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1. I n t r o d u c t i o n  

Hill's equation has drawn an enormous amount of consideration due to its ubiquity in 

applications as well as its structural richness. Of particular importance in the last 20 

years is its connection with the KdV hierarchy and hence with integrable systems. 

We show in this paper that regarding the independent variable as a complex variable 

yields a breakthrough for the problem of an efficient characterization of all elliptic finite- 

gap potentials, a major open problem in the field. Specifically, we show that elliptic finite- 

gap potentials of Hill's equation are precisely those for which all solutions for all spectral 

parameters are meromorphic functions in the independent variable, complementing a 

classical theorem of Picard. The intimate connection between Picard's theorem and 

elliptic finite-gap solutions of completely integrable systems is established in this paper 

for the first time. 

In addition, we construct the hyperelliptic Riemann surface associated with a finite- 

gap potential (not necessarily elliptic), i.e., determine its branch and singular points 

from a comparison of the geometric and algebraic multiplicities of eigenvalues of certain 

auxiliary operators associated with Hill's equation. These multiplicities are intimately 

correlated with the pole structure of the diagonal Green's function of the operator H =  

d2/dx2+q(x) in L2(R). Our construction is new in the present general complex-valued 

periodic finite-gap case. 

Before describing our approach in some detail, we shall give a brief account of the 

history of the problem involved. This theme dates back to a 1940 paper of Ince [43] who 

studied what is presently called the Lam6-Ince potential 

q(x)=-g(g+l)P(x+w3), geN, xeR, (1.1) 
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in connection with the second-order ordinary differential equation 

r162 =Er E e  C. (1.2) 

Here P(x) :=P(x;  wl, w3) denotes the elliptic Weierstrass function with fundamental pe- 

riods 2Wl and 2w3 (Im(w3/Wl)~O). In the special case where wl is real and w3 is purely 

imaginary the potential q(x) in (1.1) is real-valued and Ince's striking result [43], in mod- 

ern spectral theoretic terminology, yields that the spectrum of the unique self-adjoint 

operator associated with the differential expression L=d2/dx2+q(x) in L2(R) exhibits 

finitely many bands (and gaps, respectively), i.e., 

g 

a(L)=(-cv,  E2g]U [.J [E2m-,,E2(m-1)], E2g <E29-1<... <Eo. (1.3) 

Following the traditional terminology, any real-valued potential q that gives rise to a 

spectrum of the type (1.3) is called a finite-gap potential (although in view of the general 

complex-valued case described in (3.34), the less frequently used terms finite-zone or 

finite-band potential might be more appropriate). The proper extension of this notion 

to general complex-valued meromorphic potentials q and its connection with stationary 

solutions of the KdV hierarchy on the basis of elementary algebro-geometric concepts is 

then obtained as follows. Let L(t) be the second-order differential expression 

d 2 
L(t)=-~x2+q(x,t), ( x , t ) e R  2, (1.4) 

where q depends on the additional (deformation) parameter t. It is well-known (see, e.g., 

Wilson [81]) that one can find coefficients pj(x, t) in 

d2g  +1 . . d 2g 
P2g+l (t) - dx2g+l 4-p2g (x, t) ~ +... +Po (x, t), (1.5) 

in such a way that P2g+l(t) and L(t) are almost commuting, i.e., their commutator 

[P2g+I,L] is a multiplication operator. The coefficients pj are then certain differential 

polynomials in q, i.e., polynomials in q and its x-derivatives. The pair (P2g+l, L) is called 

a Lax pair, and the equation 

d 
-~L=[P2g+I,L], i.e., qt=[P2g+l,L] (1.6) 

is a nonlinear evolution equation for q. The collection of all such equations for all possible 

choices of P2g+l, gEN0, is then called the KdV hierarchy (see w for more details). 

Due to the commutator structure in (1.6), solutions q(-, t) of the nonlinear evolution 

equations of the KdV hierarchy represent isospectral deformations of L(0). Novikov [58], 
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Dubrovin [20], Its and Matveev [46], and McKean and van Moerbeke [54] then showed 

that a real-valued smooth potential q is a finite-gap potential if and only if it satisfies one 

of the higher-order stationary (i.e., t-independent) KdV equations. Because of these facts 

it is common to call any complex-valued meromorphic function q a finite-gap potential 

if q satisfies one (and hence infinitely many) of the equations of the stationary KdV 

hierarchy. 

The stationary KdV hierarchy, characterized by qt =0 or [P2g+l, L] =0, is intimately 

connected with the question of commutativity of ordinary differential expressions. Thus, 

if [P2g+I, L] =0, a celebrated theorem of Burchnall and Chaundy [14], [15] implies that 

P2g+l and L satisfy an algebraic relation of the form 

2g 

P22+ 1 = H (L-Em), 29 {Em} =0 c C (1.7/ 
rrt~0 

The locations Em of the (finite) 

hyperelliptic curve 

branch points and singular points of the associated 

2g 

F 2 =  H (E-Em) (1.8) 
m~0 

are precisely the band (gap) edges of the spectral bands of L (see (1.3)) whenever q(x) is 

real-valued and smooth for x E R (with appropriate generalizations to the complex-valued 

case, see w It is the (possibly singular) hyperelliptic compact Riemann surface Kg of 

(arithmetic) genus g, obtained upon one-point compactification of the curve (1.8), which 

signifies that q in L=d2/dx 2 +q(x) represents a finite-gap potential. 

While these considerations pertain to general solutions of the stationary KdV hi- 

erarchy, we now concentrate on the additional restriction that q be an elliptic function 

(i.e., meromorphic and doubly periodic) and hence return to our main subject, ellip- 

tic finite-gap potentials q for L=d2/dx2+q(x), or, equivalently, elliptic solutions of the 

stationary KdV hierarchy. Ince's remarkable finite-gap result (1.3) remained the only 

explicit elliptic finite-gap example until the KdV flow 1 3 qt = ~ qxx~ + ~ qqx with the initial 

condition q(x, 0 ) = - 6 P ( x )  was explicitly integrated by Dubrovin and Novikov [22] in 

1975 (see also [23], [24], [25], [45]), and found to be of the type 

3 

q(x, t) = -2  ~ P(x-x3  (t)) (1.9) 
j = l  

for appropriate {xj (t)}l,.<j,.<3. As observed above, all potentials q(-, t) in (1.9) are isospec- 

tral to q(., 0 ) = - 6 P ( - ) .  
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In 1977, Airanlt, McKean, and Moser in their seminal paper [2], presented the first 

systematic study of the isospectral torus IR(qO) of real-valued smooth potentials qo(x) 
of the type 

M 

qo(x) =-2  F_, p(x-x ) (1.10) 
j = l  

with a finite-gap spectrum of the form (1.3). Among a variety of results they proved 

that any element q of IR(qo) is an elliptic function of the type (1.10) (with different xj) 
with M constant throughout IR(q0) and that dim IR(qo)<.M. In particular, if q0 evolves 

according to any equation of the KdV hierarchy it remains an elliptic finite-gap poten- 

tial. The potential (1.10) is intimately connected with completely integrable many-body 

systems of the Calogero-Moser-type [17], [57] (see also [18]). This connection with inte- 

grable particle systems was subsequently exploited by Krichever [51] in his fundamental 

construction of elliptic algebro-geometric solutions of the Kadomtsev-Petviashvili equa- 

tion. In particular, he explicitly determined the underlying algebraic curve F and char- 

acterized the Baker-Akhiezer function associated with it in terms of elliptic functions 

as well as the corresponding theta function of F. The next breakthrough occurred in 

1988 when Verdier [78] published new explicit examples of elliptic finite-gap potentials. 

Verdier's examples spurred a flurry of activities and inspired Belokolos and Enol'skii [10], 

Smirnov [68], and subsequently Taimanov [70] and Kostov and Enol'skii [47] to find fur- 

ther such examples by combining the reduction process of Abelian integrals to elliptic 

integrals (see [6], [7], [8, Chapter 7], [9]) with the aforementioned techniques of Krichever 

[51], [52]. This development finally culminated in a series of recent results of Treibich 

and Verdier [74], [75], [76] where it was shown that a general complex-valued potential 

of the form 
4 

q(x) = - E djT'(x-wj) (1.11) 
j = l  

(~d2"~-031"~-W3, 0 9 4 = 0 )  is a finite-gap potential if and only if 1 -ffdj are triangular numbers, 

i.e., if and only if 

dj =gj(gj+l) for some gj E Z, 1 ~<j <4. (1.12) 

We shall from now on refer to potentials of the type 

4 

gjez ,  1 < j < 4 ,  (1.13) 
j = l  

as Treibich-Verdier potentials. The methods of Treibich and Verdier are based on hyper- 

elliptic tangent covers of the torus C/A (A being the period lattice generated by 2wl 

and 2w3). The state of the art of elliptic finite-gap solutions up to 1993 was recently 
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reviewed in a special issue of volume 36 of Acta Applicandae Mathematicae, see, e.g., [ll], 

[26], [53], [69], [71], and [73]. 

Intrigued by these results and motivated by the fact that  a complete characterization 

of all elliptic finite-gap solutions of the stationary KdV hierarchy is still open, we started 

to develop our own approach toward a solution of this problem. In contrast to all current 

approaches in this area, our methods to characterize elliptic finite-gap potentials rely on 

entirely different ideas based on a powerful theorem of Picard (Theorem 5.1) concerning 

the existence of solutions which are elliptic of the second kind of (second-order) ordinary 

differential equations with elliptic coefficients. As we have shown in [36], [37], [38] this 

approach immediately recovers and extends the results of [10], [47], [68], [70], [74], [75], 

[76], and [78]. In particular, for reflection-symmetric elliptic finite-gap potentials q (i.e., 

q(z)=q(2zo-z)  for some z0 E C) including Lam~-Ince and Treibich-Verdier potentials, 

our approach reduces the computation of the branch points and singular points of the 

underlying hyperelliptic curve Kg to certain (constrained) linear algebraic eigenvalue 

problems. 

Since the main hypothesis in Picard's theorem for a second-order differential equa- 

tion of the form 

~b"(z)+q(z)r =Er  E e  C, (1.14) 

with an elliptic potential q assumes the existence of a fundamental system of solutions 

meromorphic in z for each value of the spectral parameter E E C ,  we call any such el- 

liptic function q which gives rise to this property a Picard potential. Our main result, a 

characterization of all elliptic finite-gap solutions of the stationary KdV hierarchy then 

reads as follows: 

THEOREM 1.1. q is an elliptic finite-gap potential if and only if q is a Picard po- 

tential (i.e., if and only if for each E e C  every solution of r162162 is 

meromorphic with respect to z). 

In particular, Theorem 1.1 sheds new light on Picard's theorem since it identifies 

the elliptic coefficients q for which there exists a meromorphic fundamental system of 

solutions of (1.14) precisely as the elliptic finite-gap solutions of the stationary KdV 

hierarchy. 

