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Abstract. A linear differential expression Ly = y(n) + qn-2y(n-2) + . . . + goy is called a Picard 
expression if its coefficients are elliptic functions (with common fundamental periods) and if the 
general solution of Ly = Ey is an everywhere meromorphic function (with respect to the independent 
variable) for all E E Q: . 

If L is a Picard expression we show that the differential equation Ly = Ey has n linearly independent 
Floquet solutions except when E is any of a finite number of exceptional values. Also the conditional 
stability set of a Picard expression (and hence the spectrum of the associated operator in L2(lR)) 
consists of finitely many regular analytic arcs. 

1. Introduction 

Let L be the differential expression given by Ly = y" + qy where q is a continuous 
function of a real variable which is periodic with period a. Consider the following 
statements: 

(A) There are precisely 29 + 1 real numbers Ezg < . . < EO such that the differential 
equation y" + qy = E y  fails to have two linearly independent Floquet solutions, 
i. e., solutions y satisfying y(e + a)  = py(z) ,  if and only if E 6 {Eo, . . . , E2g). 

(B) There are precisely 2g+ 1 real numbers E2, < . . < EO such that the conditional 
stability set S of L ,  i.e., the set of all values of E for which at least one of the 
solutions of y" + qy = E y  is bounded, is given by 

(C) There exists a monic ordinary differential operator P of order 29 + 1 such that  

(D) There exists a monic ordinary differential operator P of order 29 + 1 and 29 + 1 

[P, L] = 0 .  

complex numbers XO, . . . , X2#  such that P2 = ( L  - XO) . . . (L - X2,). 
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First suppose that q is real-valued. Then endpoints of stability intervals coincide 
with points where.only one periodic solution with period 2a exists. This was b t  
shown by HAMEL [7] in 1913l). This implies the equivalence of (A) and (B), since a 
Floquet multiplier must be equal to fl to be degenerate. Moreover it was proven in 
1923 by BURCHNALL and CHAUNDY [l] that (C) and (D) are equivalent even if q is 
complex-valued. That there is also a relationship between (B) and (C) is a discovery 
which was made only about twenty years ago: NOVIKOV [14] proved in 1974 that 
a periodic stationary solution of an equation of the KdV hierarchy has only finitely 
many disjoint conditional stabilitity intervals (bands). Taking into account that every 
stationary equation of the KdV hierarchy admits a Lax representation [P,L] = 0 
(see LAX [lo]) yields then the conclusion that (C) implies (B). The converse, i.e., 
(B) implies (C) was first proven by DUBROVIN [3] in 1975. It also turns out that 

When q is complex- valued the matter becomes more difficult. While the equivalence 
of (C) and (D) still holds the equivalence of suitable generalizations') of (A) and (B) 
is not longer given. In particular, it may happen that y" + qy = E y  does not have 
two linearly independent Floquet solutions and yet E is not the endpoint of a band. 
Conversely, it is conceivable that E is a band edge and yet y" + qy = E y  has two 
linearly independent Floquet solutions. 

Now assume that q is an elliptic function and treat the independent variable as a 
complex variable. Under this condition the statement 

(E) For every complex number E every solution of the differential equation y"+qy = 

{Ao, * - . 1 A z ~ }  = {Eo, * . 1 E29}. 

Ey is a meromorphic function of the independent variable. 

was recently shown to be equivalent with (C) by F. GESZTESY and myself (61. 
Naturally the question arises what happens when L is a periodic differential expres- 

sion of n - th order and this is the topic the present paper is concerned with. 
The requirement that all solutions of a linear homogeneous differential equation with 

elliptic coefficients are meromorphic is quite far -reaching. We therefore introduce the 
concept of a Picard differential expression. 

Definition 1.1. A linear differential expression Ly = y(n) + qn-zy(n-2) + . . + qoy 
will be called a Picard expression if all of its coefficients are elliptic functions with 
common fundamental periods and if, for every complex number E, the general solution 
of Ly = Ey is an everywhere meromorphic function (with respect to  the independent 
variable). 

The basic results of this paper are Theorems 4.1 and 5.3. The former states that 
the differential equation Ly = E y  has n linearly independent Floquet solutions except 
when E is any of a finite number of exceptional values if L is a Picard expression. The 
latter tells us then that the conditional stability set of a Picard expression (and hence 

')However, see also LIAPUNOV [ll] who treated the case y" = Xpy with a periodic function p in 
1899 and HAUPT [8] who corrects a mistake in HAMEL'S paper. For a general reference on Floquet 
theory see, e. g. ,  EASTHAM [4]. 

2)The conditional stability set is not anymore a subset of the real line. It is, however, a set Of 
regular analytic arcs which are called bands. Also, the points E where not two linearly independent 
Floquet solutions of y" + qy = Ey exist need not be real anymore. 
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the spectrum of the associated operator) consists of finitely many regular analytic 
arcs. 

2. Preliminaries 

In this section a number of well - known concepts are repeated in order to  fix notation. 

