresponding 
hamiltonian flow has few periodic orbits. 

However, if V has a Coulomb singularity, there are counterexamples to 
such a claim in the case y = 1. This is known as Scott correction (Scott [17], 
Hughes [7], [20, 19, 181, Bach [2], and Ivrii and Sigal [lo]. 

Thus it is interesting to ask whether this phenomena ot a leading correc- 
tion term for other values of -y persists, i.e., if there is some "Scott" correction 
as well. In this paper we wish to consider -y = 0 for a general potential with 
a Coulomb type singularity. Tarnura [21] has given a partial answer to this 
question, however, he does not show the absence of the next order term (see 
also the announcements of Ivrii [9]). 

To state our result we remark that the set of collision orbits, i.e., the set 
of orbits in T*(@ \ (0)) meeting x = 0, is of measure zero with respect to 
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SCHRODINGER OPERATOR WITH COULOMB SINGULARITY 61 7 

This follows from an application of a regularization method as  the one given 
by Moser [12]. 

Theorem 1 Let y be a real valued positive function on l??, nonvanishing at 
zero such that y o # and all its derivatives are bounded Cm(l2?) functions, 
where 4 denotes the Kustaanheimo-Stiefel transform (20), and E be a strictly 
negative noncritical value of y/l . I .  

Then the number N ( h ,  E )  := &(h,  E )  of eigenvalues of the operator 
0 p Y ( p )  on L2(@) with Weyl symbol p(r, k )  := k2 - y(r) /  lrl meets the esti- 
mate 

N ( h ,  E )  = ( 2 ~ h ) - ~  d3r6(E - p(r, k ) )  + O ( h - 2 ) ,  (3) 

where 0 is the characteristic function of the interval (0, m). 
Moreover, i f  the set of initial conditions which lead to periodic orbits is 

of measure zero with respect to dCE given in (Z), the error in (3) is ~ ( h - ~ ) .  

We remark that this result can presumably be also obtained by the techniques 
of Ivrii [9] which are being developed in a series of preprints. We prefer to 
give a different approach based on a regularization procedure of the potential. 
More precisely the strategy of our proof is as follows: We first show that the 
solutions of the singular problem correspond uniquely to certain invariant so- 
lutions of a smooth problem. The relation between these two is given through 
the Kustaanheimo-Stiefel transform and the Birman-Schwinger principle. 

Applying a suitably modified version of the calculus developed in [3] (see 
also Robert [16]) together with arefined tauberian argument from Ivrii [8] and 
Petkov and Robert [14] yields the desired result. The modification concerns 
a trivial need. Instead of taking traces of functions of the given operator 
on the whole space, we need to take the trace only over a subspace, namely 
the space of functions that are gauge invariant under the gauge group of the 
Kustaanheimo-Stiefel transform. We will comment on the necessary changes 
in the Appendix B. In particular we shall explain how to apply (61 to our 
case (see also 141 and references given therein). 

To make the paper more self-contained, we collect some facts for the 
Kustaanheimo-Stiefel transform in Appendix A. 

Note that the second part of our theorem has an application to hamilto- 
nians in atomic physics. 

Theorem 2 Let f be the solution of the Thomas-Fermi equation f " ( r )  = 
f ( r )3 /2 /r1/2  with boundary f ( 0 )  = 1 and f(w) = 0,  c a positive constant, 
and y ( r )  = f(clr1). Then the strengthened hypothesis of Theorem 1 applies. 

Proof: Without loss of generality set c := 1. 
For E < 0 the energy shell 

C E  := { ( r ,  k )  E 5?(R3 \ ( 0 ) )  1 p(r, k )  = E )  
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618 HELFFER ET A L .  

is a smooth manifold, since E is a regular value of the smooth function p, 
with p(r, k) = k2 - y(r)/(rI. E is a regular value since 

and the gradient of the potential does not vanish. 
The motion in the central potential is integrable in the sense that for 

angular momentum L(r, k) := r x k the phase space functions p, L2 and L, 
Poisson-commute and are independent on CE up to a set of Liouville measure 
zero. We may assume that L2 > 0, disregarding the collision orbits. 

Then in the orbital configuration space plane perpendicular to L we in- 
troduce polar coordinates (r,cp) and consider the reduced system given by 
the hamiltonian ho : T*(lR2 \ (0)) -, 172, 

r2 f ( r )  
ho(p,, r; I) := p: + &(r) with K(r) := - - -. 

r2 r 

Let L,(E) := inf{L > 0 I Vr > 0 : x ( r )  > E) be the maximal value of the 
angular momentum for given energy E < 0. 

 hen for 0 < lZ < LL(E) the motion is organized on non-degenerate 
two-tori which are given as the level sets 

This follows from Lemma 3 of [19] which states that for the given values of 
I the function x ( r )  has exactly one minimum (which is negative and non- 
degenerate) and one maximum (which is positive), and no saddle point. We 
are to calculate the ratio R(E, I) of the two basic frequencies of the motion, 
restricted to Tij1, given by the motion in the cp direction and the radial 
motion. R has the explicit form 

with 0 < r-(E, I )  < r+(E, I )  uniquely determined by the equation 

The motion on TivI is periodic if and only if the frequency ratio is rational, 
i.e., R(E, I) E Q .  

