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1 Introduct ion 

This paper represents a contribution to the problem of finding a characterization 
of all elliptic finite-gap solutions of the stationary (modified) Korteweg-de Vries 
((m)KdV) hierarchy, a problem posed, e.g., in [39], p. 152. This theme dates 
back to a 1940 paper of Ince [31] who studied the Lain6 potential 

q ( x ) = - s ( s  + l)J/~(x +co3), s c I~, x E II~ (1.1) 

in connection with the second-order ordinary differential equation 

~ " ( E , x )  + [q(x) - E]zp(E,x)--  0, E E C. (1.2) 

Here .~(x)  _= .~ (x ;  col, co3) denotes the elliptic Weierstrass function with funda- 
mental periods (f.p.) 2a~l, 2co3, Im(co3/wl)5 / 0 (see [1], Ch. 18). In the special 
case where col is real and co3 is purely imaginary the potential q is real-valued 
and Ince's striking result [31], in modern spectral theoretic terminology, yields 
the fact that the self-adjoint operator L associated with the differential expression 
d 2 

+ q in L2(IR) has a finite-gap spectrum of the type 

or(L) = ( - o c ,  E2s ] U U[E2m_i,E2(n~_O], Ezs < E2.~-I < ' < Eo. (1.3) 
m = ]  

In obvious notation, any potential q that amounts to a finite-gap spectrum of the 
type (1.3) is called a finite-gap potential. (The proper extension of this notion to 
complex-valued meromorphic q on the basis of elementary algebro-geometrical 
concepts will be given in Sect. 2.) Prior to Ince's investigations, Hermite (see, 
e.g., [30], pp. 118-122, 266-418, 475-478 and the quotations in [47] on pages 
570-573) devoted a series of papers to Lam6's equation (1.2) with q(x)  = - s ( s  + 
l)JS(x). In particular, Hermite proved the existence of  a pair of solutions of (1.2) 
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whose product is a polynomial of degree s with respect to the spectral parameter 
E. A combination of this fact and the approach by Its and Matveev [34] (or 
alternatively, combining Hermite's result with the recursion formalism briefly 
summarized in Sect. 2) then proves that - s ( s  + l).~/~(x + w3) (in the real-valued 
case) is a finite-gap potential with spectrum of the type (1.3). This remarkable 
result of Hermite on certain products of solutions of Lam6's equation is also 
recorded in the monographs by Halphen [29], pp. 494-531 and Burkhardt [9], 
pp. 343-353. 

Subsequent work by Novikov [38], Dubrovin [12], Its and Matveev [34], and 
McKean and van Moerbeke [36] then showed that every finite-gap potential q 
satisfies appropriate higher-order stationary KdV equations. Moreover, the KdV 

1 flow qt ~qx~ + ~qq~ with initial condition q(x,O) = -6.>/~(x) was explicitly 
integrated by Dubrovin and Novikov [14] (see also [16], [17], [18], [33]) and 
found to be of the type 

3 

q(x, t) = - 2  Z J~(x - xj(t)) 
j= l  

(1.4) 

for an appropriate expression of {xj(t)})~=l . In their 1977 seminal paper [2], 
Airault, McKean and Moser gave the first systematic study of the isospectral 
torus l~(qo) of real-valued smooth potentials q0 of the form 

M 

qo(x) = - 2  ~ //~(x - xj ) 
j= l  

(1.5) 

with a finite-gap spectrum as in (1.3). Among a variety of results they proved 
that any element of l~(qo) is an elliptic function of the type (1.5) (for different 
sets {xj}~l) with M constant throughout l~(qo) and 9 := diml~(qo) < M. The 
next breakthrough occurred in 1988 when Verdier [46] published new explicit 
examples of elliptic finite-gap potentials. Verdier's examples inspired Belokolos 
and Enol'skii [5] and Smirnov [41] and subsequently Taimanov [42] and Kostov 
and Enol'skii [35] to find further such examples by employing the reduction 
process of Abelian integrals to elliptic integralg (see, e.g., [6]). Finally, this 
development culminated in the recent result of Treibich and Verdier [44], [45] 
that a general complex-valued potential of the form 

4 

j=l  

z C C (1.6) 

(022 = ("Jl +W3,  0'24 = 0 )  is a finite-gap potential if and only if dj/2 are triangular 
numbers, i.e., if and only if 

dj =sj(s~ +1) f o r s o m e s  i 6 "~L. 1 <_ j <_4. (1.7) 

The methods of Treibich and Verdier are based on the notion of hypcrclliptic 
tangent covers of the torus C / A  (A the period lattice generated by 2~'1, 2~,,~). 
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Motivated by the results above and by the fact that a complete characteri- 
zation of all elliptic finite-gap solutions of  the stationary KdV hierarchy is still 
open, we started to develop our own approach toward a solution of this problem. 
In contrast to all current approaches in this area, our methods to characterize el- 
liptic finite-gap solutions of the (m)KdV hierarchy rely on entirely different ideas 
based on a systematic use of a powerful theorem of Picard (see Theorem 2.2) 
concerning ordinary differential equations with elliptic coefficients in combina- 
tion with explicit realizations of the isospectral manifold corresponding to a given 
(elliptic) finite-gap base potential qo (see, e.g., [10], [20], [25]). This approach 
immediately recovers and extends the results of [5], [41], [43], [44], [45], and, 
in particular, yields a complete characterization of all even (i.e., q(z) -- q ( - z ) )  

elliptic finite-gap potentials [27]. Moreover, it leads to a natural conjecture on 
the structure of general elliptic finite-gap solutions of the KdV hierarchy (see 
Sect. 2). 

In this paper we shall discuss in detail the case of Treibich-Verdier poten- 
tials (1.6). In addition to providing an elementary alternative argument of the 
finite-gap result (1.6), (1.7) of Treibich and Verdier, we shall derive a new and 
effective algorithm to compute the (arithmetic) genus .q of  the underlying (pos- 
sibly singular) hyperelliptic curve Kg 

2g 

Ko . y2 = H( E _ E r a )  

m=0 

(1.8) 

associated with (1.6) in Sect. 3. More precisely, Theorem 3.5 (ii), our principal 
new result, reduces the computation of 9 and the location of the (finite) branch 
points resp. singular points (Era,0) of K q to the study of certain linear alge- 
braic eigenvalue problems involving Jacobi (tri-diagonal) matrices. (As shown 
in [28], appropriate modifications of the approach in Sect. 3 extend to the far 
more complex case of all even elliptic finite-gap solutions of the stationary KdV 
hierarchy.) In Sect. 4 we carry over the results of  Sect. 3 to analogous elliptic 
finite-gap solutions of the stationary mKdV hierarchy (for simplicity, these sta- 
tionary mKdV solutions will still be called Treibich-Verdier potentials). To the 
best of our knowledge, these (m)KdV findings in Sect. 4 are new. In Sect. 2 
we briefly review the essentials of the (m)KdV hierarchy, its connection with 
finite-gap potentials, and Picard's theorem as needed in Sects. 3 and 4. 

The far simpler case of Lain6 -Ince potentials (1.1) (and its generalization to 
the mKdV hierarchy) has been dealt with in [26]. 

2 The (m)KdV hierarchy and Picard's theorem 

Since most of the material in this section has been presented in some detail 
elsewhere (see, e.g., [3], [11], Cb. 12, [21], [26]) we confine ourselves here to a 
very brief account. 