2.1. Elliptic functions 

An elliptic function is a meromorphic function which is doubly periodic, i.e., has 
two periods 2w and 2w’ which are linearly independent over the reals. Without any 
loss of generality it is assumed henceforth that 2w E R. Two periods 2w and 2w’ 
of an elliptic function are called fundamental if every period of the function is an 
integer linear combination of 2w and 2w‘. If 2w and 2w’ are fundamental periods 
then so are 2mw + 2m’w‘ and 2kw + 2k‘w’ provided m, m’, k ,  and k’ are integer and 
mk’ - m’k = f l .  In particular, then, 2w and 2kw + 2w’ are fundamental. Hence the 
fundamental periods 2w and 2w’ may be chosen in such a way that the angle 8 between 
them is less than r ln.  

A meromorphic function y which satisfies y(z + 2w) = py(z) and y(z + 2w’) = ply(%) 
for two complex numbers p and p’ is called elliptic of the second kind. 

2.2. Floquet theory  and Picard’s theorem 

Let L be a differential expression of the form 

Ly = y(n) + qn-2y(n-2) + ’ .  + qoy 
where the coefficients qo,  . . . , qn-2 are continuous complex - valued functions of a real 
variable periodic with period a. Denote the n-dimensional vector space of solutions of 
the differential equation Ly = Ey by W ( E ) .  Let S ( E )  be the operator of translation 
by a acting on W ( E ) .  Since S ( E )  and L commute it follows that S(E)  is a linear 
operator which maps W ( E )  to. itself. Its eigenvalues are called Floquet multipliers 
and its eigenfunctions Floquet solutions of Ly = Ey. The fact that  one may choose 
a basis of W ( E )  whose elements are entire functions of E (namely solutions q+(E, z) 
satisfying the initial conditions di-’(E, 0) = 6jj ,k,  j, k = 1, . . . ,n)  shows that  Floquet 
multipliers are given as zeros of the polynomial 

(2.1) 3(E,p)  = (-1)”pn + ( - l )n - la#qpn- l  + . * ‘  - an- l (E)p+  1 = 0 

where the functions al,  . . . , an-1 are entire. 
Note that 3 ( E ,  . ) has n distinct zeros unless the discriminant D(E) of F(E, . ) which 

is an entire function of E is equal to zero. This, therefore happens at only countably 
many points. Denote by m , ( E , p )  and m f ( E , p )  the geometric and algebraic multi- 
plicity, respectively, of the eigenvalue p of S(E) .  The number m f ( E ,  p)  - m,(E,p) E 
{ 0 , 1 , .  . . , n - l} counts the “missing” Floquet solutions of Ly = Ey with multiplier 
p. If Floquet solutions are missing only for finitely many complex numbers E we will 
say that L has finite Floquet deficiency. 
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For p # 0, consider the operator T ( p )  defined t o  be the restriction of L to  the d o m a  

D ( T ( ~ ) )  = { y  E H ~ ~ ~ ( [ O , ~ I )  : y( ' ) (a)  = p y ( ' ) ( ~ ) ,  k = 0,. . . , n  - I} . 
T ( p )  has discrete spectrum. In fact, its eigenvalues, which will be called Floquet 
eigenvalues, are given as the zeros of 3(. , p).  Moreover, the algebraic multiplicit i~ 
rna(E, p )  of E as an eigenvalue of T(p)  is given as the order of E as a zero of 7 ( .  , p)  

We now turn to the special case that qo, . . . , qn-2 are elliptic functions with common 
fundamental periods. The following theorem is due to  PICARD [15] .  HERMITE [9], 
however, had proven this theorem earlier in the special case of LamC's equation. 

(see, e. g., [51). 

Theorem 2.1. If the diferential equation L y  = y(") + qn-zy("-') + - + qoy = 0 
has elliptic coeficients with a common period lattice and a general solution which is 
everywhere meromorphic, then it has at least one solution which is elliptic of the second 
kind. 

Let S be the operator of translation by  a fundamental period a of the coeficients 
acting on the space of solutions of L y  = 0 .  If all eigenvalues of S are distinct, then 
there exist n linearly independent solutions of L y  = 0 which are elliptic of the second 
kind. 

Proof .  Let 2w be a fundamental period of the coefficients of the differential equation, 
W the space of solutions of the equation, and S the operator of translation by 2w acting 
on W .  As before, S is a linear operator from W to  W and has an eigenvalue p and 
an associated eigenfunction u1 , i. e., L y  = 0 has a solution u1 satisfying u1 ( z  + 2w) = 

Now let 2w' be the other fundamental period of the coefficients. Consider the func- 
P z l l ( Z ) .  

tions 

( 2 . 2 )  21,(2) , uz(2) = U](Z + 2w') , . . . 1 urn(.) = U ~ ( Z  + 2 ( m  - 1 ) ~ ' )  9 

where 1 5 rn 5 n is chosen such that the functions in (2 .2)  are linearly independent 
but including u1 ( z  + 2rnw') would render a linearly dependent set of functions. Then, 

(2 .3)  U ~ ( Z  + 2 ~ ' )  = b l u l ( z )  + + b m u m ( Z ) .  