If we can show that for a given E < 0, 
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SCHRODINGER OPERATOR WITH COULOMB SINGULARITY 619 

up to a measure zero set in 1 E (0, L,(E)), then the Liouville measure of the 
periodic orbits vanishes. R(E, 1) is a real-analytic function of I .  So we need 
only show that R(E, 1 )  is not independent of 1 (as would be the case if we 
had a Coulomb potential). 

To prove the last assertion, we show that 

R(E,O) := lim R(E, I) = 1 
l\O 

(5) 

and 
R(E, Lm(E)) := lim R(E, 1) > 1. 

l / L m ( E )  
(6) 

Equation (5) follows since the collision orbits are regularized by the prescrip- 
tion that they are scattered backwards. In a more formal manner, one easily 
performs the limit in (5), starting from (4). 

To prove (6), we notice that r+ (E, 1)' $nd r- (E,  1) have the same limit + 
so that 

Lm (E)  -1/2 
R(E, Lm(E)) = 7 . (i $VL.,,(E)(~)) . 

r (7) 
We have a2 61' rz f"(r) - 2r f'(r) + 2 f (r)  -&(r) = - - 

arz  7-4 r3 
and 

so that 

using the Thomas-Fermi differential equation fU(r )  = f3/2(r)/r'/2. By sub- 
stitution of (8) in (7) we obtain 

r 
R(E, Lm (E)) = (1 - -(+ (+))3/2) -'I2 > 1, 

2L%(E) 

proving (6). 1 
Remarks: 

1. As can be seen from the above proof, the statement of Theorem 2 holds 
true even for energy E = 0. 

2. Petkov and Safarov [15] have announced the following interesting result: 
For a real analytic hamiltonian A, either all hamiltonian trajectories 
lying on a non degenerate surface A = const are periodic, or the mea- 
sure of the set of periodic points on this surface equals zero. Another 
interesting reference is the paper by A. V. Volovoy [22]. 



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f A
la

ba
m

a 
at

 B
irm

in
gh

am
] A

t: 
19

:3
7 

12
 O

ct
ob

er
 2

00
7 

620 HELFFER ET AL. 

2 Regularization of the Singular Operator 

Let WE be the Friedrichs extension in L2(@, d4x) of the operator which acts 
on Cr(D?) as 

where y o 4 is a positive bounded Cm-function on @ and E < 0. 

Proposition 3 The number of eigenvalues of WE less than or equal to zero 
with gauge invariant eigenfunctions equals the number ofeigenvalues of P(h)  = 
-h2A3 - %, less than or  equal to E. 

Proof: First we prove that the number of eigenvalues X of P ( h )  less than or 
equal to  E is equal to the number of values X less than or equal to E such 
that WA is not injective on the intersection of the domain of WA and of the 
subspace of the gauge invariant functions. To this end note the following 
fact. If PC, is twice continuously differentiable a t  r = 4(x) E Dl3, then A4($ o 
4)(x) = 4x2((A3PC,) o d)(x). In particular WA(+ o 4)(x) = 0 is equivalent to 
P(h)PC,(r) = E$(r) for (rl # 0. 

Now let PC, be an eigenfunction of P(h)  with eigenvalue A, in particular, 
since the potential is Laplacian compact, the domain of P (h)  is H'(R~),  SO 

that I - E L2(IR3). This implies that we do not only have + o q5 E 
L2(@, Az2d4x) but also 1C, o 4 E L2(IR4). Hence Wx($ o 4) is a distribution 
in H;;(%). Moreover, by elliptic regularity and by the above computation 
outside the origin, its support is confined to the origin and therefore is the 
zero d i s t r ib~ t ion .~  Now, by global elliptic regularity we conclude, that 1C, o 4 
is in the domain of WA and Will) o 4 vanishes. 

To prove the reverse direction, assume u to be in the kernel of WA and 
gauge invariant. In particular there exists a $ such that u = + o C#J and such 
that $11 I E L'(@). Since u is also square integrable with respect to the 
measure :x2d4x, PC, is square integrable with respect to djr. 

Suppose we knew that PC, belonged to H&,(@) for some s 2 1/2 then we 
were done, since (-A - y/r  - A)+ can have support a t  the origin at most 
and therefore would vanish by Footnote 2. Furthermore, since ( . (-I$ is 
square integrable with respect to Lebesgue measure (which is a consequence 
of 1 -  1 - 1 / 2 ~  6 L2(nr()), we would get that PC, is in HZ. Therefore we will prove + %(@). 