The KdV hierarchy is defined as follows. Consider the recursion relation 
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0<_ j  _< n, f 0 =  1, (2.1) 

(2.5) becomes 

qr = 0 is then given by 

f,+J ,x = 0 respectively f,+l,x 

Next, introducing the polynomial in E E C 

= Z cn-j~+l,x = 0. 
j = 0  

n 

[~n(E,x , t )  = Z EJ fn - j ( x ,  t), 
j=o 

1 ^ 
q, = ~F,,xxx + 2(q - E)P, ,x  + qxP,  (2.8) 

and the stationary (inhomogeneous) KdV hierarchy then reads 

1^ 
~ F ,  .... + 2(q - E)Pn,x + qxPn = 0. (2.9) 

Integrating (2.9) times P,  once results in 

l p 2  x 1^  p 4 , - ~Fn,xx n - (q - E)P2n /)Z,+l(E), (2.10) 

where the integration constant [~2,+l(E) is easily seen to be a polynomial in E 
of  degree 2n +'1 with leading coefficient 1, i.e., 

(2.6) 

(2.7) 

^ 1 ^  1 ^ 

fj+,., = ~fj .... + qfj,, + -~q~fj, 

i.e., explicitly, 

3 2 Cl 
i 0 :  1 , f l  = l q + c l , f 2 :  ~ q ~ + g q  +-~-q+c2 ,  etc, (2.2) 

where cj, j C I~t ,are integration constants. Using the convention that the cor- 
responding homogeneous quantities, defined by ce - O, g C I~ are denoted by 
fj := fj(ce - 0), the KdV hierarchy is then defined as the sequence of evolution 
equations 

KdV,~(q) := qt - -  2fn+l,x = O, n e 1~ U {0}. (2.3) 

Explicitly, one obtains 

1 3 
KdV0(q) = q t  - q x ,  KdVl(q) = q t  - ~ q x x x  - ~qqx,  etc. (2.4) 

with KdVI(.) the usual KdV functional. The inhomogeneous version of (2.3) 
then reads 

n 

q, - 2f,+l,x = qt - 2 Z c,_fl~+l ,x = 0, co = 1. (2.5) 
j = 0  

The special case of the n-th-order stationary KdV equation characterized by 
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2n 

Rz,+1(E) I I ( E  - Era), 2, = {E, ,} , ,=o c c .  (2.11)  
rn=0 

This naturally leads to an underlying (possibly singular) hyperelliptic curve Kn 
of (arithmetic) genus n of the type 

2n 

K, " )2 =/~2n+l(E) --- I - I ( E  - Ern). (2.12) 
m=0 

In the self-adjoint case, where {Era 2, }m---o C •, EZn < E2,_I < " '  < Eo, the zeros 
Era, 0 _< m _< 2n of k2,+l(.) are precisely the spectral band edges in the sense 
of  (1.3). 

Finally, introducing the differential expressions (Lax pair) 

d 2 
L(t) = -~5 + q(x , t ) ,  (2.13) 

1 ^ x ( x  d /52,+1(t) = ~-'~ [ -  ~fj, , t ) + f j ( x , t ) ~ x ] L ( ' ) " - ) ,  n r  I~ U {0}, (2.14) 
j=o 

one can show that 
[/52,+1, L] = 2f,+l,x (2.15) 

([., .] the commutator symbol) and hence qt = 0 is equivalent to the commutativity 
of/32,+1 and L, i.e., 

[/52,+~, L] = 0. (2.16) 

A well-known result of Burchnall and Chaundy [7], [8] then implies that/52,+1 
and L satisfy an algebraic relation of the form 

2n 

^2 =/~2n+l(L) = I - I (L  - E,,) (2.17) P2n+I 
m=0 

illustrating once again the importance of the curve K, in (2.12). 
The mKdV hierarchy is obtained as follows. Consider the recursion relation 

l f 
0 _<j < n, 90 = 1, (2.18) 

where cj, j E I~ are the integration constants from (2.2) and co = 1. Also, since 
00i,x turns out to be the derivative of a certain differential polynomial in 0, the 
integral in (2.18) is understood to be homogeneous. One computes explicitly, 

1 1 
0o = 1, .0J = ~5+cl, 02 "~ ~ ( ~ x X  - -  ~q~- +C1(~+C2, etc. (2.19) 

By 9j := Oj(ce -= 0), g r 1~ we denote the homogeneous versions of 9j as before 
in the context of fj. The mKdV hierarchy is then defined as the sequence of 
evolution equations 
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mKdV,(0) := Ot - gn+l,x = 0 ,  n E 1~ [..J { 0 } .  (2.20) 

Explicitly, 

1 3 2 
mKdVo(0) = 0t - 0x, mKdVl(0) = 0t - ~0~xx + ~0  0x, etc. (2.2t) 

and we emphasize the symmetry 0 ---' - 0  of solutions of the mKdV hierarchy. 
The special case of the n-th-order stationary mKdV equations characterized by 
0i = 0 then reads 

gn+l,x = 0 respectively 0n+l,x = ~ Cn-jgj+l,x -= 0 ,  CO = 1. (2.22) 
g=0 

Miura's identity [37] then connects the two hierarchies 

KdV,(qZ0x - 02) = [ -26  q: 0x]mKdV,(0), n E N U {0}. (2.23) 

Introducing the Lax pair 

( 0 ~d +O(X,t)) 
.~t~(t) = d 

- 0(x, t) 0 

02"+l(t)= (/32"; l(t) Pzn+,(t)^ 0 ) , (2.24) 

where/32,+1(t ) respectively/52n+1 (t) are defined as in (2.14), with q respectively 
c-/ given by 

q = - 0 x - 0 2  , { / = 0 x - h  e, (2.25) 

one verifies that 
[~2,~+1,.///~]= ( 0  I ) 

-1  0 ~+l,~. (2.26) 

The analogs of (2.12) and (2.17) in the stationary mKdV case are finally given 
by 

2n 2n 
y2 = I ~ ( w -  Elm/2)(w + E 1/?) = H ( w  2 - Era) (2.27) 

m =0 m =0 

and 
2n 2n 

0 ? = H ( . . / 6  - E1/2)(.//6 + Elm/2) = I-I(.//L2 - Era). (2.28) 2n+l 
m----0 m=0 

This leads to 

Definition 2.1 Any solution q (respectively 0) o f  one of  the stationary equations 
(2,6) (respectively (2.22)) is called an (algebro-geometric) finite-gap potential 
associated with the KdV (respectively mKdV) hierarchy. 
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The potentials q (respectively q~) then can be expressed in terms of the Rie- 
mann theta function associated with the (possibly singular) hyperelliptic curve 
K, of (arithmetic) genus n as pioneered by Its and Matveev [34] (see also [231 
and the references therein). 

In the particular case where q is an elliptic function (see, e.g., (1.1), (1.6)), 
the following theorem of Picard plays a crucial role in its analysis. (For brevity, 
we only state it in the second-order case.) 

Theorem 2.2 (Picard, see, e.g., [32], p. 375-376) Consider the differential equa- 
tion 

~ ' ( z ) + Q ( z ) ~ ( z ) = O ,  z E C  (2.29) 

with Q an elliptic function with fp .  2wl, 2w3. Suppose the general solution of  
(2.29) is meromorphic. Then there exists at least one solution ~bl which is elliptic 
of the second kind, i.e., ~l is meromorphic and 

~l(z +2wj)  = pi l l ( z ) ,  j = 1,3 (2.30) 

for some constants Pl, P3 C ~.. If  in addition the characteristic equation corre- 
sponding to the substitution z + 2wl (or z + 2w3) (see [32], p. 376 and 358) has 
distinct roots, then there exists a fundamental system of elliptic functions of  the 
second kind of (2.29). 

By the theory of elliptic functions, ~ is elliptic of the second kind if and 
only if it is of the form 

trl 

Ol(z) = Ce ~z H [ a ( z  - aj) /a(z  - bj)] (2.31) 
j = l  

for suitable m E I~ and constants C, )~, aj, bj, 1 <_ j <_ m. (Here a (z )  is the 
Weierstrass a-function associated with A, see [1], Ch. 18.) 

Theorem 2.2 motivates 

Definition 2.3 Let q be an elliptic function. Then q is called a Picard potential  
if and only if 

~ "  + q~b -- E ~  (2.32) 

has a meromorphic fundamental system of solutions for each E C C. 

It can be shown [27] that q is a Picard potential whenever (2.32) has a 
meromorphic fundamental system of solutions for a sufficiently large but finite 
number of distinct values of E. 