Next denote the linear operator of translation by 2w' acting on the span V of 
(211, . . . ,urn] by S'. It follows from 2.3 that the range of S' is again V .  Let p' 
be an eigenvalue of S' and v the associated eigenvector, i. e., v is a meromorphic so- 
lution of the differential equation satisfying v(z + 2w') = p'v(z). But v satisfies also 
v(z + 2w) = p v ( z )  since every element of V has this property. Hence v is elliptic of 
the second kind. 

The numbers p and p' are of course Floquet multipliers corresponding to the periods 
2w and 2w', respectively. The process described in the above proof can be performed 
for each multiplier corresponding with the period 2w. Also, of course, the roles of 
2w and 2w' may be interchanged. The last statement of the theorem follows then 
from the observation that solutions associated with different multipliers are linearly 
independent. 0 
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2.3. Spectral  theory 

With any differential expression L given by 

with continuous complex-valued periodic coefficients 9 0 ,  . . . ,qn-2 of a real variable 
we associate the operator T : H2in -) L 2 ( R ) ,  T y  = Ly. 

The spectrum a(T) of T is the complement of the set of all complex numbers E 
for which (T - E)-’ : L2(R) -+ Ifzin exists as a bounded operator. The conditional 
stability set S(L)  of L is the set of all complex numbers E for which the differential 
equation Ly = Ey has a bounded solution. 

It was shown by ROFE-BEKETOV [16] that  a(T) = S(L) .  For E to be in S ( L )  it is 
necessary and sufficient that Ly = Ey has a Floquet multiplier of modulus one. Hence 

S ( L )  = { E  E C : 3 ( E , e i t )  = 0 for some t E R} 

where 3 is given by 2.1. Since 3 is entire in both its variables it follows that a(T) = 
S ( L )  consists of (generally) infinitely many regular analytic arcs 3 ) .  These arcs are 
called spectral bands. They end at  a point where the arc fails to be regular analytic 
or extend to infinity. The endpoints of the spectral bands are called band edges. 

Definition 2.2. T (or L since no confusion can arise) is called afinite -band operator 
if o(T) consists of a finite number of regular analytic arcs. 

3. Algebraic multiplicities of Floquet multipliers and Floquet 
eigenvalues 

Throughout this section let 4 0 ,  . . . , qn-2 be complex - valued, continuous, periodic 
functions (with period 1) of a real variable and L the differential expression 

dn dn-2 
dxn dxn-2 L = -  + qn-2 - + * . + 40 . 

Let @ ( E , z )  be a fundamental matrix of Ly = Ey satisfying the initial condition 
@ ( E ,  0) = I where I is the n x n identity matrix. The Floquet multipliers of the differ- 
ential equation Ly = Ey are then the eigenvalues of +(E,  l ) ,  the so called monodromy 
matrix. 

Our aim is to determine multiplicities of Floquet eigenvalues and multipliers for large 
values of the spectral parameter E .  For large values of E the equation Ly = Ey can be 
treated as a perturbation of y ( n )  = Ey. In this case there exist n linearly independent 
Floquet solutions exp(Xokz) with associated Floquet multiplier exp(Xok) where X is 

3)Let (a ,  b )  be an open real interval. Then z : (a ,  b)  --t Q: is called an analytic arc if z has a power 
series expansion near every t E ( a , b ) .  The arc is called regular analytic if, in addition, z’(l) # 0 for 
all 1 E (a, b ) .  It is called regular analytic at  to) if z’(l0) # 0. An arc z = I + iy is regular analytic 
at z ( t 0 )  = 10 + iyo if and only if at least one of the functions y = y(s) or I = z(y) exists near 20 

respectively yo and admits a power series representation there. 
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such that An = -E and the Uk are the different n - th  roots of - 1. The characteristic 
polynomial of the associated monodromy matrix is therefore given by 

Fo(E,p) = ( - l ) " p n  + (-3)n-'ap,1(E)pn-' + * . . -  aF,n-l (E)p + 1 

where the a ~ , ,  are the elementary symmetric polynomials in the variables exp(Xol), . . . , 

In order to treat the general case we use the following theorem which, together with 
exp(Xun ). 

its proof, can be found in NAIMARK [13]. 

Theorem 3.1. For any c E Q: and any K. E {0,1,. . . ,271 - 1) k t  Tc,K be the region 

Arrange ul,. . . , on, the different n - th roots of -1, in an order such that for ail 
X E TC+ the inequalities R((X+c)ul )  5 ?R((X+c)oz) 5 5 fR((X+C)Un) are satisfied. 
The equation L y  + Any = 0 has linearly independent solutions y l  (A, x), . . . , yn(X, x), 
which, for faxed 2, are analytic for suficiently large X E Tc+. Moreover, 

(3*1) Y k  ('-')(A,%) = (h7k)l-l eXp(XUkZ)(l + fl,k(x)), 1 ,  k = 1,  . . . , n ,  

where fi ,k (z) = O (X- l )  uniformly for  z E [o, I]. 
There exists a constant C 2 1 such that I exp( f 2 c o j )  I 5 C for all j = 1,. . . , n .  