Define w = VPC, on ll? \ (0). The function w is square integrable by 
the above computations for the Laplacian in this domain. By construction 

'Note the following fact: If s 2 - 4 2  then the only distribution in H;,,(Rn) with 
support at the origin is the zero distribution. 
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S C H R O D I N G E R  O P E R A T O R  W I T H  COULOMB S I N G U L A R I T Y  621 

&wi(r) = ajwk(r) for r # 0. But since akwi - aiwk E H-'(IR3) with support 
at the origin a t  most, we have &wi - aiwk = 0 in H-'(IR~). In this situation 
there exists a potential v E Hic(lR3) such that w = Vv. 

Again, we obtain that V($ - v)(r) E H-'(p) and V($ - v)(r) = 0 
for r # 0. Recalling Footnote 2, this implies V($ - v) = 0 and therefore 
($ - v) G Hi.,c(E3). 

Moreover by monotonicity of 

in p as used, e.g., in the Birman-Schwinger principle, and the fact that the 
space of gauge invariant functions is left invariant by W,,E the claim follows. 
(See T m u r a  [21] for a similar argument.) I 

3 Functional Calculus with Projections 

Section 2 shows that we need to compute t r ( I l ~ ( - ~ , o ~ ( W ~ ) )  for the proof of 
our main result, Theorem 1, where ll (defined in (25)) is the projection onto 
the gauge invariant functions. 

We use a decomposition of the form 

where f ~ ,  f 2  are suitable non-negative functions in C,DO such that supp fi n 
(-e/2, m) = 0 and supp f2 C (-s, e )  for some sufficiently small s > 0. 

fl can be chosen to be compactly supported since WE is bounded below 
uniformly in h. 

Note that the principal symbol wg of WE in the Weyl calculus is given 
by 

1 
wP(x.C) = + VE(~(U)),  

with 
VE(r) := -y(r) - EIPI, 

and that the subprincipal symbol vanishes. 
w e  treat t r ( n  f l ( W ~ ) )  and t r ( n  ~ ~ ( W E ) X ( - , , ~ ] ( ~ E ) )  separately. The first 

term will be analyzed below by methods of pseudodifferential calculus. For 
the estimates of the second term we will use Fourier integral operator tech- 
niques which will be explained in Appendix B. 

Proposition 4 Under the above assumptions 
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6 22 HELFFER ET AL. 

Proof: Repeating the functional calculus of Helffer and Robert [3] yields the 
following. 

We write the Weyl symbol u(fi(WE)) in the form 

Thus modulo O(h-') there are two contributions to the 1.h.s. of (11) to 
be analyzed. The main term is given by 

with qo(z, t, a) := f~(w'&(i( t ,  x + G,(x))), whereas the "remainder termn has 
the form 

with q ~ ( x , t , ~ )  := P ~ , f , ( i ( x  + %(x)),t) .  
Let us first prove that the second contribution (13) is o(h-') as h \ 0. 
After eliminating an error of order O(hm), we may assume that qz is a 

bounded Cw function in all variables with compact support. We decompose 
the integral (13) in two parts using a partition of unity on T*1R4 XI, X; 
where X I  has support in the ball of radius E around the origin, x', and X; are 
nonnegative and add up to one. 

We discuss first 

The stationary phase argument is valid, because the support of X; does not 
contain (0,O). 

The critical set of the phase (x - O,(x))E is in our case a submanifold of 
codimension two in T*@ x 82 given by o = 0 and x1t2 - x2t1 + z3t4 - x4t3 = 
0. Moreover the transversal hessian is nondegenerate. Thus we obtain the 
estimate C,h for (14). 

The first term obtained from the partition of unity in (13) yields the 
estimate Ce8 using the boundedness of the integrand. 

Optimizing of e gives the desired result, and we have 

To evaluate the first term on the right hand side of (15), i.e. (12), we 
compute the following integral. 

With VE defined in (lo), we get f1 (w$(t, u)) = f1(t2 /4+ VE($(U)). Then 
(12) equals I(O), with 
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SCHRODINGER OPERATOR WITH COULOMB SINGULARITY 623 

Let 

Hence 
1 x=- u' 

O - d ~ ,  O,rx - x = 2 tan -O,u 
COS 5 2 4 

and 
d4x = - d4u. 

(cos $14 

Furthermore, by substituting k tan $ = a, we get I (&) = J(,B(E)) with 

and P(e) := tan *. 
Observing that 

h2 
a2 exp(2ial O,u) = --Ac exp(2io< . O,u) 

4212 
and integrating by parts, we get 

exp(2iaf. @,u) 1 + -AE fi( t2/4 + VE(+(U))). 