The connection between Picard potentials and elliptic finite-gap potentials is 
now the following: By the Its-Matveev formula [34] for q and the corresponding 
Baker-Akhiezer function in terms of the associated Riemann theta function one 
proves 

Theorem 2.4 Every elliptic finite-gap potential q is Picard (in the sense of/)eft- 
nition 2.3). 
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(For further details see, e.g., [13], Ch. III, [40], Thin. 6.10, [28].) Naturally, 
one is led to conjecture that the converse of Theorem 2.4 is also true. Hence it 
seems appropriate to formulate the following 

Conjecture.  An elliptic potential q is finite-gap if  and only if it is a Picard po- 
tential. 

By a systematic use of Picard's Theorem 2.2 we have proven this conjec- 
ture in [28]. This covers and extends in particular the cases of Lam6-Ince and 
Treibich-Verdier potentials (1.1) and (1.6) (and all other examples in [5] and 
[41]). Moreover, it should be stressed at this point that this characterization of 
elliptic finite-gap potentials as Picard potentials yields the most effective crite- 
rion to date for determining whether or not a given elliptic potential is actually 
finite-gap. 

A key element in proving this conjecture turned out to be the following 
characterization of general periodic finite-gap potentials (not necessarily elliptic) 
and their associated diagonal Green's  function. 

Theorem 2.5 ([281)Assume that q(x)  is a periodic continuous function of  pe- 
d 2 

riod J'2 > 0 on ~ and that L = ~x + q(x)  has two linearly independent Floquet 

solutions for  all E c C\{L'j } ~..o for  some hT/ C NU {0} and precisely one FIoquet 

solution for  each E = Ej (assuming Ej 5r [~j, f o r j  4J ' ) .  Denote by ~I(E) the alge- 
braic multiplicity of  E as an (anti)periodic eigenvalue and by f~(E) the minimal 
algebraic multiplicity of  E as a Dirichlet eigenvalue on [Xo, x0 + (2] as xo varies 
in I~. Let gI(E) = d(E)  - 2p(E). Then 

(i). EI(E ) is positive on a finite set {~'o, ..-, [?M }, m >_ tQ and zero elsewhere. 
Let gl) = cl(Ej), J = O, ..., M.  Then ~-~o glj = 2n + 1 for  some nonnegative integer 

n, i.e., ~-~o glj is an odd positive integer. The Wronskian of  two nontrivial Floquet 
solutions which are linearly independent on some punctured disk 0 < [E - A I < c 
tends to zero as E tends to/k if and only if  /~ C {L'0,--., EM }. 

(ii). The diagonal Green's function G (E, x ,  x)  associated with L is o f  the type 

G(E,  x, x) = - ~ P ,  (E, x)/Ik2,.+l (E)] ~/2, (2.33) 

where 
n 

f:.(E,x) = I - [ [E  - #e(x)], (2.34) 
g=l  

M 

k2.+l(e) = l - I (  e _ ~ ) 0 , ,  (2 .35)  
j=0 

and where #e(x) denote (some of  the) Dirichlet eigenvalues o f  L on the interval 
[x ,  x + 0]. 

( iii). q (x ) is an algebro-geometric finite-gap potential associated with the com- 
pact (possibly singular) hyperelliptic curve of(arithmetic) genus n obtained upon 
one-point compactification of  the curve 
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M 

3 .2 : /~2,+l(E) = H ( E  - ~'j)0,, (2.36) 
j=O 

where n = [ (~ - -o  qJ) - 1]/2. Equivalently, there exists an ordinary differential 

expression/52~+ l of order 2n + 1, i.e., 

2n+1 de 
P2~+t = ~ - ~ p ~ ( x ) - ~ ,  p2n+l(x)= 1 (2.37) 

g=0 

which commutes with L, and satisfies the Burchnall-Chaundy polynomh~l relation 
^ . )  

P'5~+l =/~2~+1 (L). 

The proof of Theorem 2.5 in [28] is based on well-known identities for the 
diagonal Green's  function G(E, x, x) in terms of the Floquet discriminant A(E)  
and a fundamental system of solutions of L ~ ( E , y )  = E~b(E,y) with respect 
to a reference point x 6 R, Hadamard-type factorizations of such solutions 
with respect to E, the nonlinear second-order differential equation satisfied by 
G(E, x, x) respectively/V (E, x) in (2.10), and the recursion formalism displayed 
in (2.1)-(2.17). 

3 Treibich-Verdier potentials associated with the KdV hierarchy 

In this section we study the Treibich-Verdier potentials 

4 

q( z )=- -~ -~s j ( s j+ l )R /~ ( z - -w j ) ,  s j C H U { 0 } ,  I < - j _ < 4 ,  z 6 C ,  (3.1) 
j=l 

where ~2 = wl + w3 and w4 = 0, and the associated linear problem 

f " ( E , z ) + [ q ( z ) - E ] f ( E , z ) = O ,  E 6 C  (3.2) 

in detail. (In order to avoid the trivial case q = 0, we assume that at least one 

st > 0 3  

Theorem 3.1 The potential q(z) = - }--]~4=, d)j~(z  _ wj), dj 6 C, is a Picard 
potential if and only if each dj /2  is a triangular number, i.e., if and only if  

dj = sj(s) + l ) for  some s) c G, 1 < j "<4. (3.3) 

Proof .  We have to determine when equation (3.2) hason ly  meromorphic solu- 
tions (see, e.g., [32], Ch. XVI for the standard Frobenius method in this context). 
For this it is necessary that any singular point of  equation (3.2), i.e., any pole of 
q is a regular singular point and that the exponents relative to this singularity are 
unequal integers. Vicariously for any of these singularities we consider the half 
period ~k (assuming dk = Sk(Sk + 1) 5/0, Sk 6 C). The indicial equation associated 
with ~k then reads 
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m ( m  - 1) - s t ( s t  + 1) = 0 (3.4) 

and hence both of its roots, namely m = st + 1 and m = - s t  are unequal integers 

if and only if st C Z. This is therefore a necessary condition for q to be a Picard 
potential. In order to show that it is also a sufficient condition we assume now 

that st E Z. Indeed, without loss of generality, we may assume that s t  c I~ u {0}. 

The Frobenius method then shows that there is always one solution of the form 

o c  

~l(Z) = (Z - wt) '~+1 ~ am(Z  - w t )  m, o~0 = 1 (3.5) 
m=O 

which is meromorphic (in fact, analytic) near wt. If all solutions are to be mero- 
morphic near ~t  then there must be another one of the type 

O~2 

~2(Z)  = (Z - wk) -'~ S ~m(Z - ~t )  m, /3o = 1. (3.6) 
m = O  

Using formula 18.5.1 of [1] and taking into account that//<")(wk - ~j)  = 0 

for n odd and j g k, we can rewrite (3.2) in the form 

(z - w t  )2 '~" (E ,  z )  + Q ( E ,  z)~(E,  z) = 0, (3.7) 

where near ~t  the function Q ( E ,  z )  is given by 

m = 2  

4 cx~ 

- Z sy (sj + 1) Z ( 2 m  ! ) - -  l , J /~  t - -  O.)j ) (Z - -  Odk )2m+2 _ E(Z  - w t )2  

j= l  rtt --'O 

0(3 

= - s t ( s t  + 1) + ~ - ' ~ q z m ( E ) ( z  - w t )  zm (3.8) 
,'71=1 

for certain constants %, (described in 18.5.2 and 18.5.3 of [1]) and q2m(E) .  

Inserting the ansatz (3.6) into (3.7) results in 

0 = f ( - s t ) ( Z  - cok)-"' + {f(l  - st)/3! + GI }(z - w t )  1-''~ 

+ . . .  + { f ( m  - s t) /3, ,  + G , , } ( z  - w t )  m-''~ + ..., (3.9) 

where 

f ( m )  = m ( m  - 1) - s t ( sk  + 1), (3.10) 

G2m = q2 (E)/32m - 2 + q4 (E)/32,1 - 4 +.- .  4- q2m (E)fl0, (3.1 1 ) 

G2m+l = q2(E)f l ,  z m - t  + q4(E)/32m-3 + ... + q z m ( E ) ~ l ,  (3.12) 

and, in particular, G~ = 0. 