This implies that I exp(Xoj) 1 5 C I exp(Xok)l whenever j < k. The way in which the 
roots (TI,. . . ,on are ordered implies that R((X + c ) ~ )  - R((X + c)uj) 2 b IXI  for some 
constant b > 0 provided k - j 2 2 and [XI  is suitably large. Therefore, for large X and 
if k - j 2 2 ,  one finds 

1 
(3.2) IeXP(Aoj)l 5 4 lexp(Xok)l- 

In particular, at most two of the numbers exp(Xaj) can coincide. 
Now, for sufficiently large EO = - A t  choose numbers c and IE such that IcI < 2 

and {A : [ A  - Xol  < l} E Tc,K. Then apply Theorem 3.1 to establish the existence of 
solutions Y k  of Ly = E y  = -Any satisfying 3.1. We thus have another fundamental 
matrix Y ( E ,  z) of Ly = E y  associated with the solutions y1 ,  . . . , gn. The two fund& 
mental matrices obey, of course, a linear relationship @(E,  x) = Y(E, x)A where A is 
an 2 - independent n x n matrix. In fact A = Y (E, 0)-' in view of the initial condition 
satisfied by @. Thus the monodromy matrix equals @ ( E ,  1) = Y(E,l)Y(E,O)-l. It 
follows from Theorem 3.1 that 

and hence that the entries of the monodromy matrix are 

(3.3) 
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The characteristic polynomial of @(E,  1) can be written as 

F(E,p)  = ( -1)"pn + ( - l )n-yWJ(E)  + b1(E))pn-' + f * .  

- (fF,n-l ( E )  + bn-1 ( E ) ) p  + 1 . 

Since the coefficients of F(E ,  .) are given as sums of products of terms as in 3.3 and 
since I exp(Aoj) I 5 C I exp(Aak)l if j < k one finds that 

M 
Jb j l  5 - I exp(Ao,+l-j) . . . exp(Aon)l, j = 1 ,  . . . , n - 1,  1x1 

for some suitable positive constant M. 
The fact that the coefficients of the polynomials &(E,  . )  and F ( E ,  . )  are close to  

each other for large 1A1 forces the roots to be close also. This is made precise in the 
following proposition. Define 

Bk(Y) = { p  : IP-exp(Aok)l < Ylexp(Aok)l)* 

Proposition 3.2. For all 7 E (0,1/4) there ezists R > 0 such that f o r  IEl > R and 
any j ked  k E { 1, . . . , n}  one of the following two statements on the Floquet multipliers 
of Ly = Ey holds depending on whether 

lexP(Aak) -exp(A'Jj)l 2 ' Y m a {  Iexp(Auk)l, (exp(Aaj)(}  

f o r  all j # k (3.4) 

is true or not. 

multiplier in the disk B k  (7/(2C)). 

multiplicities, there are precisely two Floquet multipliers in the disk Bk (3712). 

1. If 3.4 is satisfied then, counting multiplicities, there is precisely one Floquet 

2. If  3.4 i s  violated f o r  some j = 1 # k then (k - 11 = 1 and, again counting 

Proof. Let Q ( E , p )  
estimate 

I 

= C~=;' ( - l )"- jb j (E)pn- j .  For all p E Bk(1) one obtains the 

Now assume that 3.4 holds and consider any p on the circle C1 which bounds the 
disk Bk(r/(2C)). Then, for all j # k 

Y 1 P - exp (Aoj) I 2 5 m a  { I  ex^ ( A u k  I , I ~ X P  ( ~ a j  I * 
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Hence 
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Thus, if we assume that (XI > (4C)"MCn/7" we have established that IFo(E,p)J > 
IQ(E,p)l  for all p E C1. RouchC's theorem applies now and shows that To(E,  .)  and 
F(E, . )  = Fo(E, . )  + Q(E,  .) have the same number of zeros in &(7/(2C)), namely 
one. 

Next assume that for some 1 E { 1, .  . . , n} 

This implies that 

and, using also 3.2, 

for all j different from I and k. Now let p be on the circle C2 which bounds Bk(37/2). 
Then 

Apply once more RouchC's theorem and note that Bk(3?/2) contains two zeros of 
0 

Next we want to estimate those (large) values of the spectral parameter E for which 
Floquet multipliers are degenerate, i. e., for which at least two multipliers coincide. 
Then condition 3.5 is satisfied for some pair I c ,  1 with lk - I1 = 1 and this implies that 
exp(X(ul - Uk))  = 1 + z for some z which satisfies IzI 1/4 when 7 = 3/16 is chosen. 
Taking logarithms and solving for A yields 

&(El . )  to finish the proof. 

