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1 Introduction

The Boussinesq equation

utt = (u2)xx + uxxxx

is known to have so called N -soliton solutions, i.e., solutions that
exhibit asymptotically (as t → ±∞) N solitary waves of the typical
sech2-form (see Hirota [5]). Here I am mainly interested in (a scaled
version of) the Boussinesq equation in imaginary time, specifically,

utt = −2

3
(u2)xx −

1

3
uxxxx. (1)

This equation renders “inelastic solitons”, i.e., solitary waves of the
sech2-form which may stick together after interaction thus forming a
new sech2-wave (see Figure 1).

These inelastic solitons can be obtained via an auto-Bäcklund
transformation for the Gelfand-Dickey system associated with the
Boussinesq-type equation.1 In the following I will define what Gel-
fand-Dickey systems and their “modified” counterparts, the Drinfeld-
Sokolov systems, are. Section 2 then reviews the above mentioned

1As I realized only after finishing this work these solutions were obtained
earlier by Tajiri and Nishitani (J. Phys. Soc. J., 51:3720–3723, 1982) and by
Lambert, Musette and Kesteloot (Inv. Prob., 3:275–288, 1987) using different
methods. However, the construction of these solutions in the present context
should be viewed as an illustration of how the auto-Bäcklund transformation of
Section 2 works.
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auto-Bäcklund transformation (see [3] and [4]). Section 3 describes
briefly (details will appear elsewhere) how the inelastic solitons are
constructed.

Gelfand-Dickey systems are most easily defined in terms of Lax
pairs. By a Lax pair is meant a pair of two ordinary differential
expressions

L = ∂nx + qn−2∂
n−2
x + ...+ q0,

P = ∂rx + pr−2∂
r−2
x + ...+ p0,

which are almost commuting, i.e., their commutator [P,L] is a dif-
ferential expression of order n − 2 only. Under an additional homo-
geneity condition it is always possible to find uniquely coefficients pj ,
j = 0, ..., r − 2 such that this holds (Wilson [7]). This distinguishes
between n and r and causes the two operators to play very different
roles. The Lax equation

dL

dt
= [P,L]

is then equivalent to a system of nonlinear evolution equations which
is called a Gelfand-Dickey system. In particular the well-known KdV
equation is recovered in the case n = 2 and r = 3, while the case
n = 3 and r = 2 yields the Boussinesq-type equation (1).

An important ingredient in the construction of the auto-Bäcklund
transformation is another system of evolution equations, the Drin-
feld-Sokolov system which is defined as follows: Given functions
ϕi(x, t), i = 1, ..., n such that their sum is identically equal to zero,
construct the matrix

M =


0 ........ 0 ∂x + ϕn

∂x + ϕ1 ........ 0 0
0 ........ 0 0
...

. . .
...

...
0 ........ ∂x + ϕn−1 0

 .

ThenMn = diag(L1, ..., Ln) where each Lj has the form of the above
L:

Lj = (∂x + ϕn+j−1)...(∂x + ϕj)

= ∂nx + qj,n−2∂
n−2
x + ...+ qj,1∂x + qj,0. (2)
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Note that Lj is obtained from Lj−1 by commuting the first n − 1
factors with the last one. This basic idea of commutation goes back
to Darboux and was used by Deift [1] to construct the N -soliton
solution of the KdV equation.

Now let Q = diag(P1, P2, ..., Pn) where Pj , j = 1, ..., n is the
uniquely defined differential expression of order r that almost com-
mutes with Lj . Then

dM

dt
= [Q,M ]

is equivalent to a system of n−1 nonlinear evolution equations, called
the Drinfeld-Sokolov system or modified Gelfand-Dickey system.

2 An Auto-Bäcklund Transformation

Given a solution of the Drinfeld-Sokolov system, i.e., a set of ϕj ,
j = 1, ..., n such that dM/dt = [Q,M ] then it is easy to see that this
implies d(Mn)/dt = [Q,Mn], which is equivalent to

dLj

dt
= [Pj , Lj ], j = 1, ..., n.