Next we note t h a t f ( - s t )  = 0 and that we may determine the r successively 

from the requirement that the coefficient of (z - w t )  m-s~ must be zero. This fails 
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only i f f ( m  - sk) = 0, i.e, for m = 2sk + 1. Thus we may determine /31, .--,/32s,. 
The coefficient of  (z - wk)  ~'+1 is G2s,+l and it determines whether or not a 
second meromorphic solution exists. More precisely, if Gz~,+l = 0, then the above 
procedure to determine the /3,, can be carried on and yields the existence of a 
second meromorphic solution. If, however, G2k+l 5 / 0, then there does not exist 
a solution of the form (3.6) and the second solution of the differential equation 
(3.2) involves logarithmic terms and hence is not meromorphic. 

Since Gl = 0 we find /35 = 0 and then, from (3.12), G3 = 0. This, in turn, 
gives r = 0 and this argument can be carried on to show that in this case 
Gzr = 0 which, according to the above argument, proves that all solutions of 
(3.2) are meromorphic. [] 

From now on we assume that q in (3.1) is a Picard potential, i.e., we suppose 
(without loss of generality) that sj E I! O {0} f o r j  = 1, .. . ,4. Then any solution 
O ( E , z )  of (3.2) behaves near any pole b of q either like 

c ( z  - b)  -~' + O ( ( z  - b) - ' '+1)  (3.13) 

or like 
c ( z  - b) '~'+1 + O ( ( z  - b) s'+2) (3.14) 

for some c 4 0 .  Near any point zo which is not a pole of q any solution ~ ( E , z )  
behaves like 

c.+ d ( z  - zo) + O ( ( z  - zo) 2) (3.15) 

for some c, d E C which are not both zero. 
By Picard 's  Theorem 2.2 equation (3.2) has at least one solution O ( E , z )  

which is elliptic of the second kind and hence of the form 

N(E) 

~ ( E , z )  = e ;~e)z H o'(z - c , ( E ) )  e"~E) (3.16) 
n=l 

for suitable constants N C 1~1, A c C, c l , . .  �9 CN C A with Cm 5 t C,, for m ~' n, 
and g l , .  �9  gN C Z with y~n/V__l gn = 0. (Here A denotes the fundamental period 
parallelogram (fpp) with vertices 2wl, 2w2, 2w3, 0.) Note that the cn are the 
roots and poles of ~ in the fundamental period parallelogram. Since, by (3.13), 
(3.14), and (3.15), ~b may have zeros of order higher than one or poles only at 
half-periods (modAL the numbers g, can be different from zero or one only if 

c~ is a half-period, i.e., if c~ E {~01,032,6d3,o34}. Since a factor with t?~ = 0 can 
be dropped from the product on the right hand side of  (3.16) we agree from this 
point on that g, = 0 may occur only if cn is a half-period. Thus we may choose 

C ----- ( e l ,  �9 �9 �9 , CN) = ( e l ,  C 2 , . . . ,  CN-4,  t.a)l, ~'02, ~.'d3, (.~4) ( 3 . 1 7 )  

and obtain by (3.13), (3.14), and (3.15) 

g = ( g l , . . .  , ~N) = (1,  1 , . . .  , 1, g N - 3 ,  g N - 2 ,  g N - 1 ,  gN),  (3.18) 

where 
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N o w  note that 

g u _ 4 + j C { - s ) , s / + l } ,  l < j < 4 .  (3 . t9)  

N 

n=l 

N 

(Va'/>)'  = - ~ g . . # ( z  - c . ) ,  
n=l 

(3.20) 

(3.21) 

N N 

(~b'/g')2 = Z { g2'~t~(z -cn)+ 2gn [k+ Z gm((c,- cm)] ( ( z -  c,)} 
n=l m=l 

msCa 

N 

- ~_~ gin(g,, + 2g~)?-/~(c~ - c,.) (3.22) 
m=l 
mv~ 

for any r C {1, ..., N } for which g~ 4 0. Therefore, 

4 

q ( z )  = - ~ _ s j ( s j  + 1).~/'(z - ~ j ) =  g - { ~ " / ~ l  = E - ( ~ ' / ~ ) '  - ( ~ / / ~ ) 2  
j=l 

N N 

n=l m=l 

N 

+ ~ gin(gin + 2gr).~A(C~ -- Cm) (3.23) 
m=] 

for any r C { 1 , . . . , N }  for which g,~ =/0. Hence '~b in (3.16) solves (3.2) if and 
only if 

s j ( s )  + 1) if c,, =w)  (3.24) 
g~(g~ - 1) = 0 otherwise, 

N 

0 = A + Z g m ~ ( C , ,  -- Cm). (3 .25)  
at = 
m ~la 

for each n E { I , . . . , N }  with g, 5/0 and 

N 

E = - Z g"(g" '  + 2 g r ) . ~ ( c ,  - Cm), (3 .26)  
m - I 
m=# 

f o r  s o m e  (and  h e n c e  all) r C {1 . . . . .  N }  for  w h i c h  (,. 5 i 0 .  

A c c o r d i n g  to w h e t h e r  gN-4+1 = - S /  o r  si + I. l < j _< 4, wc  i n t roduce  the 

i n d e x  se ts  M l  (E ) ,  M 2 ( E )  C {I ,  2, 3 , 4 }  d e l i n e d  by 
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M,(E)  = {j c { 1 , 2 , 3 , 4 }  : ~N--4+j = --Sj -~ '0},  (3.27) 

M2(E)  = {j e { 1 , 2 , 3 , 4 }  " ~ N - , , j  =sj + 1}, (3.28) 

We note that MI(E)A  M2(E) = 0. Hence  we can rewrite (3.16) as 

$ 

~ ( E , z )  = ~ ( z )  = e )'~ H g = l  O(Z --  ae(E)), (3.29) 
1-Ii41 ~,(z - ~j)'~ 

where s = y~j41 sj, a = a(E) = (al(E), . . . ,a ,(E)) .  I f j  C M2(E) then 2sj + 1 
of  the at coincide with wj. Hence if  M2(E) is empty  then N = s + 4 and a = 
(Cl , . . . . ,CN-4) .  If M2(E) = { j l , . . . , j k}  is not empty,  however ,  then N = g + 4, 
where 

g = s - ~_~ ( 2 s j + l ) ~ -  ~ sj - ~ ( s j + l )  (3.30) 
jEM~(E) )C:Mt(E) jCr_M2(E) 

and ~ >_ 0 since y']~N 1 s = 0 .  This implies  

a = (c~, . . . , C ~ , ~ j l , a ) j l , . . . , o J j ~ , . . . , ~ j , , a ) j , , . . .  ,Odjt). (3.31) 
Y 

(Z~j~ +11 times (2ss~ +t ) times 

In terms of  {at}~=l and {wj}4=l the equations (3.25) read 

A, + ~ f f ( a ,  - am) 
m=L 

m5~ 

- Z sk~(a, - wk> + ~_, (sk + l)~,(a, - wk) : 0, (3.32t 
kC::Mt kEM2 

for all n = 1, ..., g and 

A, + ~ <(a~j - am) 
m = l  

-- Z sk~(Wj --Wk)+ ~ ( S k  + I)((Wj --w~)=O, (3.33) 
kEM[ I~CM 2 
J~ J~ 

for all j C MI(E)UM2(E). Accord ing  to (3.26), the spectral  parameter  E is given 

by 

.9 

E = - 3 Z / / ~ ( a r - - a , , , ) +  Zs j (2 - -S j ) ,~ /~(ar  wj) 
,,,=1 j E M I 
tn=tt 

- Z ( s j  + l)(sj + 3)//~(ar -a:~) (3.34) 

j EM2 

for any r C {1, ...,.~ } or by 
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E = ~"~(2sk - 1).~(~k - am) - ~ sj(sj +2Sk)#~(Wk -- Wj) 
m = [  JEM I J~ 

- -  ~ ( S j  + 1)(sj + 1 -- 2St)~(Wt -- Wj), (3.35) 
J EM 2 j~t 

for any k E M1 UM2. 
a ~ . Next we choose a ko C M1, i.e., ko is such that w~, ~ { e}?=l (This is always 

possible since otherwise g would be negative, which is a contradiction.) Then 
we get from (3.33) 

s 4 

A,, = ~ {(ae(E) - w~) - ~ sj~(wj - wko) (3.36) 
g=l 2=1 

1:r 

which implies 
3 

~a -t- )~-a = - 2  ~--~ sj~(wj). (3.37) 
j = l  

Next we prove 

L e m m a  3.2 If ~ ( z )  in (3.29) solves (3.2), then so does ~-a(z), where -a (E)  = 
( - a l  ( E ) , . . . ,  - a s  (E)). 