(3.7) 

where m is a suitable integer and arg (log(1 + z ) )  E (-n, 4. Since I log(] + z)l 5 1/2 
this implies that 
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Raising both sides of 3.7 to the n- th  power and using the inequality 1(1+ z)" - 11 5 
2n 1x1 which holds for n 121 5 1 yields 

< (3.8) - 

assuming that I log(1 + z)/(2mni)l 5 l / n  which is satisfied for large A. 
Note that ((uj - O k ) / i ) "  is always r ed  since 

Therefore 3.8 implies that 

and we have proven the following 

Theorem 3.3. Let L be defined as in the beginning of the section. For every E > 0 

1. All values of E where at least two Floquet multipliers of the differential equation 

2. Every degenerate Floquet multiplier outside B ( E )  has multiplicity two. 

This result has been obtained earlier by MCKEAN (121 for n = 3 and by DA SILVA 
MENEZES [2] for general n. Its proof, which is somewhat different from those earlier 
ones, is repeated here since several of the details are needed in the following. 

there exists a disk B ( E )  c C with the following two properties. 

Ly = E y  coincide lie in B ( E )  or in the cone { E  : I9(E)l/l!R(E)I 5 E } .  

We now turn to  algebraic multiplicities of Floquet eigenvalues. 

Theorem 3.4. Let po be a nonzero complex number. Then there ezists a R > 0 
such that every eigenvalue E of the Floquet operator T(p0) whach satisfies IEl > R has 
algebraic multiplicity two, at most. 

Proof .  Assume that EO = -A: is a suitably large eigenvalue of T(po),  i. e., a zero of 
9( 9 ,  po) .  Let k be such that p k ( X )  is a branch of a root of T(-Xn,  . ) passing through 
Po. 

Suppose first that 3.4 holds for X = XO and y = 1/8. Then one can show that the 
algebraic multiplicity of EO is one. The proof is similar to, in fact somewhat simpler 
than the following for the case when 3.4 for X = XO and y = 1/8 is violated. It will 
therefore be omitted. 

Now assume that 3.5 holds for X = XO and y = 1/8. Choose c and K such that the 
disk D = { A  : IX - Xol < T }  (where T E (0,1/2) will be determined later) is in TC,&. 
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Then, for X E D and j E (1,. . . ,n}  

(3.9) I exp ( X O ~ )  - exp (~ooj) I I 2~ I exp ( ~ o o j )  I . 
Let K denote the circle { p  : Jp  - exp(A0ok)l = 1/2 I exp(Aook)l} and B the open 

The Floquet multipliers of Ly + Any = 0 are denoted by p j ( X ) .  For any Y E (0,1/4) 
disk bounded by this circle. 

Proposition 3.2 shows that, for suitably large A,  

I P j ( 4  - exP(Xoj)l I 3Y/2 (eXP(X0i) I * 

This, (3.9), (3.6), and the triangle inequality imply 

~ p j ( ~ )  - exp(Xook)l L (p - 2r - 27) m m  

for all j # k, 1 and all X E D. Hence, if 2r + 27 
assumed, then p,(X)  is neither in B nor in K .  

Next note that 

Ipk(A)  - exp(Ao~) l  5 (2r + 2 ~ ) )  exp(Aow.)l , 

I P l ( X )  - exP0cook)l I 

This shows that, for all X E D, the multipliers pk(X)  and pl (X)  are in B but not in K. 
We have now shown that 3(-Xn,p) # 0 for all A E D and p E K and the only zeros 

of F( - A" , . ) in B are pk (A) and pl (A). One obtains from the residue theorem that 

and 

Then 

f (A,  p )  = p2 - p [exp(Aot) + e x p ( h )  + .(A) e x p ( h ) l  
+ exp(Xok) e x p ( h )  + A X )  e x p ( 2 h ) .  

The order of the zero XO of f (  - , po) equals the order of the zero EO of 3( - , P O )  and 
hence equals the algebraic multiplicity ma(&, PO) of EO as an eigenvalue of T(po). 



Weikard, Picard Operators 261 

From Proposition 3.2 we get estimates on the absolute values of v ( X )  and p(X) in D. 
From Cauchy's estimate we also get bounds on the absolute values of their derivatives 
in D. Specifically, 

Iv(A)I L 4 7 ,  Iv'(X)I L 4 7 b ,  Iv"(X)l I 8 y / r 2 ,  
IP(X)l L 57, IP"I L 5 7 / T ,  IP"(X)I I 1oy/r2.  

fx,x(X,p) = - [(o$ + v(X)o,2 + 2v'(X)at + v"(x)) exp(Xak) + a f e x p ( ~ o l ) ] p  

(OA! + ad2 exp(X(a + O l ) )  

+ (~P(M + ~ P ' ( W Q  + P"(x ) )  e x p ( 2 ~ ~ )  , 

Next compute 

+ 

and note that po = (1 + 7) exp(X0ak) and exp(Xool) = (1 + <) exp(Xook) where 171 5 
37/2 and 5 4y/3. Choosing T = 1/20 and y = yields then that 

Hence fx,x(~o,po) # 0 and m,(Eo,po) 5 2. 
For later purposes we remark that we also obtain the following inequality: 

(3.12) 

4. Geometric multiplicities of Floquet multipliers of Picard 
expressions 

If L is a Picard expression, algebraic and geometric multiplicities of Floquet multi- 
pliers of Ly = E y  can be different only when E is one of finitely many numbers, i.e., 
L has finite Floquet deficiency. This is stated more precisely in 

i s  Picard, then there exist n linearly independent solutions of Ly = E y  which are 
elliptic of the second kind for all but finitely many values of the parameter E .  