Our proof of Theorem 1.1 in w (Theorem 5.7) relies on two main ingredients: A 

purely Floquet theoretic part to be discussed in w167 3 and 4 and an elliptic function part 

developed in w 

The Floquet theoretic part is summarized in Theorems 3.2 and 4.1. In particular, 

Theorem 3.2 illustrates the great variety of possible values of algebraic multiplicities 

of (anti)periodic, Dirichlet and Neumann eigenvalues in the complex-valued case (as 
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opposed to the self-adjoint case when q is real-valued). Theorem 4.1 on the other hand 

reconstructs the (possibly singular) hyperelliptic curve Kg associated with a general 

complex-valued coefficient q (not necessarily elliptic) which gives rise to two linearly 

independent Floquet solutions of r 1 6 2 1 6 2  for all but finitely many values of E. 

In addition, we provide a detailed description of the associated Green's function, its 

singularity structure, and its connection to the hyperelliptic curve associated with q. 

Both results, Theorems 3.2 and 4.1, are new in the general complex-valued setting. 

The elliptic function part in w consists of several items. First of all we describe 

Picard's result in Theorem 5.1. In Proposition 5.6 we prove the key result that  all 

2wj-(anti)periodic eigenvalues of q lie in certain half-strips 

S j={EeC:] Im( Iwj l -2w2E) I<~Cj ,  Re([wj[-2w~E)<~Mj}, j =  1,3, (1.15) 

for suitable constants Cj >0, My ER.  Without loss of generality we may assume that 

the fundamental periods 2wl and 2w3 have been chosen in such a way that the angle 

20 between the axes of S1 and $3 (i.e., ei~ satisfies 20E(0,2~)\{Tr}. 

Then $1 and $3 do not intersect outside a sufficiently large disk centered at the origin. 

A combination of this fact and Picard's Theorem 5.1 then yields a proof of Theorem 1.1 

(see the proof of Theorem 5.7). 

Finally, we close w with a series of remarks that put Theorem 1.1 into proper per- 

spective: Among a variety of points, we stress, in particular, its straightforward appli- 

cability based on an elementary Frobenius-type analysis, its property of complementing 

Picard's original result, and its connection with the Weierstrass theory of reduction of 

Abelian to elliptic integrals. 

2. The  K d V  hierarchy and hyperel l ipt ic  curves 

In this section we review basic facts on the stationary KdV hierarchy. Since this material 

is well-known (see, e.g., [4], [19, Chapter 12], [33], [35]), we confine ourselves to a brief 

account. Assuming q E C ~ ( R )  or q meromorphic in C (depending on the particular 

context in which one is interested) and hence either x c R  or xEC,  consider the recursion 

relation 

];+1(x)=1 ^,,, ^, 1 , ^ -~f~ (x )+q(x ) f j ( x )+~q  (x)f j(x) ,  

and the associated differential expressions (Lax pair) 

d 2 
L = ~x2+q(x),  

O<~j<~g, ]0(x) = 1, (2.1) 

g E No, 

(2.2) 

(2.3) 
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Explicitly, this yields 

KdV0(q) =qx =0,  KdVl(q)=l~q,,,-3• =0,  etc. (2.7) 

The corresponding inhomogeneous version of KdVg(q)=0 is then defined by 

g 

];+1 = = 0 ,  (2 . s )  
j = 0  

where Co = 1 and cl, ..., Cg are arbitrary complex constants. 

If one assigns to q(O=dZq/dxt the degree deg(q(t))=l+2, /EN0, then the homoge- 

neous differential polynomial fj  with respect to q turns out to have degree 2j, i.e., 

deg(fj) = 2j, j E No. (2.9) 

Next, introduce the polynomial Fg(E, x) in EEC,  

g 

Fg(E,x) = E ]g-J(X)E3" (2.10) 
j = 0  

Since ]o(x) = 1, 

R2g+I(E,x)=(E-q(x))Fg(E,x)2-�89188 2 (2.11) 

is a monic polynomial in E of degree 2g+l .  However, equations (2.1) and (2.8) imply 

that 

1F;" -2(E-q)F;  +q'Fg = 0, (2.12) 

(here No:=NU{0}). One can show that 

= (2 .4)  

([., .] the commutator symbol) and explicitly computes from (2.1), 

]o = 1, ]1 = l q } - C l ,  L _ 1  , , - 3  2 - 1  - c  (2.5)  -~q -t-~q -t-~clq-t- 2, etc., 

where the cj are integration constants. Using the convention that the corresponding ho- 

mogeneous quantities obtained by setting cz = 0 for l=  1, 2,... are denoted by fj, i.e., fy = fj  
(cl-0),  the (homogeneous) stationary KdV hierarchy is then defined as the sequence of 

equations 

KdVg(q)=2f~+z=O, gEN0.  (2.6) 
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and this shows that R2g+l (E, x) is in fact independent of x. Hence it can be written as 

2g 

R2g+I(E) H (E-Era) ,  ^ 2g = {E,,~}m= 0 C C. (2.13) 
m = 0  

By (2.4) the inhomogeneous KdV equation (2.8) is equivalent to the commutativity 
A 

of L and P2g+l. This shows that 

[P29+1, L] =0,  (2.14) 

and therefore, if L r162  this implies that P2g+Ir162 Thus [P2g+I,L]--0 
implies 

2g  

P2g+ l=~2g+l(L)= H (L-Em),  (2.15) 
m=O 

a celebrated theorem by Burchnall and Chaundy [14], [15]. 

In w we will need the converse of the above procedure. It is given by 

PROPOSITION 2.1. Assume that Fg(E,x), given by (2.10) with/o(x)=l,  is twice 
continuously differentiable with respect to x, and that 

(E-q(x))Fg(E,x)2-1F~'(E,x)Fg(E,x)+ l Fg(E,x) 2 (2.16) 

is independent of x. Then qEC~ Also the functions ]j(x) are infinitely often 
differentiable and satisfy the recursion relations (2.1) for j = 0 , . . . , g - 1 .  Moreover, ]g 
satisfies 

�88 ]';' �89 = o, (217) 

i.e., the differential expression P2a+I given in (2.3) commutes with the expression L= 
d2/dx2 +q. 

Proof. The expression given in (2.16) is a monic polynomial in E of degree 2g+l  
whose coefficients are constants. We denote it by 

2 g + l  

R2g+I (E) ---- E c2g+l-JEJ' (2.18) 
j=o 

where 50= 1. Comparing the coefficients of E 2a+l-k in (2.16) and (2.18) yields 

q(x) = 2]1(x)-51 (2.19) 
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for k = 1, and 

f~-I (x) = 4• (x) -4q(x).~-1 (x)+ 2fk-1 (x)fl(x) - 251 
k - 2  

(2.20) 
j = l  

+ 2q(x) ]j (x) j~- l - j  ( x ) -  2• ( x ) h - j  (x)) 

for k=2, . . . ,g+l.  In (2.20) we have introduced ]g+l=0 for ease of notation. 

By hypothesis fl ,  ..., ]gEC2(R). Equation (2.19) now yields that qeC (R). Then 

the equations in (2.20) show recursively that ]k e C4(R) for k=l, ..., g. By induction it 

follows that q and the functions fl ,  ..., ]9 are infinitely often differentiable. Thus we may 

differentiate (2.19) with respect to x to obtain (2.1) for j=0 .  Also we may differentiate all 

the equations (2.20) with respect to x. Applying this procedure inductively then proves 

the validity of (2.1) for j = l ,  . . . ,g-1 and of (2.17). The final statement then follows 
from (2.4). [] 

The nonlinear recursion formalism for fk resulting from (2.20) can be read off from 

the results of w in [32]. 
Equation (2.15) illustrates the intimate connection between the stationary KdV 

equation fs =0 in (2.8) and the compact (possibly singular) hyperelliptic curve Kg of 

(arithmetic) genus g obtained upon one-point compactification of the curve 

2g 

F = : I I  (2.21) 
m~0 

The above formalism leads to the following standard definition. 

Definition 2.2. Any solution q of one of the stationary KdV equations (2.8) is called 

an (algebro-geometric) finite-gap potential associated with the KdV hierarchy. 

Finite-gap potentials q can be expressed in terms of the Riemann theta function or 

through T-functions associated with the curve Kg (see, e.g., [46], [67]). 

3. Floquet theory 

Next we turn to Floquet theory in connection with a complex-valued nonconstant periodic 

potential q and assume for the rest of this section that 

q e C~ q(x+f~) = q(x), x e R, (3.1) 

for some f~ > 0. 
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Floquet solutions r  x) of Ly=Ey are characterized by the property 

r  x+D) = p(E)r x) for all x e R, (3.2) 

where Q(E) is a so-called Floquet multiplier. 

We introduce the fundamental system of solutions c(E, x, xo) and s(E, x, xo) of 

Ly=Ey defined by 

c(E, xo,xo)=s'(E, xo,xo)=l, c'(E, xo,xo)=s(E, xo,xo)=O. (3.3) 

The functions c(E, x, Xo) and s(E, x, Xo) and their x-derivatives are entire functions of 

E for every choice of x and xo. The coefficients of Floquet solutions written as linear 

combinations of the fundamental solutions c(E, x, xo) and s(E, x, xo) and the Floquet 

multipliers are given through eigenvectors and eigenvalues of the monodromy matrix 

of L, i.e., through 

(c(E,  xo+n, xo) ~(E, xo+~,xo)~ (3.4) 
M(E, xo) = \c'(E, xo+~t, xo) s'(E, xo+~,Xo) ] " 

More precisely, the Floquet multipliers are the eigenvalues of M(E, xo) and hence are 

given by 

~ = ~ (E)  • v /~(E)  2 - 1 ,  (3.5) 

where A(E) is half the trace of M(E, xo), i.e., 

~(E) = �89 [c(E, x0 +n,  x0)+~'(E, x0 +n,  ~o)]. (3.6) 

That A(E) is independent of x0 follows from equations (3.7) and (3.8) below. 

The functions c(E, x, xo) and s(E, x, Xo) satisfy certain Volterra integral equations 

which imply that 

Os(E, x, Xo) Oc(E, x, Xo) 
Oxo -- c( E, x, xo ) and OXo -- (q(xo)- E)s(E, x, xo). 