Proof . Due to the reflection symmetry of q, i.e., q(z) = q ( - z ) ,  we infer that 
together with ~a(z) also Oa(-z) is a solution of (3.2). Using (3.37) we obtain 

3 

~)_a(Z)~)a(--Z) - 1 ~ -  (-l)St+S2+S3exp [(AaW A_a+ R~-~sj~(coj))Z] 
j = l  

= ( - 1 )  s'§247 (3.38) 

This shows that ~ -~(z )  is a multiple of ~a(-Z) and hence is also a solution of 
(3.2). [] 

Moreover, ~,• z) are Floquet solutions of (3.2) since 

~• (Z + 2wk) 
s 3 

e=l j = l  

(3.39) 

for k = 1,3. In deriving (3.39) we made use of  (3.37). 
As described in Theorem 2.5, in order to show that q(z) in (3.1) is a finite- 

gap potential and determine the (arithmetic) genus of  the underlying hyperelliptic 
curve K 9, we need to find the number of E-values where the Wronskian 

W (E) := W (~a(E), ~_a(E)) (3.40) 
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of the Floquet functions ~a(E, z) and ~_a(E,  z) vanishes. (Note that for no value 
of E the functions ~• are identically equal to zero). These values (together with 
the point at infinity upon one-point compactification) then yield the location of 
the branch points resp. singular points of the two-sheeted Riemann surface Kg. 

First we observe that 

~ - a  ff3a] (3 .41)  

and 

= e{,~,,+,~ ~ [Iqi~M2 cr(z - a:j)z~,+lo'(z + oJj) Z~,'+l ][H~=I O'(Z --  ae)a(z  + ae)] 

~4=; ~r(z - cvk) z~" 

Since by (3.36) 

we obtain 

Thus 

A_,~ - A,, = ~-2[s - at )  - ~(wk., + at)l, 
e=l 

~'-" ~" - ~ - ' 2 [ f f ( z  + a e )  - ~ ( z  - a e )  - ~(w~. ,  + a e )  + i f ( c % ,  - ae)l 

= _ ~ ~ (2~ , )~ (z  - ~ , ) ~ ( z  + ~ , )  

(3.42) 

(3.43) 

(3.44) 

W ( E )  = f ~ ( z ) Z 9 e ( z  ) + f2 ( z )  Z hi(z)' (3.45) 
t=l jEMz 

where 

f l (z)  = e {'~'+~' _,,)z a ( z  - w~, )o(z  + ~ , )  l-IjeM2 cr(z - wjlZ~,+lo(z + ~j)z~j+l 

lq4=, ~(z - ,,,k P-" 

(3.46) 

g 

- - o ( 2 a e )  H o'(Z -- am)Cr(z + am) , (3.47) 
ge(z ) : or(at - ~ , ) o ( a e  + wk,,) .... , 

ms~ 

f 2 ( z )  = e (A'+A ")z ~r(Z -- ~3lm)cr(z + coke,) H O'(Z -- am)Cr(z + am), (3 .48)  

m=l 
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hi(z) = -(2sj  + l )cr(2wj )cr(z -wj)z~Jcr(z + ~j )2.,~ 

I-I ~ ( z  - ~ , )z~*+l~(z  + ~k)  2"+1 
k E M  2 

'~ (3.49) 
1-L41 o(z - ~ , )~ '  

Since W(E)  in (3.45) is independent of  z c C, we now compute it at the points 
z = at, 1 < g < ~. This yields 

g 
a(2ae) 

W(E)  = -f~(at) r(a t _ a~k,,)~r(at +w~o) 1-Icr(ae - a,,)~r(at + am) (3.50) 
el=l 
m =it 

for each g C { 1, ..., g }. Equation (3.50) yields W (E) = 0 if and only if a(at+am) = 
0 for some m E {1, ...,g} different from g. This implies at  = - a , , (modA) ,  since 
ae 5/a+, 1 <_j _< 4 (because o f f  < g) and at =/at for g=/k (because of (3.15)). 
Since this consideration is true for all g C {1,. . . ,g} we infer that W(E)  = 0 
implies that the numbers a l , . . . ,  a~ appear in pairs (ak, -ak(modA)) .  Hence if 
W(E)  = 0 and M2(E) = {3"I,-..jr } then a can be written as 

a = ( a l ,  a 2 ,  . - . ,  ad, --al, --a2,...,  --ad, ~j , ,  O J j l , . . . ,  0 2 j / , . . . ,  ~j~. ,  oJjl , . . . , % ) 1  

(z~jl +t  ) t i m e s  (2sjt +I ) t imes  

(3.51) 

where 
2d = g = #{at"  at ~ {wj }4= 1 }. (3.52) 

In particular, g must be an even number. 
This information will now be used to rewrite our solution ~/J~ of (3.2) if 

W(E)  = 0. In fact, assuming W(E)  = 0, we may replace (3.29) by 

~,, (z ) = f (z )Od (.~/~(z )), (3.53) 

where 

4 

f (z ) = Fa e'X"(e)z o(z )'~ H o'(z - wj )tj (3.54) 
j = l  

d 

F, = ( -  1) a 1-I o'(am)2' (3.55) 
m=l 

d d 

Od(.J/~(z)) = l - I [ / ~ ( z )  - J ~ ( a m ( E ) ) ]  = Z #"(E)['J/~(Z) - e2]" ,(3.56) 
m=l n=O 

t j = { s j + l  i f 2 s ] + l  of  the at  equalcvj 
- s j  if none of the at equals wj. (3.57) 

Here we used identity 18.4.4 of [1], 
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O'(Z - -  (Y)O'(Z + O~) = - -  G( (3 )20" (Z  )2[,~/'~(Z . )  --  , ~ ( C ~ ) ]  ( 3 . 5 8 )  

to arr ive at (3.53). 

Because  of  the two poss ib i l i t ies  to choose  each of the four n u m b e r s  tj in 

(3.57) we will d is t inguish  16 di f ferent  cases.  Since we want  d to be in I't ~ {0}, 

e ight  cases occur  only when  s is even  and the o ther  eight  cases only when  s is 

odd. For  the same reason,  Case  8 be low actual ly  neve r  occurs.  The  fo l lowing 

tables  list the var ious  possibi l i t ies .  