We observe that 

a : ; )  

is radial with respect to  t which permits us to define on B? x IR+ the function 
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624 HELFFER ET AL. 

Note that t.63.u = f i d i s i n ( f  +7) where k = d(() , r  = $(u), 
Q(r, k) is the angle between k and r ,  or and uk are the gauge variables of u 
and (, respectively and 7 is some function not depending on ak. 

Therefore 
h 4 1 

J (P)  = m ; / d 3 r g 1 4 ' d u r i : d a / d 3 k & i 4 r d o k  

4(r ,k) i ) '  2 + .)) H (r, t) 
- 

k2 - S?- J d 3 r 2  j4" dor do % dk jfr dyk5 1 d6k sin 6k 
~ ( 2 i 7 h ) ~  16r o 

1 + cos 6k 
do. exp (2ia (kr ) ' .in o k )  H (r, i) , 

where we shifted and dilated the ok-integration using the periodicity of the 
integrand, where we picked the k-coordinate system such that the k3-axis 
points in direction of r ,  and where dk is the polar angle of k. We integrate 
a, and recomplete the volume integral of k. 

1 + cos6 
d- exp (2ia (krI) "' .in ok) H (., t) . 

performing the ok-integration yields the Bessel function Jo. We substitute 
z := cos 0 and obtain 

2i7h 
J(P) = 64(2rh)' / d3r L d c t  1 d 3 k k  ~ ~ d r . l 0  (2~(kr?) ' /~)  H (T, i) . 
Doing the a-integration using Jo(t)dt = 1, the z-integration, and taking 
p to infinity yields 

Now we substitute k = 4p2r and get 
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SCHRODINGER OPERATOR WITH COULOMB SINGULARITY 625 

Using the definition of H in (17), we obtain 

This proves the proposition. I 

Proposition 5 Under the above assumptions 

and if the set of initial conditions which lead to periodic orbits is of measure 
zero with respect to dCE,  the error in (19) is ~ ( h - ~ ) .  

We shall prove this proposition in Appendix B. 
Proof of Theorem 1: Adding (11) and (19), we get 

1 
= - 1 d3r 1 d3k B ( E  - p(r, k ) )  + O(h-') ,  

( 2 ~ 1 4 ~  

and similarly with o(h-*). Thus Theorem 1 follows immediately from Propo- 
sition 3. 1 

A The Kustaanheimo-Stiefel Transform and 
All That 

We shall follow partially an unpublished manuscript of R. Jost. The Ku- 
staanheimo-Stiefel transform 4 : D? -r lR3 is given by 

In particular 

r112 cos 9 cos 
rlIZ cos - sin - = sin 79 sin , ( r112 sin - j cos 0-' ) -  ( s i n 7 9 c 0 s y )  (211 

r112 sin 5 sin cos 79 
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626 HELFFER ET AL. 

i.e., r,d,(p are the spherical polar coordinates. Note that every choice of a 
leads to the same r and, moreover, that x2 = Irl. 

We now have a closer look at this fact. As it turns out, the Kustaanhei- 
mo-Stiefel transform is invariant under the following set of transformations. 

Definition 6 The one-dimensional subgroup of the orthogonal group in @ 
given by 

0, : lR4 -, lR4 (22) 
cos; -sin" 2 0 

(si;; 

cos; 0 
0 cos 5 -sin % 
0 sin f cos f 

for a E [-2ir,27r) is called the Ifi-gauge group and is denoted by G. 

Then 4-'({r)) = {O,xlQ(x) = r,@, f G )  for every r E I@. In particular 
4-'({r)) is exactly one orbit of G. 

The pull-back by 4 of complex valued functions on @' to complex valued 
functions on P is denoted by 

Note that #= is linear and injective but not surjective. Now restrict the 
domain of 4' to LZ(@) and call the function d'f gauge invariant with 
respect to G. Thus restricting the target space to gauge invariant functions 
and noting that 

we obtain the following unitary map 

where L i (R4 ,  ix2d4x) denotes the subspace of gauge invariant functions in 
D(P, exzr4. 

Let U be the unitary transformation 

Again we call the functions in U(Li(IZ?,4z2/x d4x)) gauge invariant, and 
we denote the orthogonal projection onto this space by ll. 
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SCHRODINGER OPERATOR WITH COULOMB SINGULARITY 627 

Let d@ denote the Haar measure on the KS-gauge group. We may write 
ll : L2(D?,d4x) w L2(lR4,d4x) as 

B Some Remarks on a Result of Petkov and 
Robert on the Counting Function in the 
Context of Compact Group Actions 

B.l Introduction and Principal Statements 

We make a mixture between (61 and Petkov and Robert [14] in the context 
of the application we need here. 