Proof .  Since inside a compact set there can be only a finite number of values of 
E where Floquet multipliers associated with a fundamental period of the coefficients 
of L are degenerate and hence linearly independent solutions which are elliptic of the 
second kind number less than n we assume henceforth that IEI is sufficiently large. 
According to Picard's theorem we have to prove that for one of the fundamental 
periods of the coefficients of L no Floquet multiplier of Ly = E y  associated with this 
period is degenerate. 

Choose the fundamental periods 2w and 2w' such that the angle between them is 
less than n/n. Next fix a number zo in such a way that no singularity of qo, . . . , qn-2 
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lies on the line through zo and zo + 2w or on the line through zo and zo + 2w'. Since 
the q k  have only finitely many singularities in the fundamental period parallelogram 
the points which are not admissible choices for zo are on lines through the poles of 
qo, . . . qn-2 parallel to the directions given by 2w and 2w' and hence form a set of 
Lebesgue measure zero. 

Multiply equation Ly = By by (2w)", substitute w(z) = y(2wx + zo) and define 
Pk(z) = ( 2 ~ ) " - ~ q k ( 2 w z  + zo). This gives 

+ pn-*(2)w("-2) + * * + p&)y = (2w)"Ew.  

The coefficients are then continuous as functions of the real variable x .  They are 
periodic with period one. Theorem 3.3 implies therefore that all Floquet multipliers 
associated with the period 2w are pairwise distinct provided the spectral parameter 
( ~ w ) ~ E  lies outside the set 

where is R a suitable positive constant. If E $! S Picard's theorem asserts the existence 
of a fundamental system of solutions of Ly = Ey whose elements are elliptic function 
of the second kind. 

Similarly one obtains that all Floquet multipliers associated with the period 2w' are 
pairwise distinct provided the spectral parameter ( ~ W ' ) ~ E  lies outside the set 

for a suitable positive constant R' and hence there exists a fundamental system of 
solutions which are elliptic of the second kind if E $2 S'. 

The two sets S and S' do not intersect outside a big circle C. Hence for each value 
of E outside C we have proven the existence of n linearly independent solutions of 

0 Ly = Ey which are elliptic functions of the second kind. 

5. Finite - band operators 

In this section we will apply Theorem 4.1 to investigate the spectrum o(T) of the 
operator T : H2g"(R) + L2(lR) given by Ty = Ly where L is a Picard expression. In 
the following two preparatory theorems, however, it is only required that L is periodic. 

Theorem 5.1. Let L be a differential expression of the form 

where qo, . . . , qn-2 are continuous, complex - valued functions of a real variable which 
are periodic with period a .  Let T be the associated operator on H2J"'R). Then, for 
every E > 0 there exists a disk B(E)  > 0 such that for every E in u(T) but outside Of 
B ( E )  the folIowing holds: 
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1. I fn  is odd, then E is in the set { z  : 1R(z)l/lS(z)I < &lzl- l /n} .  
2. I fn  = 4m - 2, m E IN then E as in the set 

{ z  : p(z) [ /p?(z) l  < €lzl-l~",R(z) < o} . 
3. If n = 4m, m E IN, then E is in the set { z : IS(z)l/lR(z)I < &IzI-l/", R(z) > O}. 
Moreover, in any case there are at most two spectral bands extending to infinity. 

Proof .  According to ROFE-BEKETOV [16] a(T) = S(L), the conditional stability 
set. Let E be a suitably large element of o(T). Then at least one of the Floquet 
multipliers pk (E) has absolute value one. From Proposition 3.2 one obtains 

37 I e x p ( W l -  Ipk(E)I 5 Ipk(E) - exp(Xa)I 5 1 e x p ( h ) I  

and hence that IR(Xak)l can be bounded by any constant a for a suitable choice of y. 
Recall that choosing smaller y forces us to  exclude a larger disk in the E - plane from 
consideration. When n is odd IR(Xak)l 5 a and 

imply that IR(E)I 5 ac(n)lE('-'/" and IQ(E)I 2 IE1/2 where c(n) is a constant 
depending only on n. The first claim (for odd n) follows now by choosing a = ~ / c ( n ) .  
The other cases are treated similarly. 