Tab le  3.3. s = ,31 + s2 + s3 + s4 even  

1 2 3 4 5 6 7 8 

t l  - s l  ~1 +1 ~1 +1 .~1 +1 --~1 - - s i  sl s l + t  

12 - s  2 s 2 + l  - s  2 - s  2 s 2 + l  .~2+1 - - s  2 s 2 + l  

t 3 - s ~  - - s  3 s 3 + l  s 3 s 3 + l  - s  3 s t + l  .~3+[ 

t,l - ~ 4  s4 - ~ 4  s4+ l  s4 s 4 + l  s 4 + l  s 4 + l  

T a b l e  3.4. s = ,31 + s :  + s3 +$4 odd 

9 I 0  I I  12 13 14 15 16 

t I  - s I  -~I + ]  sI  + [  v I + I  - -~I  - , ~ l  - . ~  r I + I  

g2 -~2 + | - s2 ~2 + l s2 + ] - s2 - 32 ~2 + l - -  s 2 

t~ s 3 + l  s ~ + l  - s  3 s 3 + l  - s ~  .~3+1 - - s~  - s ~  

t 4 s 4 + l ~'4 + 1 s 4 + l - s 4 s 4 + l - ~4 --  s4 - s4 

For each  of  the  above  cases we now inser t  our  ansa tz  (3.53) into (3.2). We  

will use  the nota t ion f ' ( z )  = a ~ f ( z ) ,  Q~( / /~(z ) )  = jJzs.~Qa(.J~(z)) etc. and  the 

ident i t ies  

//~,2 = 4 ( . &  - e2) 3 + 1 2 e 2 ( J  ~ - e2) 2 + 4(e2 -- el)(e2 -- e 3 ) ( . ~  -- e2), 

(3.59) 

/ /~"  = 6(J~ 'a -- e2) 2 + 1 2 e z ( d  ~ -- e2) + 6e~ 92. (3.60)  
- 2 

Here 92 and 93 are the invar ian ts  associa ted  wi th  / / ' ( z ; w t ,  w3) and ej = ,&(w j ) ,  

j = 1,2,  3. We also make  the c o n v e n t i o n  that  i t_  1 = Itd+l = 0. This  resul ts  m 

~ "  + (q - E)~/: 
I I  ! t2  t l  

= f [ ( f , , f - I  + q _ E ) Q d  + ( 2 f ' f -  ~ .&'  + .~/~ )Qd + ' ' / '  Q,t] (3 .61)  
d 

= f ~ [ c ~ , # , _ ]  + (l~,, - E)It,,  + 7,, / t , ,+1](,~ - e2)", (3.62) 

n = 0  

where  

~ ,  = (2d  - 2n + 1 + 2 ta ) (2d  2n + 2). 

3 

[3,, = ~ t i e i (4n - 4r - 2t4 - t t ) 
j= l  

(3.63) 
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+ e 2 1 4 d  2 - 2d(8n + I ) +  12n2+ 4t4(d - 2n)], (3.64) 

% = 2 ( e 2  - e i ) ( e 2  - e3)(n + 1)(2n + 1 + 2t2). (3.65) 

Thus ~b" + (q - E)~p = 0 and W ( E )  = 0 are equivalent to the eigenvalue 
problem 

J #  = E / t ,  # = ( ~ a , . . . , # 0 )  r ,  (3.66) 

where J is the (d + 1) • (d + 1) Jacobi matrix 

~3d aa 0 . . . . . .  

7a- l  /3a-~ ". ". 

0 7 d - 2  " ' .  ' "  J =  
�9 , . , . 

71 /31 
0 . . . . .  0 70 

with a , , / 3 , ,  7, given by (3.63)-(3.65). 
In order to determine the (maximal) number of  (finite) branch points and 

singular points of a given Treibich-Verdier potential, i.e., the number of E-values 
such that W ( E )  vanishes, we now distinguish a number of  different cases. For 
brevity we assume that 

SI ~ $2 ~ S3 ~___ S 4 ~ 0 .  (3.68) 

In all other cases one only has to consider appropriate permutations of {sl, s2, s3, s4 }. 

0 

(3.67) 
0 

Ot 1 

~ J  

(1) s even: 
Then Case 1 always occurs while Case 8 never occurs. With regard to cases 2-7 
we need to determine for which pairs {Jl,j2} C {1,2, 3, 4} the inequalities 

0 < 2 d  = s - 2 s j ,  - 2s j2  - 2 = sis  + s j ,  - s j ,  - sj2 - 2 ,  (3.69) 

are valid. Here j l  , j z , j 3 , j 4  E {1,2, 3, 4} are pairwise distinct. 
( l a )  s2 +s3 < sl +s4: 
In this case the right-hand-side of  (3.69) is nonnegative if {jj ,j2} equals {2, 3}, 
{2, 4}, or {3,4} and negative in all other cases. Hence we have four eigenvalue 
problems of the type (3.66) all together comprised by the cases 1, 5, 6, and 7. 
The dimensions (d + l) of the four Jacobi matrices add up to 

S S S S 
+ 1 + ~ - s2 - s3 + ~ - s2 - s4 + ~ - s3 - s4 = 2sl + 1. (3.70) 

( lb)  sl = s2 = s3 = s4: 
Now (3.69) never holds and only the first case may occur. One obtains d = 4s l /2  
and the Jacobi matrix in (3.66) has dimension 2sl + 1. 

( l e )  SI = S 2 > S 3 ----- $4:  

Here (3.69) holds only for {.il,j2} = {3, 4}. Thus there are only two eigenvalue 
problems of the type (3.66) comprised by the cases 1 and 7. The dimensions of 
the corresponding Jacobi matrices add up to 



T r e i b i c h - V e r d i e r  po ten t ia l s  4 6 9  

S S 
- + 1 + - - s3 - $ 4  = 2 s l  + 1. ( 3 . 7 1 )  
2 2 

( ld)  s2 + s3 = sl + $4 and sl > s2: 
In addition to the cases in (lc) we now also have the case {jl,j2} = {2,4}. 
Hence there are three eigenvalue problems given by the cases 1, 6, and 7 and 
the dimensions of the corresponding Jacobi matrices add up to 

S S S 
+ 1 + ~ - s3 - $4 + ~ - $2 - $4 = 2sl + 1. (3.72) 

( l e )  s2  + s3 > s l  + s4: 
In this case the right-hand-side of (3.69) is nonnegative if {jl,j2} equals {1,4}, 
{2, 4}, or {3,4} and is negative in all other cases. Hence we have four eigen- 
value problems comprised by the cases 1, 4, 6, and 7 and the dimensions of the 
corresponding Jacobi matrices add up to 

S S S S 
+ 1 + -~ - -  S 1 - -  S 4 + ~ - -  S 2 - -  S 4 + ~ - -  S 3 - -  S 4 = S - -  2 S 4  + 1. ( 3 . 7 3 )  

(2) s odd: 
Again we assume that j l  , j 2 , j 3 , j 4  E { 1,2, 3,4} are pairwise distinct. With regard 
to cases 9-12 we need to consider the inequalities 

0 < 2 d  = s - 2 s ) ,  - 2 s j2  - 2s )~  - 3 = s j ,  - s j ,  - sj2 - -  S)~ - -  3 (3.74) 

for each j4 C { 1,2, 3, 4}. The right-hand-side of (3.74) is nonnegative if and only 
i f j 4 = l  a n d s l - s 2 - s 3 - s 4  > 1. 

In cases 13-16 we have the inequalities 

0 < 2 d  = s - 2 s j ~  - 1 = s j :  + sj~ + s j ,  - s j ,  - -  1 (3.75) 

for each jl C { 1,2, 3, 4 }. This holds for jl = 2, 3, 4 (note that now s is odd). For 
jl = 1 inequality (3.75) holds if and only if sl - s2 - s3 - s4 < 1. 
( 2 a )  s l - s 2 - s 3 - s 4 <  1" 
According to the above observations, inequality (3.75) holds for each Jl C 
{1,2, 3,4} and (3.74) never holds. The dimensions of the corresponding four 
Jacobi matrices (the cases 13-16) then add up to 

s + l  s + l  s + l  s + l  
T --  S1 4- T - -  $2 + - ~ -  - -  $3 + ~ - -  $4 = S + 2. (3.76) 

(2b) s l - s 2 - s 3 - s 4 =  1: 
Now the right hand side of (3.75) is nonnegative only for j l  = 2, 3,4 and (3.74) 
never holds. The dimensions of the corresponding three Jacobi matrices (the 
cases 13-15) add up to 

s + l  s + l  s + l  
T --  $2 + T - -  $3 + ~ - -  $4 • 2sj + 1. (3.77) 

( 2 e )  s l  - s2 - s3 - $4 > 1: 
Here inequality (3.74) holds for j4 = 1 and (3.75) holds for jl = 2, 3,4. The 
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dimensions of the corresponding four Jacobi matrices (the cases 9 and 14-16) 
then add up to 

s - 1  s + l  s + l  s + l  
- - 2  - s * ' - s 3 - s 4 + - ' ~ - s 2 + - - 2  - s 3 + - ~ - - - s 4 = 2 s l + l  (3.78) 

For genetic values of  the invariants g2 and 93 associated with the period 
lattice A (see [1], Ch. 18), the eigenvalues of the Jacobi matrices involved will 
all be simple and different from each other and hence the underlying hyperelliptic 
curve Kg of  genus 9 determined from (3.70)-(3.73), (3.76)-(3.78) is nonsingular. 
However, for particular values of 92, 93 some eigenvalues can coincide rendering 
Kg to be a singular curve (see, e.g., Example 2.1 in [26] for g2 = 0). 