Let P(h)  be an h-admissible pseudo-differential operator, essentially self- 
adjoint on IRn with principal symbol po. Let I be some compact interval 
such that 

3~ > 0 such that p , l (~  + [-€,el) is compact in T'(IRn). (26) 

Under these conditions we want to analyze the asymptotic behavior as h 
tends to zero of the counting function: 

where (Xj(h)) is the increasing sequence of the eigenvalues of P(h)  contained 
in I. Let G be a compact Lie group of dimension p and G its Lie algebra. Let 
us denote by At, ..., A, a basis of G. We assume that there exists an action 
g w  M(g), M of G on lRn with 

M(s)  E SO(n). ( 2 8 )  
We then get a natural symplectic action of G on T*(Rn) defined by 

Let us denote by M the group action of G associated to M in L2(IRn) and 
defined for u E L2(lRn) by 

We denote by G the set of (equivalence classes of) irreducible representations 
p of G and by X, the associated character. Let (IIp)p,b be the family of 
orthogonal projectors associated to M by 
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628 HELFFER ET AL 

We assume that 
P(h)  commutes with M .  (32) 

Let us introduce 

P(p ,  h )  := P(h) lLz(Rn)  where L;(R")  := I Ip (LZ(Rn) ) .  (33) 

Let (Xj,,,(h)) be the sequence of the eigenvalues of P(p, h) .  If J is an interval 
contained in I, then we can define 

Let qi be the functions on T'(Rn) defined by 

where 
M(Ai)x  = d("(etAi)x) for r E W n  and i = 1, ..., p 

dt I k O  (36) 
and let R be the set in T * ( R n )  defined by 

Let r be the set defined in T * ( R n )  x G by 

and for every interval J let 

Let us assume that for a given interval I = [ X I ,  X 2 ]  

0 is a weakly regular value of q'= (ql, ...., q,), (41) 

by which we mean that 

a 0' is a smooth submanifold of pc l ( I )  and 

T[,,O~' = Ker(dq'(x, t ) )  for ( x ,  t )  E 0'. 

The notion of weak regularity has been introduced by Marsden and Weinstein 
[ l l ]  to  cover applications like the states of zero angular momentum in the 
two-body problem. 

Denote by k  the rank of the system of the differentials {dqi) which is in 
this case constant3 and require that 

3Because it is homogeneous with respect to the dilations ( x , < )  - ( t x , t e ) ,  t E IR, the 
form of these conditions can be of course simplified, but the homogeneity is lost, if we 
consider more general group actions or if we work on a manifold. 
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all the isotropy sub-groups attached to points 

in a neighborhood of 0' are conjugated. (42) 
pol0 is not critical at X I  and X 2 .  (43) 

Under these assumptions the following theorem is proved in [6]. 

Theorem 7 Under the assumptions (26), (32), (dl), (42) and (43) 

Nh,p(I )  = np(2.1rh)k-nc~(po) + O ( h l f k - " ) ,  (44) 

as h tends to zero, where 

Q(x, <, g )  := (x- M ( g ) s ,  0,  N r l  is the normalfiber bundle to I?' in T*( IRn)  x 
G, and dq- is the density induced by the riemannian density of T * ( B n )  x G 
on I". 
The assumptions (41) and (42) are in fact too restrictive and for example 
imply always that the point (0,O) is not in p i l ( I ) .  But we can consider weaker 
assumptions, in particular, if (0,O) is the only point where the condition is 
not satisfied. We have already observed that there is some homogeneity in 
the assumptions (41) and (42) and the weaker assumptions (45) and (46) 
correspond only to the assumption that (41) and (42) are satisfied on 1xI2 + 
)(I2 = 1. Another way to  write i t  is 

0 is a weakly regular value of q' = (q l ,  ...., q,) in 1R2n\{(0, 0 ) ) .  (45) 

All the isotropy sub-groups attached to points 

in 1R2"\{(0, 0 ) )  are conjugated. (46) 

Let us now introduce the additional assumption4 

PO({(O, O))) # ' 1 ,  '2. 

Then Theorem 7 is improved in the following way. 

Theorem 8 ([6]) Under the assumptions (26), (32), (43), (45), (46) and 
(47), we have 

as h tends to zero, 6 = 1 i f n  > k + 1 and 6 is any number less than 1, i f  
n = k + l .  

41n Theorem 7 condition (47) was automatically satisfied. 
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6 30 HELFFER ET AL. 

What we need - at  least in our particular case - to improve the error estimate 
is the following. We shall say that a point (x, () is periodic moduIo G, if there 
exists t # 0 and g E G such that 

Here 3t is the hamiltonian flow associated to  pol that means the flow gener- 
ated by the vector field H, = (atpol -&PO). 