Hence 

d c(k)(E, xo +~, Xo) = c (k+l) (E, Xo +~, xo)+(q(xo)-E)s (k) (E, xo+~t, xo), 
dxo 

d s(k) (E, xo +~ ,  x0) = s (k+l) (E, x0 +~t, x o ) - c  (k) (E, x0 +~t, xo) 
dxo 

(3.7) 

(3.8) 

for k=O, 1. 
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For each E E C  there exists at least one nontrivial Floquet solution. In fact, since 

together with o(E), 1/Q(E) is also a Floquet multiplier, there are two linearly independent 

Floquet solutions for a given E provided Q(E)2~ 1. Floquet solutions can be expressed 

in terms of the fundamental system c(E, x, xo) and s(E, x, xo) by 

r xo)=c(E,x, xo)q- Q•176176 slE x, xo), (3.9) 
s (E ,  x o + ~ , x o )  " ' 

if s(E, xo+f~,xo)r or by 

xo+ ,Xo) e:E ~b• xo)=s(E,x, xo)+ c'(E, xo+f~,Xo) ~ ,x, xo), (3.10) 

if c' (E, x0 + f~, xo) # 0. If both s ( E, Xo + ~, Xo) and c' ( E, Xo + 12, xo) are equal to zero, then 

s( E, x, xo ) and c( E, x, xo ) are linearly independent Floquet solutions. 

Associated with the second-order differential expression L=d2/dx2+q(x) we con- 

sider densely defined closed linear operators H, HD(xo), Hy(xo), and Ho in L2(R) and 

L2((xo,xo+~)), xoER,  respectively. Let 

HD(xo)f =Lf, 

HN(xo)f =Lf, 

H f=Lf ,  f E H22(R) ,  (3.11) 

fe{geH2,2((xo,xo+~)):g(xo)=O=g(xo+~)} , (3.12) 

f e {g e H2'2((xo, x0+f~)):  g'(xo) = 0 -- g'(xo +f~)}, (3.13) 

and for 0EC, 

H(O)f = LI, f E {g E H2'2((x0, xo+~) )  : g(k)(x0+f~) = ei~ k = 0, 1} (3.14) 

(HP,r( �9 ) being the usual Sobolev spaces with r distributional derivatives in LP( �9 )). Next 

we denote the purely discrete spectra of HD(XO), Hg(xo), and H(O) by 

a(gD(xo)) = {]An(X0)}nEN, 

a(HN(XO)) ---- {Vn (X0)}nCNo, (3.15) 

a(H(O)) = {En(0)}~No,  

respectively. Note that,  while H(O) depends on x0 its spectrum does not. We agree that  

in (3.15) as well as in the rest of the paper all point spectra (i.e., sets of eigenvalues) are 

recorded in such a way that all eigenvalues are consistently repeated according to their 

algebraic multiplicity unless explicitly stated otherwise. 

The eigenvalues of HD(Xo) (Hg(xo)) are called Dirichlet (Neumann) eigenvalues 

with respect to the interval [Xo,Xo+~]. The eigenvalues of H(O) are precisely those 

values E where the monodromy matrix M(E, xo) of L has eigenvalues o=e  +i~ 
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The eigenvalues En(0) (En(Tr)) of H(0) (H(~r)) are called the periodic (antiperiodic) 

eigenvalues associated with q. Note that the (anti)periodic eigenvalues E,~(0) (En(~r)) 

are the zeros of A(. )--1 (A(.)-bl)  and that their algebraic multiplicities coincide with 

the orders of the respective zeros (see, e.g., [39]). In the following we denote the zeros 

of A(E)2-1  by En, nEN0. They are repeated according to their multiplicity and are 

related to the (anti)periodic eigenvalues via 

E4n=E2n(O), E4n+l=E2n(Zr E4n+2=E2n+l(Tr), E4n+3=E2n+l(O) (3.16) 

for nENo. We also introduce 

d(E) = OrdE(A(" )2_ 1), (3.17) 

the order of E as a zero of A(. )2--1 (d(E)=0 if A(E)2-1 r  

Similarly the Dirichlet eigenvalues #n(xo) and the Neumann eigenvalues vn(x0) of 

HD(xo) and Hg(xo) are the zeros of the functions s(. ,xoA-~,Xo) and c]( �9 ,Xoq-f~,xo), 

respectively. Again their algebraic multiplicities coincide precisely with the multiplicities 

of the respective zeros (see, e.g., [39]). These multiplicities depend in general on xo. We 

introduce the notation 

p(E, Xo) -- OrdE(S(., xo+fl,  x0)), (3.18) 

r(E, Xo) = ordE(c'(.,  xo+~,  x0)), (3.19) 

and remark that p(E, xo) and r(E, xo) are combinations of movable and immovable parts. 

Specifically, define 

pi(E) = min{p(E, Xo): xo �9 R}, ri(E) = min{r(E, xo): x0 �9 R} 

and pro(E, zo) and rm(E, xo) by 

p(E, xo) = Pi (E) +Pro (E, Xo), (3.20) 

r(E, xo) = ri (E) +r~(E, Xo). (3.21) 

If pi(E)>0 (r~(E)>0) then E is a Dirichlet (Neumann) eigenvalue no matter what xo is 

and we will call E an immovable Dirichlet (Neumann) eigenvalue. Otherwise, if pi(E)=0 
(ri(E) =0) but p(E, xo)> 0 (r(E, xo)>0), we call E a movable Dirichlet (Neumann) eigen- 

value. 

The asymptotic behavior of c'(E, xo+f~, xo), s(E, xo+f~, x0), and A(E) as [E[ tends 

to infinity, i.e., 

s(E, Xo+~, Xo) = ( - E )  -1/2 sin[(-E)1/2f~] +O(IE]-lelIm(-E)l/21f~), (3.22) 

c'(E, xo+~,Xo)=(-E)-l/2sin[(-E)l/2~]+O([E[-lelIm(-E)i/21f~), (3.23) 

A(E) ---- c o s [ ( - E ) 1 / 2 ~ ] - [ - O ( I E [ - 1 / 2 e l  Im(-E)1/2 [f~), (3.24) 
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obtained by a standard iteration of Volterra integral equations together with Rouch6's 

theorem, then proves the following facts: 

(1) The zeros #~(x0) of s(E,  xo+fl ,  Xo) and the zeros vn(xo) of c '( . ,  x0+~,  xo) are 
simple for n EN sufficiently large. 

(2) The zeros En of A(E) 2 -1  are at most double for h e n  large enough. 

(3) #n(xo), v~(Xo), and En can be arranged such that they have the following as- 

ymptotic behavior as n tends to infinity (we assume in the following that they are actually 

arranged in this way): 

n27r 2 
#n(Xo)=-  a2 +0(1),  (3.25) 

n27r 2 
- ,~(xo)=-  ft 2 +0(1),  (3.26) 

n27r 2 
E2n-1, E2n-  ~,.l------- ~ 4-0(1) .  (3.27) 

The Hadamard factorizations of s( E, xo + ft, Xo ), c' ( E, xo + ft, xo ), and A(E)2-1  

therefore read 

s(E, xo+ft ,  Xo) =cl(xo 1 

c'(E, xo +f~, xo) = e2(zo 1 

E ) (3.28) 
,.(Xo) ' 

unix0)) ' (3.29) 

A ( E ) 2 - 1 = c  1 -  (3.30) 

for suitable E-independent and nonvanishing Cl(XO), c2(x0), and c3. Equations (3.28)- 

(3.30) assume that none of the eigenvalues is equal to zero. If this were to happen these 

equations have to be replaced by obvious modifications. 

For more details on algebraic versus geometric multiplicities of eigenvalue problems 

of the type of HD(Xo) and H(~) see, e.g., [39]. 

We then have the following 

PROPOSITION 3.1. (i) The number )~ is an immovable Dirichlet eigenvalue if and 

only if it is also an immovable Neumann eigenvalue. In particular, in this case there are 

two linearly independent (anti)periodic solutions of L y = E y .  

(ii) I f  )~ is an (anti)periodic eigenvalue and also both a Dirichlet and a Neumann 

eigenvalue with respect to the interval [Xo, Xo+~t], then ~ is an immovable Dirichlet and 

Neumann eigenvalue. 
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Proof. (i) Assume that A is an immovable Dirichlet eigenvalue. Then we have 

s(A, xo+~,Xo)=O for every xoER.  By (3.8), s'(A, Xo+~,Xo) is continuous as a func- 

tion of Xo. On the other hand s'(A, Xo+~,  xo) is always equal to one of the two Floquet 

multipliers. Therefore, we infer that s'(A, x o + ~ ,  xo) is in fact equal to some constant p. 

In particular we have s()~, x+gt,  Xo) =Qs(A, x, Xo) for all Xo ER. 

Now consider the function s()~, x, 20). Then we obtain 

~(~, x + ~ ,  20) = ~ ( ~ ,  x + ~ ,  x0)+~c(~, x + ~ ,  ~0) 
(3.31) 

= ~ s ( ~ ,  z, xo)+ ~c(~, x + ~ ,  x0) 

and 

8(~, x + n ,  20) = Qs(~, x, 20) = e(-~(~, x, x0) +Zc(~, x, xo)). 

Since the left-hand sides are equal, comparing the right-hand sides yields 

(3.32) 

c(~, x+~,  xo) = ec(~, x, xo) (3.33) 

if 20 is chosen such that /3=-s()~,2o,x0)#0. Hence c(A,x, xo) is a solution satisfying 

Neumann boundary conditions, i.e., ~ is among the Neumann eigenvalues {v~ (X0)}nENo. 

Since x0 is arbitrary we find that A is, in fact, an immovable Neumann eigenvalue. Simi- 

larly, using that q is nonconstant, one shows that )~ is an immovable Dirichlet eigenvalue if 

it is an immovable Neumann eigenvalue. Moreover, c()~, x, Xo) and s(A, x, x0) are linearly 

independent Floquet solutions of Ly=.~y with the same Floquet multiplier Q implying 

Q2=l. Thus c(A, x, xo) and s()~, x, xo) are indeed both periodic or both antiperiodie. 

(ii) Suppose for brevity that  )~ is a periodic eigenvalue. Then M(E, xo) is the identity 

matrix and therefore every solution of L r 1 6 2  is periodic. Thus we obtain for any Xl E R  

that s(A, Xl -]-~, Xl)-----S(~, Xl, X l ) = 0  and c'()~, Xl -~-~'~, Xl) =Ct()~, Xl, Xl) = 0  implying that 

is an immovable Dirichlet and Neumann eigenvalue. [] 

It was shown by Rofe-Beketov [66] that  the spectrum of H is equal to the conditional 

stability set of L, i.e., the set of all spectral parameters E for which a nontrivial bounded 

solution of Lr162 exists. Hence 

a ( H ) =  U a ( H ( 9 ) ) =  U a,~, where aN= U En(9). (3.34) 
9E[0,2~] nENo 8E[0,~r] 

We note that in the general case where q is complex-valued some of the spectral arcs a~ 

may cross each other, see, e.g., [39] and [62] for explicit examples. 

The Green's function G(E, x, x ~) of H, i.e., the integral kernel of the resolvent of H 

G(E,x,x ')=(H-E)-l(x,x ') ,  EEC\a(H),  x,x'ER, (3.35) 
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is explicitly given by 

_l ; f+(E,x) f_(E,x ' ) ,  x>~x', (3.36) 
G(E,x ,x ' )=W(f_(E,x) , f+(E,x))  ~ f_(E,x)f+(E,x'),  x~x ' .  