Thus we have proved the following theorem. 

Theorem 3.5 (i). The Treibich-Verdier potential q(z)  = - ~ ) 4 1  Sj(Sj + l);~/~(Z - 
wj), sj E C, 1 << j <_ 4 is a finite-gap potential associated with the stationary KdV 
hierarchy, or equivalently, a Picard potential if and only if sj c Z, t <_ j < 4. 
(ii). l f  sj E i~ U {0} with sj~ > sj2 > sj~ > sj4 ((Sji,Sj2,Sj3,Sj4) a permutation 
of  (sl, s2, s3, s4)), the (arithmetic) genus g of  the underlying (possibly singular) 
hyperelliptic curve Kq "3 ,2 = I-I]g,=o( E - E,,) is given by the following table 

Table 3.6 .  

s 9 
e v e n  sj; + 'b4 -> sj_, + 'b.~ sJl 

e v e n  sj~ + sj4 <~ -r + sJa 5 - $j4 
o d d  s]l ~> s/z + sj~ + ss4 'bL 

o d d  s h < sj2 +s/~ +.vj4 .~+1 

where s = ~i41 sj. The location E,, of  the (finite) branch points resp. singular 
points (Era, O) of  Kg is determined from the associated tri-diagonal eigenvalue 
problem (3.63)-(3.67) and Tables 3.3 and 3.4 in cases ( la)-( le) ,  (2a)-(2c), re- 
spectively. 

In this case q satisfies a stationary KdV equation of  the type 

9 

~ '  Cg_j KdVj (q) = O, 
j---o 

Co = 1 (3.79) 

with c 9_j depending on 92, 93. 
(iii). For generic values of  9e and 93 the curve Kg is nonsingular (i. e., Ee ~ Em 

f o r m  ~ g). 

Given (3.79), q then satisfies appropriate stationary KdV equations of  all 
orders higher than 9'. 

We now study the case when q(z)  is real, periodic, and nonsingular for z C •, 
Without loss of generality we may assume that wl is real. Then q is nonsingular 
as a function on I~ if and only if sl = s4 = 0, i.e., if and only if q is of  the form 

q(z) = -s2(s2 + l ) .~(z  - w2) - ss(s3 + l)J~(z - w3). (3.80) 
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Moreover ,  q(z) ,  z E R in (3.80) is real-valued if and only if 93 - 2795 > 0. In 
this special  case we shall now prove that K s is a lways  nonsingular .  

C o r o l l a r y  3.7 Let q be given by (3.80) with 93 - 2795 > 0. Then the underlying 

h3perelliptic curve is nonsingular and o f  genus 9 = max{s2,s3}.  Moreover,  all 

(finite) branch points are located on the real axis, i.e., {Era } ~  o C ~.  

Proo f  . Assume  without  loss of generali ty that s2 _> s3 (otherwise consider  gl(Z) = 
q(z  + a:) which has the same hyperel l ipt ic  curve associated with it). In this case 
we have a lways  t2 = - s2 .  Since 9 32 - -  2795_ > 0, {ej }3=1 C IR and hence ct, ,  3,~, 
% E Itr (see (3.63)-(3.65)) .  In fact, a closer  look reveals  that 

c~,, = (2d - 2n + 1 + 2t4)(2d - 2n + 2) > 0, (3.81) 

since 1 < n < d and t4 E {0, 1}. Also  

% = 2(e2 - el)(e2 - e3)(n + 1)(2n + 1 - 2s2) > 0, (3.82) 

since e 3 < e2 < e~ and 0 < 2n _< 2d - 2 < s2 + s3 2 which implies  
2n + 1 - 2s2 _< s3 - s 2 -  1 < 0. Hence 7,,ct,~+j > 0, 0 _< n _< d -  1 and 
by a weI l -known result  on Jacobi matr ices (see, e.g., Theorem 8.10 in [19]) this 
implies  that all e igenvalues  of J in (3.67) are real and simple.  In part icular,  all 
finite branch points are located on the real axis. 

However ,  to find all branch points we have to cons ider  several  e igenvalue  
problems,  i.e., several  matrices J .  We will now show that an e igenvalue  cannot  
occur s imul taneously  in two or more of  the matrices associa ted  with the potent ial  
under considerat ion.  Assume,  on the contrary,  that an e igenvalue  E appears  in 
two of  these matrices,  say in J1 and J2. Then the e igenvec tor  associa ted with E 
must be the same for both J1 and J2 since otherwise  there would  be two l inearly 
independent  Floquet  solutions at this part icular  value E while,  by construct ion,  
all the e igenvalues  of  these matrices refer to points where only one F loque t  
solution exists.  Hence zero is an eigenvalue of  J � 9 1  - J 2  and, in particular,  J l  and 
J2 have the same size. 

Suppose  that Jl  is obtained by choosing t l , . . . , t 4  in (3 .63)-(3 .65)  to be 

h , l ,  ..., q,4, respect ively ,  while  J2 is obtained by choos ing  t2,1,..., t2,4. Note that 

a lways  tl,2 = t2,2 = - s 2  while  tk,l,tk,4 E {0, 1} and tt,3 E { - s 3 , s 3  + 1} for 
k = l ,  2. Therefore  all e lements  in the subdiagonal  o f  J1 - J2 are equal  to zero 
and hence J i  - J 2  is upper  triangular.  This impl ies  that at least one of  the d iagonal  
e lements  of  J1 - J 2  is equal to zero, since zero is an e igenvalue .  F rom (3.64) we 
obtain that the diagonal  e lements  of  JI - J2 are given by 

3 
{e j (an  - 4 d ) ( t t j  - t2 j )  - 2ej ( t , ,4 t t j  - t2,4t2d) - e j( t2j  -- t~d) } 

j=l 

+4e2(d - 2n)(h,4 - t2,4) (3.83) 

tot  n = 0, ..., d.  Next  recall that - 2 d  + s2 = tk,1 + tk,3 + tk,4 is independent  of 

k ~ {1,2}.  A moments  thought reveals  that, if s3 > 0, then tl,3 = t2,3 and 
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(tk,l,lk,4) E {(0 ,  1) , (1 ,0 )}  for k = 1,2. In the fo l lowing we will  discuss only 
this case noting that for s3 = 0 s imilar  arguments  will  work. (Moreover ,  s3 = 0 
yields  a Lam6 potential  which was discussed in [26].) Thus we obtain that (3.83) 
equals  

+ e l ( 4 n  - 4 d  - 1) • (2e2t2 + 2e3t3) qz 4e2(d - 2n), (3.84) 

where the upper sign is to be used in the case (fi ,I ,  t1,4) = (1 ,0) ,  (t2,1, t2,4) = (0 ,  1) 
while  the lower  sign is to be used in the other case. Next  note that et = - e 2  - e3 

and 2d = - 1  - t2 - t3. Therefore (3.84) becomes  

-1- (4n + 2t2 + l)(e2 - e3). (3.85) 

Since e2 0 / e3 and 4n +2t2+1 ~/0 we obtain that none of the diagonal  e lements  and 
hence none of  the e igenvalues  of  J i  - J2  is equal to zero contradic t ing an earl ier  
result.  Thus our initial  assumpt ion that J l  and J2 have a common  e igenvalue  
turned out to be wrong and there are exact ly  2s2 + 1 different  branch points  
associa ted with q.  [] 

As  a s imple i l lustrat ion of  Table 3.6 (and Corol la ry  3.7) we consider  the 
fo l lowing potentials .  

q 4 ( z )  = - 2 0 J ~ ( z  - ~ j )  - 12.~/~(z - ~k),  (3.86) 

q4(z) = -20.~/~(z - w i )  - 67/5(z - wk) - 6//~(z - we), (3.87) 

q s ( z )  = - 3 0 . ~ ( z  - wj) - 2J~(z  - wk), (3.88) 

O5(z) = - 12 .~ (z  - ~))  - t27/~(z - W k )  - -  6,~"~(Z - -  ~ e )  - -  2//~(Z -- Win), 

(3.89) 

where j ,  k ,  g., m E {1,2 ,  3, 4} are mutual ly  distinct.  Then q4 and ~)4 correspond 
to (ari thmetic)  genus 9 = 4 while  q5 and g/5 correspond to 9 = 5. However ,  we 
note that all four potent ials  correspond to M = 16 in (1.5). In addit ion,  it can be 

shown that q5  and ~/5 are isospectral  while q4 and q4 are not. 