Under conditions (45) and (46), (R\{(O,O)))/G is a regular symplectic 
manifold and the definition we give simply says that, if we denote by TG the 
projection of (R\{(O, 0))) onto (R\{(O, O)))/G, a point (x, () is periodic mod- 
ulo G, if the point 7 r~(2 ,  () is periodic for the hamiltonian flow 6 canonically 
associated to the hamiltonian 

: ( \ { ( O O ) ) G  + ZR defined by po = Fo o ac. (50) 

For these definitions, we refer for example to [4] and to Marsden and Wein- 
stein [ll]. 

The new assumption which has a sense under Assumptions (43), (47), 
(45) and (46)) is now 

The measure of the set of periodic points modulo G in 

p,l({X;) n q"({O)) is zero for i = 1,2. (51) 

We will analyze the link with the condition in Theorem 1 in Subsection B.3. 
Thus we have the following extension of the result of Petkov and Robert 

(141. 

Theorem 9 Under the assumptions (26)) (321, (43), (45), (46), (47) and 
(51), and i f  n > k + 1 

as h tends to zero. 

Remark: By use of the functional calculus, and according to the techniques 
used in [6] in the general case (or in our particular case, see Proposition 4) 
we need to  prove only 

Theorem 10 Let us assume (26), (32), (43)) (45), (46), (47) and (51). 
Then, for each function f E Cr(lR, ZR) with support in a small neighborhood 
of XI or Xz, we have 

as h tends to zero, where 
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and 

c:.'(po) := i, XI(9) f ( p o ) l ~ e t  (Hcss @ / ~ r " ) l - ' ~ ~ d v ~ .  ( 5 5 )  

The following remark can be useful to prove the vanishing of the second term 
in (53). 
Remark: Suppose we are in a situation where, for every f E CT(XI - 
E o ,  XI + E O ) ,  

it is possible to prove as in [14], that 

as h tends to zero. This is in fact a way to prove that the second term 
vanishes, if the subprincipal symbol is zero ([14], p. 380-381). We shall give 
a proof of that fact in Appendix B.4. 

In our case, it is not clear by the general arguments that this second term 
vanishes in general, but the computation explicitly given in the particular 
case shows that it is true (see Section 3). 

As is known, this type of theorem can be usually proved by Fourier- 
integral techniques. We shall give a sketch of the proof in the next subsection 
but let us finish this part by proving Proposition 5. 

Proof of Proposition 5: The operator we consider is an h-pseudodifferen- 
tial operator on @ whose Weyl symbol is J2/4 + VE(~(X))  with VE(T) = 
-y(r) - Elrl, see (10). 

We must check that the assumptions of Theorem 10 are met. We take 
for p the trivial representation. So 11, defined in (31) is the projector II from 
(25), and X ,  E 1. 

We observe that yo4 is a positive bounded Cw function whose derivatives 
are bounded, too, and E < 0. (If the C" function is only bounded, there is 
probably a way to reduce to the other case, using Agmon type estimates.) 

We have the linear action of the KS-gauge group G z S1 on 1724 : 
[-2x,2x) 3 u -+ O, given by (22). 

It is clear that this circle action is regular on @ outside of 0 and that the 
corresponding action on the cotangent fiber bundle is regular outside (0,O). 
Condition (26) is satisfied because E < 0. Condition (32) is satisfied because 
of the invariance of VE o 4. Conditions (45) and (46) are satisfied and we 
have k = 1. We take XI := -00, X2 := 0. In this case, the only condition for 
(43) is at energy 0. If we assume that g := y o  4 is positive, we find that the 
condition (43) is equivalent to: if -Ex2 = g(x), then -2Ex - Vg(x) # 0. 

An easy computation proves that it is equivalent to the condition: E is 
not a critical value of y(r)/r. That property is true in our application to the 
atomic physics problem, as shown in the proof of Theorem 2. 
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6 32 HELFFER ET AL. 

Condition (47) is satisfied, if g(0) y(0) # 0 (which is an assumption of 
Theorem 1). Condition (51) will be analyzed in Subsection 3. 

Using Theorem 10, we see that 

resp. ~ ( h - ~ )  if assumption (51) holds. To identify cl and to prove that cz = 0, 
we use the above remark or Appendix B.4, and Proposition 4. 1 

B.2 Sketch of a Proof of Theorem 10 

We follow the sketch of the proof of [13]. We work near X2 which we call X 
and with a function f with support in (A - co1 X + E ~ ) .  

Step 1: For each real TI, we introduce 

KT, := {(I,<) E p;l([X - E O , X  + eo])( there exists t # 0, (tl < TI, 
there exists g E G such that M ' ( g ) @ , ( x , € )  = (z,[)). (58 )  

The set KT, is a closed in p;'([X - €0, X + €01). Let OT, be an open neigh- 
borhood of KT, to be determined later. Let wl E C,"(O=,) such that 
0 2 wl  < 1, wl  = 1 on KTl. Define w2 E Cr(LRZn) such that wz = 1 - w: 
on pil([X - €0, X + e0] )  If needed we can assume that the wj have group 
invariance properties. 