Now we prove that at most two spectral arcs extend to infinity. For brevity we 
consider only the case where n is even but not a multiple of 4. If Eo = -(Rexp(ito))" E 
o(T) (where R > 0) is very large, then the previous result shows that [to1 < e/(nR). 
Choose c and K. such that the set D = {A  : IX-RI < T = 2 ~ / n }  is contained in Tc+ (cf. 
Theorem 3.1). D was chosen such that the arc Rexp(it), (ti < E/(nR), is contained 
in D. Denote the Floquet multipliers of Ly + Any = 0 by pj(X), j = 1, . . . ,n .  If 
Xo = Rexp(it0) is sufficiently large and if the roots 01, . . . , an of -1 are suitably 
labeled then Proposition 3.2 shows that 

I P j ( X )  - exp(Xq) I 5 3r/2 I exp(Xq) 1 
for all X E D and j = 1, . . . ,n.  Now let Ic be such that Ipn:(Rexp(ito))l = 1. Note that, 
since i and -i are the only roots of -1 such that, for X E D, exp(Xok) is close to the unit 
circle, we have f sk  = f i .  In the following suppose f s k  = i. If 1 exp(iR) - exp(-iR)I > 
1/8 it follows for all X E D that pk(X) E B = { p  : Ip - exp(iR)I < 1/16} and that 
& ( A ) ,  j # k, is not in the closure of B provided that C(r + y) and r + y/(3C) are 
both smaller than 1/32. This implies (as in the proof of Theorem 3.4) that pk(X) 
and .(A) = exp(-iX)pk(X) - 1 are analytic in D and that Iv(X)( 5 y/(2C) and 

Now consider the function pk(Rexp(it)), -&/(nR) < t < e/(nR). It crosses the 
unit circle in to and its tangent is almost radial and points inside the circle if, say, 
107 < T = 2&/n. Therefore, as E revolves counterclockwise once around the ori- 
gin on a circle of radius R", where R is a suitably large positive number satisfying 

I.'(X)l 5 7 / W r ) .  
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lexp(iR) - exp(-iR)I > 1/8, then the multiplier pk(E) can cross the unit circle at 
most once since it always moves from the outside to the inside. There is a second 
multiplier which could cross the unit circle (associated with the root -i of -1) and 
hence there are at most two values of E on this circle which belong to the spectrum 
of T. 

Now assume there are more than two spectral arcs extending to infinity. Then there 
exists an arbitrarily large R > 0 with I exp(iR) - exp(-iR)I > 1/8 such that the circle 
with radius R centered at the origin intersects a(T) at least three times. Since this is 

0 

Recall that the spectral arc (or arcs) passing through Eo are given by F(E ,  PO exp(it)) 
= 0 where po has modulus one and is such that ~ ( E o ,  PO) = 0. It was proven in Section 
3 that for large E the numbers rn,(E,p) and m j ( E , p )  are both no larger than two. 
We will now discuss the various combinations. 

Let us start with rn,(Eo,po) = 1. Then, by the Weierstrass preparation theorem 

impossible the theorem is proved. 

F(E, PO exp(it)) = ( E  - EO - g(t))h(E,  t )  

where g is analytic for small t ,  g(0) = 0, and h is analytic and nonzero in a neigh- 
borhood of (E0,O). Write g(t)  = xrl alt'. If rnj(Eo,po) = 1 then a1 # 0 and the 
spectral arc E = ,?& + g(t)  is regular analytic near t = 0. If rnj(Eo,po) = 2,  then 
a] = 0 and a2 # 0 and two (possibly coinciding, if g is.even) spectral arcs end in &. 

F(E,poexp(it)) = ( ( E  - E o ) ~  - 291(t)(E - Eo) + 92(t))A(E,t)  

where g l ( t )  = x,"=, blt', g2(t) = Cz, alt' for sufficiently small t ,  and h is analytic 
and nonzero in a neighborhood of (Eo, 0). Then 

If rna(Eo, P O )  = 2 the Weierstrass preparation theorem gives 

If mj(Eo,po) = 1, then a1 # 0. Let t = s2 and 

where ql is an even analytic function. Therefore E*i(S) = EO + g1 (s2) + cp*(s) are 
regular analytic at Eo. In fact, these two arcs coincide since E+i(s) = E-i(-s). Now 
let t = - s2 .  Then E*l ( s )  = EO + g1 (s2) f JaTs(1 + q p ( s ) )  where q2 is an even 
analytic function. This describes another arc which is regular analytic at EO and 
which intersects E*i(s) in a right angle. 

Finally, consider m,(Eo,po) = rnj(E0,po) = 2 .  In this case a1 = 0, a2 # 0 and 
bf - a2 # 0 as will be shown below. We get E*(t) = & +g1( t )  f d G t ( l  +m(t)) 
where 73 is analytic near zero. Since the linear term is given by (bl  f d G ) t  
which does not vanish identically E+ ( t )  and E- ( t )  represent two, possibly coinciding, 
regular analytic arcs. 