Here f i (E , .  ) solve L f = E f  and are chosen such that 

f •177  E e C \ a ( H ) ,  R e R ,  (3.37) 

with W(f,  g ) = f J - f ~ g  the Wronskian of f and g. 

Equation (3.36) implies that the diagonal Green's function is twice continuously 

differentiable and satisfies the nonlinear second-order differential equation 

4(E-q(x))G(E, x, x) 2 -2G(E, x, x)G"(E, x, x)+G'(E, x, x) 2 = 1 (3.38) 

(the primes denoting derivatives with respect to x). 

It follows from (3.34) that [Q(E)[~I unless Eea(H).  Therefore, if E•a(g) there is 

precisely one Floquet solution in L2((-co, R)) and one in L2((R, co)). Letting Q• 

e • with Im(~)>0 we obtain IQ+(E)I<I<IQ_(E)I. Hence f+(E,x)=r xo) and 

f_ (E, x) =r  (E, x, x0). Since r (E, x0, x0) = 1, equations (3.5) and (3.9) imply 

e i~176  [A(E)2-1]U2 (3.39) 
W(f_(E, .  ), f+(E,.  )) = s(E, xo+~t, Xo) = -2  s(E, Xo+~, xo)" 

The sign of the square root was chosen such that [A(E)2-1] 1/2 is asymptotically equal 

to �89 for large positive E. Equation (3.39) implies (see also [34]) 

G(E, Xo, xo) = - s(E, xo+gt, Xo) (3.40) 
2[A(E)2-111/2" 

Closely related to G(E, x, x) is the function 

02G(E'x'x') (3.41) 
H ( E, x, x') = Ox Ox' 

To evaluate it for x=x~=xo we use (3.10) and obtain 

c'(E, xo+Ft, xo) (3.42) 
H(E, x0, xo) = 2[A(E) 2 _ 111/2 . 

When q E C I(R) the function H satisfies the nonlinear second-order differential equation 

4(E-q(x))2H(E, x, x) 2-2q ' (x)H(E,  x, x)H'(E, x, x) 
(3.43) 

-2 (E-q(x)  )H( E, x, x)H"(E, x, x)+(E-q(x)  )H' (E, x, x) 2 = (E-q(x) ) 3. 

We emphasize that both (3.38) and (3.43) hold universally for any qEC~ or qEC 1 (R), 

respectively, i.e., they do not at all depend on periodicity of q. While (3.38) is a standard 

result (see, e.g., [32]) the differential equation (3.43) appears to be new. 

Equations (3.38) and (3.43) are the main ingredients for the following 



88 F. G E S Z T E S Y  A N D  R.  W E I K A R D  

THEOREM 3.2. Let q be a differentiable nonconstant periodic function of period ~ > 0  

on R. Then for every EEC, 

pi(E) = ri(E),  (3.44) 

diE )-pi(E) -ri(E) >~ O. (3.45) 

Proof. By Proposition 3.1, pi(E) and ri(E) are either both zero or else both positive. 

Hence we only have to consider the case when they are both positive in which case E is 

also a periodic or an antiperiodic eigenvalue. 

The asymptotic behavior of #n, ~ ,  and En in (3.25)-(3.27) shows that the products 

in (3.28)-(3.30) are independent of the order of the factors. Hence we may write 

s(E, z 0 + ~ ,  x0) = Fo(E, xo)D(E), (3.46) 

c'(E, xo+~, xo) = F~(E, xo)N(E), (3.47) 

where 

Hence 

D ( E ) =  H (1-E'~p~(~) 
~ec ~ ] ' 

N(E)= H 1- 
AEC 

FD(E, Xo)-=CI(XO))~EYIc(I-- ~ ] , 

FN(E, xo):c2(xo) Hc(1-E)~'m(~'~~ 

H(E, Xo, xo) - 

and from (3.38) and (3.52), 

C(E, xo, Xo) = -FD(E, xo)D(E) 
2[A(E)2-1]1/2 

FN(E, xo)N(E) 
2[A(E)2-111/2 

U(E, xo)D(E) 2 = 4(A(E)  2 -1 ) ,  

V(E, xo)N(E) 2 = 4(E-q(xo))3(A(E) 2-1), 

where 

U(E, x0) = 4 (E -q (x o ) )FD (E, xo) 2 - 2 F D ( E ,  xo)F~(E, xo)+F~D(E, xo) 2 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

(3.56) 
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and 

V(E, xo) = 4(E-q(xo))2FN(E, xo) 2 -2q ' (xo)FN(E,  xo)F~(E, xo) 
- 2(E-q(xo) )FN(E, xo)F~(E, xo)+(E-q(xo) )F~v(E, x0) 2. 

(3.57) 

Equation (3.54) shows that the multiplicity 2p~(E) of a zero E of D( .  )2 cannot be 

larger than the multiplicity d(E) of the zero E of A(.  )2_ 1. Similarly, (3.55) shows that 

2ri(E) <~d(E) assuming that x0 is chosen such that E-q(xo)50. This yields (3.45). 

In order to prove (3.44) we first note that  equations (3.5), (3.7), and (3.8) imply 

d 2 
1 (._~xoS(E, xo+~,xo) ) =c'(E, xo+~,xo)s(E, xo+~,xo), (3.58) 

d 2 
l (~xoC'(E, xo+~,xo)) (3.59) (q(xo)- E)2 (A (E) 2 - 1) - 

= (q(xo)-E)2c'(E, Xo+~, Xo)s(E, z 0 + ~ ,  x0). (3.60) 

From (3.46) and (3.47) we get for all E E C  and all x E R ,  

 (E)2-1 
D(E)  2 

E 2 A ( E ) 2 - 1  (q(xo)-) 

1 F • ( E ,  xo) 2 - N!E! FD(E , XO)FN(E, xo), (3.61) 
~z~) 

1F~v(E, xo)2= (q(xo)-E)2DN(~E~)~ FD(E, xo)FN(E, xo ). (3.62) 

Since, according to the first part of the proof, the left-hand sides of (3.61) and (3.62) 

are entire functions with respect to E for every x0ER,  so must be the right-hand sides. 

Suppose A is a zero of D(E) or N(E) and assume there is an x0 such that 

(q(xo)- A)2FD (A, xo)FN(A, Xo) # O. (3.63) 

Then (3.61) shows that Pi (A)~ ri (A) while (3.62) shows the converse inequality and hence 

(3.44). To show that there is an x 0 E R  satisfying (3.63) observe that  equation (3.38) im- 

plies that zeros of FD (E,.) are isolated since F~)(E, x0 )50  if FD (E, xo)=0 and similarly, 

(3.43) implies that  a zero x0 of FN(E,. ) is isolated provided q(xo)~E. [] 

4. Floquet theory and finite-gap potentials 

In this section we prove that q is a finite-gap potential if the equation r162162 has 
two linearly independent Floquet solutions for all but  finitely many values of the spectral 

parameter E. The proof reveals a number of other properties, notably about the Green's 

function of H.  
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THEOREM 4.1. Assume that q(x) is a continuous nonconstant periodic function 

of period ~>0 on R and that Ly=y'~+qy=Ey has two linearly independent Floquet 

solutions for all but finitely many values of EEC.  Then the following statements hold: 

(i) Suppose {/~j}?=x for some ~ IEN is the set where two linearly independent Flo- 

quet solutions do not exist. Then the function A(E) 2-1 has a zero at each point Ej, i.e., 

d(/~j)>0 for I<<.j<~M. Moreover, none of the Ej, j= l ,  ...,M, is an immovable Dirichlet 

(or Neumann ) eigenvalue. 

(ii) The inequality 

d( E ) -  pi( E ) - r i (  E) >~ 0 (4.1) 

is strict only on a finite set { J}j=l, M ~ / I ,  which includes the numbers F,1, ..., E,~. 

(iii) The number of movable Dirichlet eigenvalues and the number of movable Neu- 

mann eigenvalues are finite. More precisely, there exists an integer gENo such that for 

any given xo E R,  

This number g satisfies 

where 

E pm(E, xo)=g, (4.2) 
EEO 

rm(E, xo) =g+l .  (4.a) 
E E C  

M M 

2g+ 1= E ( d ( E j ) - p i ( E j ) - r i ( E j ) ) =  E ~lj, 
j=l j=l 

(4.4) 

qj = d(F, j ) -p i (Ej ) -r i (Ej )  for j = 1, ..., M. (4.5) 

(iv) qEC~(R). 
(v) q is an algebro-geometric finite-gap potential associated with the compact (pos- 

sibly singular) hypereUiptic curve Kg of (arithmetic) genus g obtained upon one-point 

compactification of the curve 

M 
F 2  -~- n 2 g + l  ( g )  = I I ( g - g j ) g t J .  (4 .6 )  

j = l  

Equivalently, there exists a monic ordinary differential expression P2g+l of order 2g+1, 
i.e., 

2g+1 dl 
-P2r = ~ pl(x)-~-~x l , p2g+l(x)=l, (4.7) 

/=0 
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which commutes with L, i.e., 

[/~2g+1, L] = 0 

and satisfies the Burehnall-Chaundy relation 

(4.8) 

M 
?2g+l : R2gTl (L)= H (L-Ej)qJ. (4.9) 

j = l  

(vi) 
E E C \ {Ej }~4_1 and is of the type 

where 

The diagonal Green's function G(E, x, x) of H is defined and continuous for all 

G ( E , x , x ) -  ~ �89 (4.10) 
R:g+I(E) ~/2' 

Fg(E,x) = 1-I [E-#j(x)] (4.11) 
jEJg 

and where Jg (of cardinality g) is the set of indices j c N  such that pm(#j(x),x)>O (we 

set ~g(E, x ) = l  for g=0).  
(vii) Let AEC, B(A; c ) = { E : I E - A  I<c} and let f •  x) be two Floquet solutions 

of L r 1 6 2  which are linearly independent for each E E B( A; 6) \ { A } and which, together 
with their x-derivatives, are continuous as functions orE in B(A; 6). Then the Wronskian 

W(f_,  f+) vanishes at A if and only if AC{E1, ..., EM}. 
(viii) The spectrum of H consists of finitely many bounded spectral arcs 5n, l <<. n<<.~, 

for some [~<~g and one unbounded (semi-infinite) arc 5o0 which tends to -cx~+(q}, with 

(q) = ~ - l  f~~ i.e., 

a(H) : ( U 5~)U(T~, (4.12) 
n = l  

where each 5n and ~ is a union of some of the spectral arcs an in (3.34). 