For j = 1,2 introduce 

where uj,,(h) is the corresponding normalized eigenfunction associated to 
&. First observe that 

This is essentially a consequence of the Weyl calculus (Lemma 4.1 in [14]). 

Step 2: Following the classical method we study 

where (with T 2 To, h E (0, ho]) is an approximation of the identity 

with pl E Cw, pl(0) = 1, pl even, supppl c [-I, I] and there exists 60 > 0 
and €0 > 0 such that &(T) 2 60 for all T E [ - E ~ , E ~ ] .  Then we have 
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(27r h)-I tr [I eXp(it7/h)pT(t)w;Uj f ( ~ ( p ,  h)) exp(-itP(p, h)/h)dt] . 

We can study such an expression as in [6] following the ideas of [3] and [14]. 
For j = 1 we get by [6], Proposition 5.4, the following complete expansion. 
This is not explicitly written in [6] but is in fact a consequence of the gen- 
eralized stationary phase argument which is used there. For T = To with To 
small enough 

For the second one we use the fact that there is no critical point corresponding 
to t such that 0 < ] t J  < TI, so by adding a nonstationary phase argument, 
we get with T = Tl 

The $(T, p )  are explicitly computable. The explicit computation of the sec- 
ond coefEcient is not necessary, but we have to notice the independence with 
respect to T. Using [6] we get 

with 
L ~ ( T )  := X p ( g ) ~ j Z ( x ,  <)I ~ ~ I - ~ / ~ d v r r .  J- 

L, is a Cm function in T on the support of f ,  d ~ p  is the induced rieman- 
nian density of G x T*lRn on I", and D, is a Cw function defined in a 
neighborhood of A. The map 

is in fact a Radon measure. 
Step 3: We apply now the tricky tauberian theorem of Ivrii whose detailed 
proof is given in [13]. Following the proof of [13] this theorem implies an 
estimate on N{,,(I)  (see(54)) 

I N ~ , , ( I )  - ( 2 r h ) ' - " ~ ~ ~ ( ~ )  - hk-"+' c&~)l I f  5 (66) 

Cf(A) (L;(.\)/TO + L:(A)/TI) hlik-" + &, T ~ ,  T ~ ,  ~ ) h ~ + ' - "  

as h \ 0, where C is independent of To, TI and h. 
Firstly proceed by choosing TI to make the second coefficient of hl+'-" 

small enough (independent of the partition of unity w?). Secondly choose 
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6 34 HELFFER ET AL. 

wl such that the measure of its support is small enough to make the first 
coefficient small. Note that the third term in (66) contains one additional 
power of h. I 

B.3 On the Initial Conditions Yielding Periodic Orbits 
of Regularized and Unregularized Hamiltonians 

Here we fill a gap in the proof of Proposition 5. We are to show that, under 
the condition of Theorem 1, Condition (51) of Theorem 9 is met for the 
symbol of the lifted operator WE defined in (9). More precisely, we want 

Lemma 11 Assume that the ~CE-measure  of the set of points in CE lying 
on periodic orbits is zero. Then the measure of the periodic points modulo G 

vanishes, too. 

Proof. First we relate the flow on CE generated by the hamiltonian function 
p of Theorem 1 to the flow at, restricted to (wg)-'((0)) n fl. Using the 1XS- 
transform 4, we can pull back by qY one-forms on IR3 \ (0) to one-forms on 
It? \ (0). A simple computation leads to the conclusion that 

Moreover, these (3, t )  project to points (r, k) E T*(@ \ (0)) with r = 4(x) 
and 

k = -  (68) 

Thus the flow !&(xo, 10) (x(t, to, to) ,  t ( t ,  20, (0)) on (~;)-l({O))nn projects 
to the flow on C E  with reparametrized time 

except for the collision orbits for which x(t, (xo,to)) = 0 for some t .  But 
the set of these collision orbits has the form of an immersed submanifold of 
codimension two, so that their measure vanishes. 

As one concludes from (68), for (r, k) E C E ,  the pull-back 
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consists of precisely one orbit of the action of the KS-gauge group G. Thus 
the (non-colliding) orbits of at which are periodic modulo G project to the 
periodic orbits in CE. 

Moreover, the action of the gauge group G on (wg)-'((0)) n R is free and 
proper, since this set does not contain (0,O) f T.@ and since G x S1 is 
compact. Thus by Proposition 4.1.23 of Abraham and Marsden [l] 

is a smooth manifold. If one excludes from (69) the points over the singu- 
larity, then the resulting manifold is naturally diffeomorphic to CE, and the 
natural measure on these manifolds are absolutely continuous with respect to 
each other (with a function only depending on the radius JrJ for r E @\{0)). 
This shows the validity of our lemma. 