Part (i) of  Theorem 3.5 recovers  a recent  resull  of  Treibich and Verdier [44], 
[45]. The a lgebraic  e igenvalue  problem (3.66), which yields an effect ive method 
to compute  the (ar i thmetic)  genus 9 of  the under ly ing hyperel l ip t ic  curve Kg 

and the !ocation of  its (finite) branch points  and s ingular  points (band edges)  
in part (ii) of  Theorem 3.5, is our pr incipal  new result.  In part icular,  a suitable 
modif icat ion of  this method extends to all even el l ipt ic f ini te-gap potent ials  [27]. 

In the special  case where s2 = 0 (or s3 = 0), Corol lary  3.7 recovers  the celebrated 
result  of  Ince [31] (extended to the complex  Lam6-Ince  potential  q ( z )  = s l ( s l  + 

l),~/~(z) as studied in [43]). A deta i led t reatment  of  this special  case with the 
present methods  can be found in [26]. 

The cor responding  solutions ~/~• in (3.53) with l ~ t (E , , , )  determined 
from the e igenvector  IL in (3.66), subject  to the relevant  cases 1-16, are the 
analogs  of  the so cal led Lain6 po lynomia l s  (see, e.g., [4], Ch. IX, [47], Ch. XXIII)  

famil iar  in the special  case of Lam6-Ince  potentials .  
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4 Treibich-Verdier potentials associated with the mKdV hierarchy 

In this final section we briefly indicate how to transfer the results of Sect. 3 to 
the stationary mKdV hierarchy. The results in this section are novel. 

Assuming in accordance with (2.25) and (3.1) that 

4 

q(z) = - ~-~ sj(sj + 1)d~(z - aJj) = -r  - O(z) 2, 
j = l  

sj E N U { 0 } ,  z E C ,  (4.1) 

we shall compute q$ in the following. By Miura's  identity (2.23) and the commu- 
tation results of [15], [22], [24], ~b will then solve appropriate stationary mKdV 
equations of all orders greater than or equal to 9, where 9 is determined in 
Theorem 3.5. 

We start by recalling a few general facts from Floquet theory (see, e.g., [22], 
Appendix F). Let r  z, z0) denote the normalized Floquet solutions 

g)• (E, z, zo) = ~:ka (E, z ) / ~ •  (E, zo) (4.2) 

for some appropriate zo E C with ~b• given by (3.29). One then verifies the 
relations 

W(~b_(E, . ,  zo), ~ + ( E , . ,  zo)) = 2idpt(E, zo), (4.3) 

where 

and 

r177 
d 

= ~zln[~bi(E,z,zo)] 

l d  
- In[r (E, z)] • iCs(E,z) 

2dz 
(4.4) 

where 

r (E, z) 

1~-~ J ' ' ( z )  • 13j~ i sJ J~'(z) 
= +C,(E) + ~ //>(z) --/~(ae(E)) 2 ,~/>(-~--_-S-~(wj ) , (4.7) 

e=l = 
a e 

l ~ .~'c.,(e)) if : / 0  
C a ( E  ) = 2 #=l " ~ ( a e ( E ) ) - ' ~ ( w h l )  tsdlq~ 

~lf vo 

0 if a~k,, = O. 

(4.8) 

q(z) - E = - r  - qS~(E,z) 2. (4.5) 

Equations (4.4) and (3.29) then yield 

.'; 4 

O+(E,z)=A:~,(E)+ ~--~(z qzae(E))-  Z s j ( ( z  -a~j). (4.6) 
g = l  j = l  

Using (3.36) and the addition formula for (-functions one then obtains 
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(We recall that ko in (3.36) is chosen in such a way that wko is different from all 
the at(E).)  

r which plays an important role in Floquet theory (it is closely related 
to the Green's function of L) and in the context of complete integrability of the 
KdV hierarchy in the periodic case, is obtained in the following way. From (4.4), 
(3.43) and (4.6) or (4.7), respectively, we get 

2 i C t ( E , z )  = r  - r  
s 

= Z [ ( ( Z  - at(E))  - ~(z + at(E))  + ~(w~, + at(E)) - ~(w~, - at(E))] 
~=1 

s 
~ ' ( a t ( E ) )  

= 2Ca(e) + Z ,=i ~J~(z) Z ~ ( E ) )  ' (4.9) 
aev0 

where Ca(s) is given by (4.8). 
In analogy to the Treibich-Verdier potential q (z) = - Y]~;: 1 sj (sj + 1 ) ,~(z  - w  j), 

sj C N U {0}, 1 < j _< 4 in the context of the stationary KdV hierarchy, we shall 
call r := r177 z) in (4.7) a Treibich-Verdier potential associated with the 
stationary mKdV hierarchy. The commutation methods in [15], [22], [24] relating 

L = ~ + q , q =  - 0 2 , L = ~ r + / / , / / =  - and . / / 6=  ( ) 
~7-~ 0 

together with (2.23), Theorem 3.5, (4.5), and (4.7) then yield the following result. 

Theorem 4.1 The Treibich-Verdier potential 

1 ~ .~/ '(z)+c.~'(ae(0)) 1 3 sj . ) / , (z  ) 
(fif=(Z) : stsf~Ca(o)-42 ~ ~ ; ~ ( Z ) ~  ~ T ~ 

e=l j = l  

(4.10) 

where e C {% - }  and Ca(o) is defined in (4.8), is a finite-gap potential associated 
with the stationary mKdV hierarchy if  and only if  a~(O), 1 < g < s satisfy (3.32)- 
(3.35) for  E = O. The underlying hyperelliptic curve K2g is of  the form y2 = 
1-i 2m%(W 1/2 5/2 -Era )(w+E,,  ) = VI2g (w 2-Era)  with 9 determined as in Theorem 3.5 1 I rn =O'- 

(ii) and r satisfies a stationary mKdV equation o f  the type 

g 

Z % - j m K d V j ( O ~ ) = O ,  c 0 = l  (4.11) 
j--0 

with Cg_j as in (3.79). 

As discussed in Sect. 3, the curve K2g is nonsingular for generic values of g2, 
93- Moreover, r automatically satisfies appropriate stationary mKdV equations 
of all orders higher than 9. 

Finally, using equation (4.6) for E = 0, one obtains for the finite-gap potential 
= d 2 O, = q + 2r in L, 31-~ + gl, 
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4 

c), (:.) : - ~ ~) (s) - l ) ; & ( z  - w j )  - 2 ~ .</~(z - ea~(O)). 
1=1 g=l 

( 4 . 12 )  

O,(Z) is i s o s p e c t r a l  to q ( z )  = -- ~4=t  sj(sj  + 1).~/)(z - a;j),  i.e., it c o r r e s p o n d s  to 

the  s a m e  h y p e r e l l i p t i c  c u r v e  Kg : 3 ,2 = H]~__o(E - E,,,). 
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