Proof. We introduce the following sets 

Dm(xo) = {~:  pm(E,,o)  > 0}, 

N~(*o) = {E: r~ (E , ,o )  > 0}, 

B1 = {E: 0 =pi(E) =ri(E); 0 < d(E)}, 

B2 = {E: 0 < pi(E), 0 < ri(E); pi(E)+ri(E) < d(Z)}. 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

First we prove 
B1 --  { E l ,  ..., E/~}.  (4.17) 
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To see this let E6B1. In this case at least one of the entries in the off-diagonal of the 

monodromy matrix M(E, Xo) is different from zero by part (ii) of Proposition 3.1. Also, 

M(E, x0) has a double eigenvalue since A(E)  2 - 1 = 0 .  This implies that  M(E, xo) has 
only one linearly independent eigenvector and hence only one Floquet solution (up to 

constant multiples) exists. Thus E 6 {Ej }?=1. Conversely, if E 6 {/~j }~=1 then M (E, x0) 

is not diagonalizable. Therefore not both of its off-diagonal entries can be zero. This 

finishes the proof of part (i) of the theorem and shows that the inequality (4.1) is strict 

for EEB1. 
By (3.25)-(3.27) there exists a A> 0  such that for [El >/A the inequalities p(E, xo) <~ 1, 

r(E, xo)<~l, and d(E)~<2 hold. Assume also that max{[/~l], ..., [ /~2[}<h. Then we have 

d(E) =2 for all (anti)periodic eigenvalues E for which IEI ~>A, since otherwise there would 

be only one linearly independent Floquet solution for L r 1 6 2  

Assume now that EEB2 and that [E I ~>A. Then p~(E)~>l, r~(E)~>l and p(E, x0)~<l, 

r(E, x0) ~< 1 and hence Pi (E) = r i  (E) = 1. Also d(E) =2 =pi  (E) +r~ (E) which contradicts 

the definition of B2. Therefore no E whose absolute value is larger than A can be in B2, 

i.e., B2 is a finite set. 

Next we show that Dm(xo) and Nm(xo) are also finite sets. Consider the periodic 

or antiperiodic eigenvahie E2n where n is such that IE2nI~>A. Then M(E2,~,xo) has a 
double eigenvalue +1 with geometric multiplicity two. This forces the diagonal elements 

of M(E2n, Xo) to be zero, i.e., E2n is both a Dirichlet and a Neumann eigenvahie for every 

x 0 c R .  The asymptotic behavior of these eigenvalues shows that E2,~=#~(xo)=Vn(Xo) 
for every x0ER.  The same argument shows that ttk(xo) and ~k(Xo) are immovable for 

all k>n. Thus, if #k(x0) or yk(x0) actually depend on x0, then k<n and its absolute 

value must be smaller than [E:~[. Note that this conclusion only holds because B1 is 

finite, since there are only finitely many values of E where Lg;=Er has only one linearly 

independent Floquet solution. 

Choosing no to be any integer such that [E2=oI~>A, the above considerations also 

show that the numbers 

E pm(E, xo)=no- E pi(E),  (4.18) 
E6C [E[~<IE~o [ 

E rm(E'x~176 E ri(E) (4.19) 
EeC IEl~<IE~ol 

are independent of Xo. We call the former number g and the latter ~. Thus the function 

FD(E, xo) introduced in the proof of Theorem 3.2 is a polynomial in E of degree g. 

Moreover, the same considerations as in that proof show that U(E, Xo) in (3.56) is a 
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polynomial in E of degree 2g+1 and satisfies 

U(E, x0) : 4(A(E)2-1)  (4.20) 
D(E) 2 

In particular, U(E, Xo) is independent of x0. 

Let 7(x0) denote the leading coefficient of FD(E, Xo). From (3.56) we conclude that 

the leading coefficient of U(E, xo) equals 4V(x0) 2 and hence "y(x0) does not depend on x0. 

Therefore the function 

-Pg(E, xo)= 1 ~-~o) FD(E'x~ 1-I (E-A)p'(x'~~ (4.21) 
AeDm(xo) 

satisfies 

where 

4(E-q(x))Fg(E,x) 2-2Fg(E , A,, ^ x)F~ (E,x)+F~(E,x) 2 = 4R2g+l (E), (4.22) 

A(E)2-1  (4.23) 
R29+1 ( E) - D( E)27( Xo ) 2 . 

Hence the assumptions of Proposition 2.1 are satisfied. This proves that q6C~176 

Now we may also apply Theorem 3.2 and obtain that pi(E)=r~(E)<~ �89 for all E 6 C .  

Thus, except for EEB1, inequality (4.1) is strict only when E6B2. This proves parts 

(ii) and (iv) of the theorem. We denote the points in B2 henceforth by E~+I, "", EM 

(B2 may be empty). This implies that R2g+l in (4.23) agrees with the one given in (4.6). 

We now turn to part (iii). Equation (4.2) is satisfied by definition of g since its left- 

hand side is independent of x0. Equation (4.3), i.e., 9=g+l follows from pi(E)=r~(E) 
and from equations (4.18) and (4.19). Equation (4.4), finally, follows from the fact that 

U(E, xo) is of degree 2g+l  in E, from equation (4.20), from the fact that p~(E):-r~(E), 
and from part (ii). Thus part (iii) is proved. 

A straightforward application of Proposition 2.1 shows that q is an algebro-geome- 

tric finite-gap potential, i.e., that (4.8) is satisfied for a suitable differential expression 

J62g+z. The validity of (4.9) follows from the formalism in (2.10)-(2.15) proving part (v). 

Using (4.21) and (4.23) we may express the diagonal Green's function as 

G(E, Xo, xo) = -FD(E, xo)D(E) -Fg(E, Xo) (4.24) 
2[A(E)2--1]  1/2 2R2g+l (E)I /2"  

Note that this yields the known asymptotic behavior of the diagonal Green's function 

G(E,x,x) =-�89 as E - ~ .  (4.25) 
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(This asymptotic behavior is valid for any bounded qEC~ In the special case of a 

periodic qEC~ it also follows directly from iterating Volterra integral equations as in 

the proof of (3.22), (3.24).) This completes the proof of part (vi). 

The proof of part (vii) relies on the relationship (3.36) between the Green's function 

of H and the Wronskian of Floquet solutions. It implies that 

W(r (E, x, x0), r (E, x, x0)) - -2R2g+l (E)1/2 (4.26) 
 g(E, x0) 

on the resolvent set of the operator H and, by continuity, for all EEC\Dm(xo). Now 

given any E E C  choose xo such that E~Dm(xo). Then the Wronskian in (4.26) is equal 

to zero if and only if E is a zero of R29+1, i.e., if and only if EE{E1, ...,EM}. Thus 

W(r162 is not only zero for EEB1, where only one Floquet solution exists, but also 

for EEB2, where two Floquet solutions exist but where linearly independent Floquet 

solutions in the vicinity of E converge to (multiples of) just one of them. 

To prove the final claim (viii) observe that according to (3.34) and (3.5) the spectral 

arcs are given by 

Q(E)=ei~ PER.  (4.27) 

In some vicinity of any point AEa(H) we have 

A(E) + V/A (E) 2 - 1 = e(A) + (E-/~)k/2d(E), (4.28) 

where k is a positive integer and A is analytic and nonzero. If k is even then �89 k spectral 

arcs intersect in )~ (k=2 being the generic case). If k is odd then k semi-arcs meet at A. 

In particular, when k = l  then the arc ends in )~. Of course k may be odd only when 

A()~)2-1=0. In this case, however, k=d(A). Since d(A)=pi()~)+ri(A)=2pi()~), except 

when ),EB1UB2, we infer that k may be odd only for ),EB1UB2={E~, ...,/~M}- This 

proves that only finitely many spectral arcs can have an end point, i.e., a point where 

the arc cannot be analytically continued. [] 

To the best of our knowledge, Theorem 4.1 appears to be new in the present gen- 

erality. Especially, our method of proof, relying on (3.38) and the new equation (3.43), 

appears to be without precedent. Moreover, for M to be strictly larger than M, i.e., for 

B2 to be nonempty, it is necessary that d()~)~>3 for some (anti)periodic eigenvalue )~. 

While it seems difficult to construct an explicit example where B2 # 0, the very existence 

of this phenomenon has not been considered in previous work on the subject. In particu- 

lar, references [30], [31], [40], [60], [61] treat potentials with d(E)<2 and references [12], 

[13] require that algebraic and geometric multiplicities of all (anti)periodic eigenvalues 

coincide and hence also that d(E)<2. Generically one has 0 j= l ,  I~<M=M (cf. [72]). 
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Remark 4.2 (pole structure of the Green's function). As Theorem 4.1 shows, it is 

precisely the multiplicity Oj of the branch and singular points in the Burchnall-Chaundy 

polynomial (4.9) which determines the singularity structure of the diagonal Green's func- 

tion G(E, x, x) of H. Moreover, since (see, e.g., [56]) 

[ i f  ] G(E,z ,x ' )=[G(E,x ,x )G(E,x ' , x ' ) ] l /2exp  - -  G(E , s , s ) - l  ds , (4.29) 
I. 2 Jmin(x,x') 

this observation extends to the off-diagonal Green's function G(E, x, x') of H as well. 

While Theorem 4.1 concentrates on the finite-gap situation, the main objective in 

this paper, it is clear that  an appropriate extension to g--*c~ exists and produces a 

corresponding two-sheeted noncompact (open) Riemann surface of the type 

F 2 = R ~ ( E ) =  (E-/~0)  q~ 1-I [ (E-Ej )~2j -27r-2]qJ"  (4.30) 
j eN  

The corresponding diagonal Green's function G(E, x, x) of H then takes on the form 

G(E, x, x) = C 1-ImeN{[E--pm(x)lf~2m-21r-2} (4.31) 
R~(E)I /2  

We omit further details at this point. 

5. A c h a r a c t e r i z a t i o n  of  el l ipt ic  f in i te -gap  p o t e n t i a l s  

In this section we prove our principal result, an explicit characterization of all elliptic 

finite-gap potentials, a problem posed, e.g., in [59, p. 152]. One of the two key ingredients 

in our main Theorem 5.7 (the other being Theorem 4.1) is a systematic use of a powerful 

theorem of Picard (see Theorem 5.1 below) concerning the existence of solutions which 

are elliptic functions of the second kind of ordinary differential equations with elliptic 

coefficients. As will be pointed out in Remark 5.8 at the end of this section, Theorem 5.7 

sheds new light on Picard's theorem and can be viewed as a complement to this classical 

result. 

We start with Picard's theorem. Due to our focus on finite-gap solutions of the KdV 

hierarchy we only state the result for second-order differential equations. 

THEOREM 5.1 (see, e.g., [3, pp. 182-187], [44, pp. 375-376]). Let Q be an elliptic 

function with fundamental periods 2Wl and 2w3. Consider the differential equation 

r 1 6 2  = 0, z e C ,  (5.1) 
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and assume that (5.1) has a meromorphic fundamental system of solutions. Then there 

exists at least one solution r which is elliptic of the second kind, i.e., r is meromorphic 

and 

r247162 j = 1,3, (5.2) 

for some constants 01, Q3 C C. If in addition, the characteristic equation corresponding to 

the substitution z---~z+2wl or z--~z+2w3 (see [44, pp. 358, 376]) has distinct roots then 

there exists a fundamental system of solutions of (5.1) which are elliptic functions of the 

second kind. 