B.4 On the Vanishing of the Second Coefficient 
The purpose of this section is to  justify a statement given in the proof of 
Proposition 5. In fact, we provide two different proofs of the vanishing of the 
second coefficient in the asymptotic expansion of the counting function when 
the subprincipal symbol of the operator under consideration vanishes. This 
is already well-known in the case where there is no group action (Petkov and 
Robert [13] and Ivrii and Sigal [lo]). 

The first one is based on the explicit computations of Proposition 4. The 
second one seems to be more easily generalized. 

Proof 1: The two informations we have until now are the following (we 
assume that XI = -m and X = Xz). 

For every f E C,00(] - oo, X + E [ )  with positive but small enough e we have 

(see Proposition 4). 
On the other hand we have seen (cf. Theorem 10) that for each Cm 

function f with support in a small neighborhood of A, we have 

as h \ 0, where I =] - m ,  A]  (but possibly I =] - m , r ]  with r near A),  
n = 4 , a n d k = l .  

What we want to prove under these conditions is that c::,f(po) = 0. To 
this end we go back to the details of the proof leading to (71). The basic 
idea in the study of the counting function by FIO techniques is to analyze 
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636 HELFFER ET AL. 

for f with support in a small neighborhood of A. 
Up to some error of order O(h-n+k+2), this function is equal to 

(see (60) - (65), and the stationary phase argument). For this quantity we 
obtain an expansion of the form 

given by a stationary phase theorem. 
We have now to understand the link between the coefficients appearing 

in (70), (71) and (72). We define N( f , r )  := N ~ , ~ ( I )  with I :=] - o o , ~ ] .  The 
result given by the tauberian theorem finally gives that 

P O  = I ,  f for any f E CP(]X - 2t0, A + 2co[). (73) 

Considering the case where TO := X + 2c0 and f E C,"(] - oo, rO[) with 
2eo < E ,  we observe that 

Consequently we get from (70) 

+D L cl(o, f)du = 0 for any f E Corn(] - oo , r~[ ) .  (74) 

We want to link (73) and (74). Because of the support properties, (74) does 
not imply immediately that 

C " ~ ( ~ ~ ) = O  I,P for f ~ C , 0 0 ( ] A - t ~ , A + t ~ [ )  (75) 

with I =] - oo, A]. But it will be true by density, if we prove that 

is a measure. 
Let us return to J (  f ,  r ) .  Let us introduce a fixed f with compact support 

in (A - 2t0, X + 2 ~ )  and equal to  1 on [A - to, X + €01. 

We shall analyze for f with support in (A - €0, X + to) the expression 
J(f ,  r )  - f ( r ) ~ ( J ,  

We have 
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with $(A, T) := (f (A) - f (r))/(A - 7). 
Next consider 

This is a term of the same type as for the study of J ( f ,  T), but we have gained 
a power of h in front of the expression. Moreover, the principal term in the 
application of the stationary phase theorem vanishes because p;b(O) = 0. 
Thus we get 

J( f ,  T) - f ( r )  ~ ( f ,  T) = ~ ( h ~ + ~ - ~  ), 

which means that the first two coefficients in the expansion of J ( f ,  T )  are 
measures which proves (76) and consequently (75). 1 

Proof 2: This proof gives simultaneously some independent proof of prop- 
erty (70). To simplify we limit ourselves to this last proof and hope the 
reader can get after the general argument. Also to simplify we just prove 
(70) for f E C,"((A - 6, X + 6)). Following [6 ] ,  we observe that if the 
pseudodifferential operator has va&hing subprincipal symbol, then 

t r ( f (P(h,  P = 0))) = (77) 

h-" J J J exp(i(g. x - x)t/h)f(po(t(x + g . x), t))dx d t  dg + ~ ( h ~ + ~ - ~ )  

for P(h,  0) = Opr(p)  and p(h; x, J) = po(x,J) + O(h2). 
From the general study of (61 we know that 

and the important remark is now that dl ( f )  is real. 
To prove the vanishing of the second term is thus equivalent to prove that 

i t  is purely imaginary. 
The computation of the coefficients in (78) is deduced from the integral 

in the right hand side in (78) by application of the generalized stationary 
phase theorem to  the expression 
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638 HELFFER ET AL. 

Here we observe that the amplitude f (po(i(x + g . x), t ) )  is real and that the 
phase (g . x - I)< has a regular critical set of codimension 2k, and that the 
signature of the hessian of the phase space restricted to the critical set is 0. 
In this situation, the proof of the stationary phase theorem gives immedi- 
ately that the coefficients of the expansion are alternatively real and purely 
imaginary. In particular, the coefficient of hk+' is purely imaginary. 

The study of the vanishing of the second term in J(f, 7) is based on 
the same type of argument with a different phase (see the Fourier integral 
constructions in (61). 1 
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