We still have to show that bf - a2 # 0 if rna(Eo, P O )  = rnj(E0, PO) = 2. Using once 
more the Weierstrass preparation theorem we obtain 

g ( ~ , t )  = ( E  - ~ 0 ) ~  - 2 9 1 ( t ) ( ~  - EO) + g2(t) = f((-E)'/",Poexp(it))H(E,1 
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Theorem 5.2. Let L and T be as in Theorem 5.1. Assume E E u(T) has a suf i -  
ciently large absolute value. Then E is a band edge if and only if m,(E,p) = 1 and 
m j ( E , p )  = 2 f o r  some Floquet multiplier p of L y  = E y .  I n  all other cases E is a n  
interior point of one or more regular analytic arc(s) , 

If n is odd u(T) is ultimately in a cone with the imaginary axis as axis while the 
potential band edges (where mj(E,p) = 2) are in a cone whose axis is the real axis. 
Therefore T is a finite- band operator whenever n, the order of L, is odd. The following 
result which states that Picard expressions are finite - band has therefore significance 
only when n is even. 

Theorem 5.3. Let L and T be as in Theorem 5.1. If u(T) does not contain closed 
regular analytic arcs and if L is a Picard expression, then u(T) consists of finitely 
many analytic arcs which are regular in their interior. 

Proof. Since there are no closed regular analytic spectral bands any band must have 
an endpoint or extend to infinity. By Theorem 5.1 at most two bands extend to infinity. 
Because of the algebraic structure of the singular points of the curve .F(E, p)  = 0 only 
finitely many spectral bands can end in a band edge. Hence, if there are only finitely 
many band edges the theorem is proven. 

Inside any disk there can be at most finitely many band edges. Hence we have to 
prove that there exists a disk outside of which there are no band edges. A necessary 
condition for E to be a band edge is that there exists a p # 0 such that r n a ( E l p )  = 1 
and m f ( E , p )  = 2. In this case m,(Elp) ,= 1 and hence there does not exist a 
fundamental system of Floquet solutions of Ly = Ey. Hence, by Theorem 4.1, E can 

0 not be a band edge if its modulus is sufficiently large. 

Acknowledgements 

It is  a pleasure for me to  thank F .  GESZTESY for many discussions and invaluable support. 
This paper i s  based upon work supported by the US National Science Foundation under 

Grant No. DMS-9401816. 

References 
[l] BURCHNALL, J .  L . ,  and CHAUNDY, T. W.:  Commutative Ordinary Differential Operators, Proc. 

London Math. SOC. Ser. 2, 21 (1923), 420-440 



Math. Nachr. 196 (1998) 266 

[2] DA SILVA MENEZES, M. L.: Infinite Genus Curves with Hyperelliptic Ends, Comm. Pure Appl. 

[3] DUBROVIN, B. A.: Periodic Problems for the Korteweg-de Vries Equation in the Class of Finite 

[4] EASTHAM, M. S. P.: The Spectral Theory of Periodic Differential Equations, Scottish Academic 

[5] GESZTESY, F., and WEIKARD, R.: Floquet Theory Revisited. In: 1. KNOWLES (ed.), Differentia 

[6] GESZTESY, F., and WEIKARD, R.: Picard Potentials and Hill’s Equation on a Torus, Acta Math. 

[7] HAMEL, G.: Uber die lineare Differentialgleichung zweiter Ordnung mit periodischen Koeffizien- 

[8] HAUPT, 0.: Uber lineare homogene Differentialgleichungen 2. Ordnung mit periodischen Koef- 

[9] HERMITE, C.: Oeuvres, Tome 3, Gauthier-Villars, Paris, 1912 

Math. 42 (1989), 185-212 

Band Potentials, Funct. Anal. Appl. 9 (1975), 215-223 

Press, Edinburgh and London, 1973 

Equations and Mathematical Physics, 67- 84, International Press, 1995 

176 (1996), 73-107 

ten, Math. Ann. 73 (1913), 371-412 

fizienten, Math. Ann. 79 (1919), 278-285 

[lo] LAX, P.: Integrals of Nonlinear Equations of Evolution and Solitary Waves, Comm. Pure Appl. 

[ll] LIAPOUNOFF, A.:, Sur une hquation Transcendante et les Equations Diff&entielles Linbaires du 

[12] MCKEAN, H.P.: Boussinesq’s Equation on the Circle, Comm. Pure Appl. Math. 34 (1981)’ 

[I31 NAIMARK, M. A , ,  Linear Differential Operators, Frederick Ungar Publishing CO., New York, 1967 
(141 NOVIKOV, S. P.: The Periodic Problem for the Korteweg-de Vries Equation, Funct. Anal. Appl. 

[15] PICARD, E.: Sur une Classe d’Equations Diffbrentielles LinBaires, Comptes Rendus 90 (1880), 

[16] ROFE - BEKETOV, F. S.: The Spectrum of Non - Selfadjoint Differential Operators with Periodic 

Math. 21 (1968), 467-490 

Second Ordre B Coefficients PBriodiques, Comptes Rendus 128 (1899), 1085- 1088 

599 - 691 

8 (1974), 236-246 

128- 131 

Coefficients, Sov. Math. Dokl. 4 (1963), 1563-1566 

Department of Mathematics 
University of Alabama at Birmingham 
Birmingham, A L 35294 - 11 70 
USA 
e -mail: 
rudiOmath.uab. edu 