The characteristic equation associated with the substitution z---~z+2wj alluded to 

in Theorem 5.1 is given by 

de t [A-  OI] = 0, (5.3) 

where 
2 

r  -- E a~,kCk(z), A = (a/,k)l~<l,k<~2, (5.4) 
k = l  

and r r is any fundamental system of solutions of (5.1). 

What  we call Picard's theorem following the usual convention in [3, pp. 182-185], 

[16, pp. 338-343], [41, pp. 536-539], [48, pp. 181-189], appears, however, to have a longer 

history. In fact, Picard's investigations [63], [64], [65] were inspired by earlier work of 

Hermite in the special case of Lamd's equation [42, pp. 118-122, 266-418, 475-478] (see 

also [8, w and [80, pp. 570-576]). Yhrther contributions were made by Mittag-Leffier 

[55], and Floquet [27], [28], [29]. Detailed accounts on Picard's differential equation can 

be found in [41, pp. 532-574], [48, pp. 198-288]. 

In this context it seems appropriate to recall the well-known fact (see, e.g., [3, pp. 

185-186]) that r is elliptic of the second kind if and only if it is of the form 

m a ( z - a j )  (5.5) 
r =Ce 1-[ o(z-bj) 

j = l  

for suitable m E N and C, )b a j, bj E C, 1 < j <~ m. Here a (z) := a (z; wl, w3) is the Weier- 

strass sigma function associated with the period lattice A spanned by 2Wl and 2w3 (see 

[1, Chapter 18]). 

Picard's Theorem 5.1 motivates the following definition. 

Definition 5.2. Let q be an elliptic function. Then q is called a Picard potential if 

and only if the differential equation 

r  +q(z)r = Er  (5.6) 
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has a meromorphic fundamental system of solutions (with respect to z) for each value of 

the spectral parameter E E C. 

For completeness we recall the following result proven in [38]. 

(i) Any nonconstant Picard potential q has a representation of the THEOREM 5 .3 .  

form 
m 

q(z) = C -  E sj (sj + 1)P(z -  bj) (5.7) 
j = l  

for suitable m, s j E N  and C, bjEC, l <~j<~m, where the bj are pairwise distinct mod(A) 

and P ( z ) := P ( z ; w~, con) denotes the Weierstrass P-function associated with the period 

lattice A ([1, Chapter 18]). 

(ii) Let q(z) be given as in (5.7). / f  r 1 6 2 1 6 2  has a meromorphic fundamental 

system of solutions for a number of distinct values of E which exceeds max{s1, ..., Srn}, 

then q is a Picard potential. 

We emphasize that while any Picard potential is necessarily of the form (5.7), a 

potential q of the type (5.7) is a Picard potential only if the constants bj satisfy a series 

of additional intricate constraints, see, e.g., w in [38]. 

The following result indicates the connection between Picard potentials and elliptic 

finite-gap potentials. 

THEOREM 5.4 ([46], [49], [50], [67]). Every elliptic finite-gap potential q is a Picard 

potential. 

Proof. For nonsingular curves K g : F 2 = I I ~ o ( E - E j ) ,  where/~tr for lr  asso- 

ciated with q (see (2.21)) this fact is obvious from the standard representation of the 

Baker-Akt~ezer function in terms of the Riemann theta function of Kg ([21], [46], [49J, 

[50]). For singular curves Kg the result follows from the T-function representation of the 

Floquet solutions r x) associated with q, 

where 

r (E, x) = e +k(E)~ T+ (E, x) ,  (5.8) 

q(x) = C + 2(ln[T(x)]}" (5.9) 

and from the fact that r(x) and T+(E,x) a r e  entire with respect to x (cf. [67]). [] 

Naturally, one is tempted to conjecture that the converse of Theorem 5.4 is true as 

well. The rest of this section will be devoted to a proof of this conjecture. 

We start with a bit of notation. Let q(z) be an elliptic function with fundamen- 

tal periods 2wl, 2w3 and assume, without loss of generality, that Re(w1)>0, Re(w3)~>0, 
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Im(w3/wl) >0. 

z---2wls+2w3t where 0~s,  t < l .  

We introduce 

021 023 ' 

and 

and define 

The fundamental period parallelogram A consists then of the points 

0 E (0, ~), (5.10) 

wj  j = 1, 3, (5.11) t~ - I~1' 

qj(x) := t2q(tjx+zo), j = 1, 3, (5.12) 

for a z0EC which we choose in such a way that no pole of qj, j=1 ,3 ,  lies on the real 

axis. (This is equivalent to the requirement that no pole of q lies on the line through the 

points z0 and z0+2wl or on the line through z0 and z0+2w3. Since q has only finitely 

many poles in the fundamental period parallelogram A this can always be achieved.) For 

such a choice of z0 we infer that qj (x) are real-analytic and periodic of period ~j  =21w j I, 

j = l ,  3. Comparing the differential equations 

(5.13) 

and 

r +q(z)r = Er 

w"(x)+qj(x)w(x) =)~w(x), j = 1, 3, (5.14) 

connected by the variable transformation 

z = t j x + z o ,  r = w(x), (5.15) 

one concludes that w is a solution of (5.14) if and only if r is a solution of (5.13) with 

)~=t~E, j = l , 3 .  (5.16) 

Next, consider ~EC~ of period 5 > 0  and let 5(A,x),~(A,x) be the corresponding 

fundamental system of solutions of ~ ' + ~ = ) ~  defined by 

5()~, 0 )=  g'(A, 0 )=  1, 5'(A, 0) = g(A, 0) = 0. (5.17) 

The corresponding Floquet discriminant is then given by 

/~ ()~) = �89 [5(A, 5)  +~()~, ~)] (5.18) 

and the same techniques that lead to the asymptotic expansion (3.24) also yield 

(5.19) s  = cos[ifi~ l/~(l +O(  ~- l  ) )] 

as IAI tends to infinity. 
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PROPOSITION 5.5. Let An be a periodic or antiperiodic eigenvalue of ~. 
exists an m E Z  such that 

99 

Then there 

(5.20) 

for some C > 0  independent of n � 9  In particular, all periodic and antiperiodic eigen- 

values An, n � 9  of (7 are contained in a half-strip S given by 

for some 2~/IER. 

(5.21) 

Then (5.19) implies 

m~r +bn - i an  = O((an +ib.)  -1) (5.23) 

for some m E Z. Hence 

[mTr+bn[ <~cl, lanl <~Cl (5.24) 

and (multiplying (5.23) by an+ibn and taking real and imaginary parts) 

2 2 lan(mzr+2b~)l ~<c2, Ibnm~+bn-anI <~ c2 (5.25) 

a 2 2 ~--2 for some constants cl,c2>0. For [ h i = ( n + b n )  sufficiently large we conclude that 

Ib.I and hener and Im~+2bnl are aiso large since la.I stays bounded. By (5.24) one 
obtains that ]mTri<~lbnl+c 1 and hence (5.25) and Ic1[~< 1 b ~] n] imply 

[an[ ~< c2 ~< c2 ~< c 2  ~< 2c2 (5.26) 
Im~+2bnl 21bnl-lm~l Ibnl-CI Ibnl 

and 

2 +c2 ~< c~ +c~,  Ib~(mTr +b~)[ <~ a n (5.27) 

i .e . ,  

Im~ +bnl <~ c~ +c___~ (5.28) 
Ibnl 

Consequently, we infer from (5.26), (5.28) and from the fact that ]anl is bounded that 

I~A~/2+iTrm[ = [a,~+ib,~+iTrm I <~ [a,~[+lbn+~rm I <~ clb~1-1 <~ c'[A~1-1/2 (5.29) 

Proof. The periodic and antiperiodic eigenvaiues axe precisely the points Ao where 

/~()~o)--• Let 

5~/2=a~+ibn, an,bncR. (5.22) 
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~ - 1 / 2  �9 for some constants c and c'. Multiplying (5.29) by [~An -z rm[  finally results in 

< c'IAnI- I21251X I11 +I- X  12-i ml] 
c'l.L.l-i/ [2fiI.LI1/  +c'l.L1-1/=] < 5. 

Hence An is in a disk around - - m 2 7 r 2 ~  - 2  whose radius is independent of n. 

In order to apply Proposition 5.5 to ql and q3 we note that according to (5.19), 

(5.30) 
(5.31) 
(5.32) 

[] 

Aj()~) =cos[i~j)d/2(l+O()~-l))], j =  1,3, (5.33) 

as IAI tends to infinity, where, in obvious notation, Aj()~) denotes the discriminant of 

qj(x), j = l , 3 .  Next, denote by Aj,n an ~j-(anti)periodic eigenvalue of w"+qjw=}~w. 

Then Ej ,n=tgAj ,  ~ is a 2wj-(anti)periodic eigenvalue of r 1 6 2 1 6 2  and vice versa. 

Hence Proposition 5.5 immediately yields the following result. 

PROPOSITION 5.6. Let j = l  or 3. Then all the 2wj-( anti)periodic eigenvalues Ej,n, 

nEN0, associated with q lie in the half-strip Sj given by 

Sj = { E e  C: IIm(t2E)l <Cj ,  Re(t2E) < M j }  (5.34) 

for suitable constants Cj >0, Mj ER. The angle between the axes of the strips $1 and $3 

equals 20E (0, 2~r). 

Propositions 5.5 and 5.6 apply to any elliptic potential whether or not they are 

finite-gap. In our final step we shall now invoke Picard's Theorem 5.1 to obtain our 

characterization of elliptic finite-gap potentials. 

THEOREM 5.7. q is an elliptic finite-gap potential if and only if q is a Picard po- 

tential (i.e., if and only if for each E E C  every solution of ~"(z )+q(z)r162 is 

meromorphic with respect to z ). 

Proof. By Theorem 5.4 it remains to prove that a Picard potential is finite-gap. 

Hence we assume in the following that q is a Picard potential. Since all 2wj-(anti)periodic 
_ _  2 eigenvalues Ej,n of q yield zeros )~j,n-tjEj,n of the entire functions Aj(),) 2 -1 ,  the Ej,n 

have no finite limit point. Next we choose R > 0  large enough such that the exterior of 

the closed disk D(0, R) centered at the origin of radius R > 0  contains no intersection of 

$1 and $3 (defined in (5.34), i.e., 

(C\D(0,  R)) n ($1 NS3) -- O. (5.35) 
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Let Qj,+ (A) be the Floquet multipliers of qj (x), i.e., the solutions of 

# 2 - 2 A j p j + l  =0,  j =1,3.  (5.36) 

Then (5.35) implies that for EEC\D(O,R), at most one of the numbers QI(tlE) and 

~3(t3E) can be in {-1,  1}. In particular, at least one of the characteristic equations 

corresponding to the substitution z~z+Zwl or z--*2w~ (eft (5.3) and (5.4)) has two 

distinct roots. Since by hypothesis q is a Picard potential, Picard's Theorem 5.1 ap- 

plies and guarantees for all E E C \ D ( 0 ,  R) the existence of two linearly independent 

solutions r and r of r 1 6 2 1 6 2  which are elliptic of the second kind. 

Then wj,k(x)=r k=1,2,  are linearly independent Floquet solutions associ- 

ated with qj. Therefore the points )~ for which w"+qjw=)~w has only one Floquet 

solution are necessarily contained in D(0, R) and hence finite in number. This is true for 

both j = 1 and j =3. Applying Theorem 4.1 then proves that both ql and q3 are finite-gap 

potentials. 

By (2.8) (in slight abuse of notation) 

g dfk+l(ql(x)) --0, (5.37) E Cg-k dx 
k=0 

where gEN0, fk+l, k=O, ..., g, are differential polynomials in ql homogeneous of degree 

2k+2 (cf. (2.9)), and Ck, k=O, ...,g, are complex constants. Since 

q~t) (x) = ttl+2q (0 (z) (5.38) 

(where z=tlx+zo), we obtain 

g 

E C9 kt2k+3 dfk+l (q(z)) ~- O, ( 5 . 3 9 )  
- dz 

k=0 

i.e., q is a finite-gap potential as well. A similar argument would have worked using the 

relationship between q3 and q. In particular, the order of the operators commuting with 

d2/dz2+q(z), d2/dx2+ql(x), and d2/dx2+q3(x), respectively, is the same in all cases, 

namely 29+ 1. [] 

We add a series of remarks further illustrating the significance of Theorem 5.7. 

Remark 5.8 (complementing Picard's theorem). Theorem 5.7 extends and comple- 

ments Picard's Theorem 5.1 in the sense that it determines the elliptic functions q(z) 
which satisfy the hypothesis of the theorem precisely as (elliptic) finite-gap solutions of 

the stationary KdV hierarchy. 
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Remark 5.9 (characterization of elliptic finite-gap potentials). While an explicit 

proof of the finite-gap property of q in general is highly nontrivial (see, e.g., the refer- 

ences cited in connection with special cases such as the Lamg~-Ince and Treibich-Verdier 

potentials in Remark 5.11 below), the fact of whether or not r162162 
has a fundamental system of solutions meromorphic in z for a finite (but sufficiently 

large) number of the spectral parameter E E C  can be decided by means of an elementary 

Frobenius-type analysis (see, e.g., [36] and [37]). To date Theorem 5.7 appears to be the 

only effective tool to identify general elliptic finite-gap solutions of the KdV hierarchy. 

Thus Theorem 5.7 provides an explicit characterization of all elliptic finite-gap solutions 

of the stationary KdV hierarchy, a problem posed, e.g., by Novikov et al. in [59, p. 152]. 

Remark 5.10 (reduction of Abelian integrals). Theorem 5.7 is also relevant in the 

context of the Weierstrass theory of reduction of Abelian to elliptic integrals, a subject 

that  at tracted considerable interest, see, e.g., [6], [7], [8, Chapter 7], [9], [10], [23], [24], 

[25], [45], [47], [51], [68], [70]. In particular, the theta functions corresponding to the 

hyperelliptic curves derived from the Burchnall-Chaundy polynomials (2.15), associated 

with Picard potentials, reduce to one-dimensional theta functions. 

Remark 5.11 (computation of genus and branch points). While Theorem 5.7 charac- 

terizes all elliptic finite-gap potentials as Picard potentials, it does not yield an effective 

way to compute the underlying hyperelliptic curve Kg; in particular, its proof provides 

no means to compute the branch and singular points nor the (arithmetic) genus g of Kg. 
To the best of our knowledge Kg has been computed only for Lamg~-Ince potentials and 

certain Treibich-Verdier potentials (see, e.g., [5], [10], [47], [59], [68], [70], [77], [79], [80]). 

Even the far simpler task of computing g has only been achieved in the case of Lam~-Ince 

potentials (see [43] and [74] for the real and complex-valued case, respectively). In [36], 

[37], and [38] we have treated these problems for Lam~-Ince, Treibich-Verdier, and el- 

liptic finite-gap potentials even with respect to some zoEC, respectively. In particular, 

in [37] we computed g for all Treibich-Verdier potentials and in [38] we reduced the com- 

putation of the branch and singular points of K 9 for any even elliptic finite-gap potential 

to the solution of linear algebraic eigenvalue problems. We refrain from reproducing a 

detailed discussion of this matter  here, instead we just  recall an example taken from [37] 

which indicates some of the subtleties involved: Consider the potentials 

q4 (z) ---- - 2 0 P  (z - wj) - 12T ~ (z - wk), (5.40) 

Oa(z) = -20P(z-wj)  - 6 P ( z - 0 ; k ) - 6 P ( z - w ~ ) ,  (5.41) 

qh(z) = -30P(z-wj)  --2P(z--wk), (5.42) 

~5(z) = --12P(z--w3)--X2P(a--~zk)--6P(z--wt)--2P(z--w,~), (5.43) 
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where j,  k, l, m E ( 1,2, 3, 4} (w2 =wl +w3, w4 = 0) are mutually distinct. Then qa and q4 

correspond to (arithmetic) genus g=4 while q5 and ~5 correspond to g=5.  However, we 

emphasize that  all four potentials contain precisely 16 summands of the type -27~(x-bn) 

(cf. the discussion following (1.10)). q5 and (~5 are isospectral (i.e., correspond to the same 

curve K5) while qa and qa are not. 

Remark 5.12 (generalizations). Finally, we remark that  Theorems 5.1 and 5.4 and 

Propositions 5.5 and 5.6 extend to n th  order operators L~. We have decided to restrict 

this paper to the second-order case L2 =d2/dx 2 +q(x) since the corresponding generaliza- 

tion of Theorem 4.1 to algebro-geometric finite-gap solutions of the stationary Gelfand- 

Dickey (GD) hierarchy is beyond the scope of this paper. (Even though a recursion 

relation formalism for the GD hierarchy analogous to the KdV case in (2.1)-(2.21) exists 

in principle, the explicit construction of a monic differential expression Pr of order r 

(r and n relatively prime) commuting with L~, along the lines of our proof of Theo- 

rem 4.1, is a formidable task which obscures the remarkable simplicity of our argument 

displayed in the proof of Proposition 5.5.) Here we just mention the fact that  if L~ 

is a Picard differential expression (in the sense that  L,~r162 has a fundamental 

system of solutions meromorphic in z for each EEC) then the number of E-values where 

there exist less than n Floquet solutions for L n r 1 6 2  is finite in number. 

Acknowledgments. R. Weik~rd gratefully acknowledges support by the National Sci- 

ence Foundation. 

References  

[1] ABRAMOWITZ, M. & STEGUN, I.A., Handbook of Mathematical Functions. Dover, New 
York, 1972. 

[2] AIRAULT, H., MCKEAN, H.P.  ~z MOSER, J., Rational and elliptic solutions of the Korte- 
weg-de Vries equation and a related many-body problem. Comm. Pure Appl. Math., 30 
(1977), 95-148. 

[3] AEHIEZER, N.I., Elements of the Theory of Elliptic Functions. Amer. Math. Soc., Provi- 
dence, RI, 1990. 

[4] AL'BER, S.I., Investigation of equations of Korteweg-deVries type by the method of re- 
currence relations. J. London Math. Soc., 19 (1979), 467-480. 

[5] ARSCOTT, F.M., Periodic Differential Equations. MacMillan, New York, 1964. 
[6] BABICH, M.V., BOBENKO, A.I. & MATVEEV, V.B.,  Reductions of Riemann theta- 

functions of genus g to theta-functions of lower genus, and symmetries of algebraic 
curves. Soviet Math. Dokl., 28 (1983), 304-308. 

[7] - -  Solutions of nonlinear equations integrable in Jacobi theta functions by the method of 
the inverse problem, and symmetries of algebraic curves. Math. USSR-Izv., 26 (1986), 
479-496. 



104 F. GESZTESY AND R. WEIKARD 

[8] BELOKOLOS, E.D., BOBENKO, A.I., ENOL'SKII, V.Z., ITS, A.R. & MATVEEV, V.B., 
Algebro-Geometric Approach to Nonlinear Integrable Equations. Springer-Vertag, Berlin, 
1994. 

[9] BELOKOLOS, E.D., BOBENKO, A.I., MATVEEV, V.B. ~ ENOL'SKII, V.Z., Algebraic- 
geometric principles of superposition of finite-zone solutions of integrable non-linear 
equations. Russian Math. Surveys, 41:2 (1986), 1-49. 

[10] BELOKOLOS, E. D. ~ ENOL'SKII, V. Z., Verdier elliptic solitons and the Weierstrass theory 
of reduction. Functional Anal. Appl., 23 (1989), 46-47. 

[11] - -  Reduction of theta functions and elliptic finite-gap potentials. Acta Appl. Math., 36 
(1994), 87-117. 

[12] BIRNIR, B., Complex Hill's equation and the complex periodic Korteweg-de Vries equations. 
Comm. Pure Appl. Math., 39 (1986), 1-49. 

[13] - -  Singularities of the complex Korteweg-deVries flows. Comm. Pure Appl. Math., 39 
(1986), 283-305. 

[14] BURCHNALL, J. L. &: CHAUNDY, T. W., Commutative ordinary differential operators. Proc. 
London Math. Soe. (2), 21 (1923), 420-440. 

[15] - -  Commutative ordinary differential operators. Proc. Roy. Soc. London Ser. A, 118 (1928), 
557-583. 

[16] BURKHARDT, H., Elliptische Funktionen, 2nd edition. Verlag von Veit, Leipzig, 1906. 
[17] CALOGERO, F., Exactly solvable one-dimensional many-body problems. Lett. Nuovo Ci- 

mento, 13 (1975), 411-416. 
[18] CHUDNOVSKY, D. V., Meromorphic solutions of nonlinear partial differential equations and 

many-particle completely integrable systems. J. Math. Phys., 20 (1979), 2416-2422. 
[19] DICKEY, L.A., Soliton Equations and Hamiltonian Systems. World Scientific, Singapore, 

1991. 
[20] DUBROVIN, B.A., Periodic problems for the Korteweg-deVries equation in the class of 

finite-gap potentials. Functional Anal. Appl., 9 (1975), 215-223. 
[21] - -  Theta functions and non-linear equations. Russian Math. Surveys, 36:2 (1981), 11-92. 
[22] DUBROVIN, B.A. ~; NOVIKOV, S.P.,  Periodic and conditionally periodic analogs of the 

many-soliton solutions of the Korteweg-de Vries equation. Soviet Phys. JETP, 40 (1975), 
1058-1063. 

[23] ENOL'SKII, V.Z., On the solutions in elliptic functions of integrable nonlinear equations. 
Phys. Lett. A, 96 (1983), 327-330. 

[24] - -  On the two-gap Lam~ potentials and elliptic solutions of the Kovalevskaja problem 
connected with them. Phys. Left. A, 100 (1984), 463-466. 

[25] - -  On solutions in elliptic functions of integrable nonlinear equations associated with two- 
zone Larnd potentials. Soviet Math. Dokl., 30 (1984), 394-397. 

[26] ENOL'SKII, V. Z. ~ KOSTOV, N. A., On the geometry of elliptic solitons. Acta Appl. Math., 
36 (1994), 57-86. 

[27] FLOQUET, G., Sur les 6quations diff6rentielles lin6aires ~ coefficients doublement p~rio- 
diques. C. R. Aead. Sci. Paris, 98 (1884), 38-39, 82-85. 

[28] - -  Sur les 6quations diff6rentielles lin6aires ~ coefficients doublement p6riodiques. Ann. Sci. 
Eeole Norm. Sup. (3), 1 (1884), 181-238. 

[29] - -  Addition ~ un m~moire sur les ~quations diff6rentielles lin6aires. Ann. Sci. Ecole Norm. 
Sup. (3), 1 (1884), 405-408. 

[30] GASYMOV, M.G.,  Spectral analysis of a class of second-order non-self-adjoint differential 
operators. Functional Anal. Appl., 14 (1980), 11-15. 



PICARD POTENTIALS AND HILL'S EQUATION ON A TORUS 105 

[31] - -  Spectral analysis of a class of ordinary differential operators with periodic coefficients. 
Soviet Math. Dokl., 21 (1980), 718-721. 

[32] GEL'FAND, I. M. ~ DIKII, L. A., Asymptotic behaviour of the resolvent of Sturm-Liouville 
equations and the algebra of the Korteweg-de Vries equations. Russian Math. Surveys, 
30:5 (1975), 77-113. 

[33] - -  Integrable nonlinear equations and the Liouville theorem. Functional Anal. Appl., 13 
(1979), 6-15. 

[34] GESZTESY, F., On the modified Korteweg-de Vries equation, in Differential Equations with 
Applications in Biology, Physics, and Engineering (J. A. Goldstein, F. Kappel, and 
W. Schappacher, eds.), pp. 139-183. Marcel Dekker, New York, 1991. 

[35] GESZTESY, F. ~ WEIKARD, R., Spectral deformations and soliton equations, in Differential 
Equations with Applications to Mathematical Physics (W. F. Ames, E. M. Harrell II, and 
J .V.  Herod, eds.), pp. 101-139. Academic Press, Boston, 1993. 

[36] - -  Lain@ potentials and the stationary (m)KdV hierarchy. Math. Nachr., 176 (1995), 73-91. 
[37] - -  Treibich-Verdier potentials and the stationary (m)KdV hierarchy. Math. Z., 219 (1995), 

451-476. 
[38] - -  On Picard potentials. Differential Integral Equations, 8 (1995), 1453-1476. 
[39] - -  Floquet theory revisited. To appear in Differential Equations and Mathematical Physics 

(I. Knowles, ed.). International Press, Boston. 
[40] GUILLEMIN, V. ~ URIBE, A., Hardy functions and the inverse spectral method. Comm. 

Partial Differential Equations, 8 (1983), 1455-1474. 
[41] HALPHEN, G.-H.,  Traitd des fonction~ elliptiques, tome 2. Gauthier-Villars, Paris, 1888. 
[42] HERMITE, C., Oeuvres, tome 3. Ganthier-Villars, Paris, 1912. 
[43] INCE, E. L., Further investigations into the periodic Lam@ functions. Proc. Roy. Soc. Edin- 

burgh, 60 (1940), 83-99. 
[44] - -  Ordinary Differential Equations. Dover, New York, 1956. 
[45] ITS, A.R.  ~; ENOL'SKII, V. Z., Dynamics of the Calogero-Moser system and the reduction 

of hyperelliptic integrals to elliptic integrals. Functional Anal. Appl., 20 (1986), 62-64. 
[46] ITS, A.R.  & MATVEEV, V.B. ,  SchrSdinger operators with finite-gap spectrum and N- 

soliton solutions of the Korteweg-de Vries equation. Theoret. and Math. Phys., 23 (1975), 
343-355. 

[47] KOSTOV, N. A. ~ ENOL'SKII, V. Z., Spectral characteristics of elliptic solitons. Math. Notes, 
53 (1993), 287-293. 

[48] KRAUSE, M., Theorie der doppeltperiodischen Funktionen einer veriinderlichen Gr5sse, 
Vol. 2. Teubner, Leipzig, i897. 

[49] KRICHEVER, I. M., Integration of nonlinear equations by the methods of algebraic geometry. 
Functional Anal. Appl., 11 (1977), 12-26. 

[50] - -  Methods of algebraic geometry in the theory of non-linear equations. Russian Math. 
Surveys, 32:6 (1977), 185-213. 

[51] - -  Elliptic solutions of the Kadomtsev-Petviashvili  equation and integrable systems of 
particles. Functional Anal. Appl., 14 (1980), 282-290. 

[52] - -  Nonlinear equations and elliptic curves. Revs. Sei. Technology, 23 (1983), 51-90. 
[53] - -  Elliptic solutions of nonlinear integrable equations and related topics. Acta Appl. Math., 

36 (1994), 7-25. 
[54] MCKEAN, H . P .  ~ MOERBEKE, P. VAN, The spectrum of Hill's equation. Invent. Math., 

30 (1975), 217-274. 
[55] MITTAG-LEFFLEa, G., Sur les @quations diff@rentielles lin@aires ~ coefficients doublement 

p@riodiques. C. R. Acad. Sci. Paris, 90 (1880), 299-300. 



106 F. GESZTESY AND R. WEIKARD 

[56] MOSEa, J., Integrable Hamiltonian Systems and Spectral Theory. Lezioni Fermiani, Aca- 
demia Nazionale dei Lincei, Scuola Normale Superiore, Pisa, 1981. (Preprint, ETH, 
Ziirich, 1982.) 

[57] - -  Three integrable Hamiltonian systems connected with isospectral deformations. Adv. 
Math., 16 (1975), 197-220. 

[58] NOVIKOV, S.P. ,  The periodic problem for the Korteweg-deVries equation. Functional 
Anal. Appl., 8 (1974), 236-246. 

[59] NOVIKOV, S .P . ,  MANAKOV, S.V.,  PITAEVSKII, L .P .  & ZAKHAROV, V.E . ,  Theory o] 
Solitons. Consultants Bureau, New York, 1984. 

[60] PASTUR, L.A.  ~: TKACHENKO, V. A., Spectral theory of SchrSdinger operators with peri- 
odic complex-valued potentials. Functional Anal. Appl., 22 (1988), 156-158. 

[61] - -  An inverse problem for a class of one-dimensional SchrSdinger operators with a complex 
periodic potential. Math. USSR-Izv., 37 (1991), 611-629. 

[62] - -  Geometry of the spectrum of the one-dimensional SchrSdinger equation with a periodic 
complex-valued potential. Math. Notes, 50 (1991), 1045-1050. 

[63] PICARD, E., Sur une g6n~ralisation des fonctions p6riodiques et sur certaines ~quations 
diff6rentielles lin6aires. C. R. Acad. Sci. Paris, 89 (1879), 140-144. 

[64] - -  Sur une classe d'6quations diff6rentielles lin6aires. C. R. Acad. Sci. Paris, 90 (1880), 
128-131. 

[65] - -  Sur les 6quations diff6rentielles lin6aires ~ coefficients doublement p6riodiques. J. Reine 
Angew. Math., 90 (1881), 281-302. 

[66] ROFE-BEKETOV, F. S., The spectrum of non-selfadjoint differential operators with periodic 
coefficients. Soviet Math. Dokl., 4 (1963), 1563-1566. 

[67] SEGAL, G. ~ WILSON, G., Loop groups and equations of KdV type. Inst. Hautes Etudes 
Sci. Publ. Math., 61 (1985), 5-65. 

[68] SMIRNOV, A.O., Elliptic solutions of the Korteweg-deVries equation. Math. Notes, 45 
(1989), 476-481. 

[69] - -  Finite-gap elliptic solutions of the KdV equation. Acta Appl. Math., 36 (1994), 125-166. 
[70] TAIMANOV, I .A. ,  Elliptic solutions of nonlinear equations. Theoret. and Math. Phys., 84 

(1990), 700-706. 
[71] - -  On the two-gap elliptic potentials. Acta Appl. Math., 36 (1994), 119-124. 
[72] TKACHENKO, V. A., Discriminants and generic spectra of non-selfadjoint Hill's operators.. 

Adv. Soviet Math., 19 (1994), 41-71. 
[73] TREIBICH, A., New elliptic potentials. Acta Appl. Math., 36 (1994), 27-48. 
[74] TREIBICH, A. & VERDIER, J.-L.,  Solitons elliptiques, in The Grothendieck Festschrift, 

Vol. III  (P. Cartier, L. Illusie, N.M. Katz, G. Laumon, Y. Manin, and K.A. Ribet, 
eds.), pp. 437-480. Birkh~iuser, Basel, 1990. 

[75] - -  Rev~tements tangentiels et sommes de 4 hombres triangulaires. C. R. Acad. Sci. Paris 
Sdr. I Math., 311 (1990), 51-54. 

[76] - -  Rev~tements exceptionnels et sommes de 4 nombres triangulaires. Duke Math. J., 68 
(1992), 217-236. 

[77] TUP~mNEa, A.V. ,  Lam6 equation, sl(2) algebra and isospectral deformations. J. Phys. A, 
22 (1989), L1-L3. 

[78] VERDIER, J.-L.,  New elliptic solitons, in Algebraic Analysis (M. Kashiwara and T. Kawai, 
eds.), pp. 901-910. Academic Press, Boston, 1988. 

[79] WARD, R. S., The Nahm equations, finite-gap potentials and Lam6 functions. J. Phys. A, 
20 (1987), 2679-2683. 



PICARD POTENTIALS AND HILL'S EQUATION ON A TORUS 107 

[80] WHITTAKER, E.T.  & WATSON, G.N., A Course of Modern Analysis. Cambridge Univ. 
Press, Cambridge, 1986. 

[81] WILSON, G., Commuting flows and conservation laws for Lax equations. Math. Proc. Cam- 
bridge Philos. Soc., 86 (1979), 131-143. 

FRITZ GESZTESY 
Department of Mathematics 
University of Missouri 
Columbia, MO 65211 
U.S.A. 
mathfg@mizzoul.missouri.edu 

RUDI WEIKARD 
Department of Mathematics 
University of Alabama at Birmingham 
Birmingham, AL 35294-1170 
U.S.A. 
rudi@math.uab.edu 

Received June 12, 1995 