This means one has found n solutions of the associated Gelfand-
Dickey system. This observation is due to Sokolov and Shabat [6].
Now the following question arises: Is it possible to reverse this process
and to construct a solution ϕj , j = 1, ..., n of the Drinfeld-Sokolov
system given a solution of the Gelfand-Dickey system? If so then
one has immediately n− 1 new solutions of the Gelfand-Dickey sys-
tem. It is precisely this question which was answered affirmatively
by Gesztesy and Simon in [2] in the case of the KdV equation and
by Gesztesy, Race and myself in [3] in the case of a Boussinesq-type
equation.

The answer in the general case was given in [4]. The method there
allows the coefficients of L to be matrices with entries in some com-
mutative algebra with two independent derivations. For simplicity,
however, I give in the following the scalar version using just functions
of x and t as coefficients of L.
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Theorem 1 (Gesztesy, Race, Unterkofler, W.) Suppose that
(qn−2, ..., q0) is a real-valued solution of the Gelfand-Dickey system.
Also assume that the qi and their x-derivatives up to order r + i are
continuous functions in IR2. Let ψ1, ..., ψn be a fundamental system
of solutions of Lψ = 0 and ψt = Pψ and define ϕ1, ..., ϕn according
to

ϕk = − ∂

∂x
log

∣∣∣∣ Wk

Wk−1

∣∣∣∣
where W0 = 1 and Wk = W (ψ1, ..., ψk), the Wronskian of ψ1, ..., ψk

for k = 1, ..., n. (Note that this implies that
∑n

k=1 ϕk = 0.) Then
(ϕ1, ..., ϕn) satisfies the Drinfeld-Sokolov system. Furthermore de-
fine qk,i, k = 1, ..., n, i = 0, ..., n − 2 through (2). Then each tuple
(qk,n−2, ..., qk,0) satisfies the Gelfand-Dickey system. In particular
(q1,n−2, ..., q1,0) = (qn−2, ..., q0).

One can allow for an “energy” parameter λ and consider Lψ = λψ
instead of Lψ = 0. The method can now be applied repeatedly to
construct new solutions in each step, i.e., new operators Lj,1 = Lj−1,2

starting from a given L0,1. This way one may derive the following
formula

qj,1,n−2 = q0,1,n−2 + n(logW (ψ1,1, ..., ψj,1))xx, (3)

where qi,1,n−2 is the leading non-trivial coefficient in Li,1 and ψi,1 is
a solution of L0,1ψ = λiψ and P0,1ψ = ψt.

In general the solutions constructed by the method described
above may have singularities since the Wronskians used may have
zeros. In the KdV case as well as in the Boussinesq-type case it
is possible to show that under certain conditions the new solutions
inherit some properties from the original solution.

Theorem 2 (Gesztesy, Race, W.) Let (q1, q0) be such that the
Gelfand-Dickey system for n = 3, r = 2 is satisfied. Furthermore

assume that qi, ..., q
(3+i)
i are in C0(IR2) ∩ L∞(IR2) and that Lψ = 0

is disconjugate at time t0.
Then Lψ = 0 is disconjugate at all times. Moreover, for a suitable

choice of a solution system (ψ1, ..., ψn), the solutions constructed in
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Theorem 1 satisfy the same smoothness and boundedness conditions
as the original one, in particular there are no local singularities.

A similar result was proven by Gesztesy and Simon [2] for the KdV
case.

3 Inelastic Solitons

A solution of the Gelfand-Dickey system for n = 3 and r = 2

q1t = 2q0x − q1xx, q0t = q0xx −
2

3
(q1xxx + q1q1x)

yields at once a solution of the Boussinesq-type equation

utt = −1

6
a(u2)xx + buxx −

1

3
uxxxx

upon letting u = (4q1 + 3b)/a (a ̸= 0). The Lax pair associated to
this Gelfand-Dickey system is

L = ∂3x + q1∂x + q0, P = ∂2x +
2

3
q1.

Starting now from the trivial solution where both coefficients q1 =
q1,1 and q0 = q1,0 of L = L1 are constant, new nontrivial solutions of
the Boussinesq-type equation are constructed. The coefficient q2,1 of
L2 is given in terms of one solution ψ1 of Lψ = 0 and Pψ = ψt as

q2,1 = q1,1 + 3(logψ1)xx.

A fundamental system of solutions of Lψ = 0 and Pψ = ψt is of
course given by a set of exponential functions. If ψ1 is now chosen
to be one of these exponential functions then q2,1 = q1,1, i.e., no new
solution is constructed. If ψ1 is chosen to be a linear combination
of two of these exponentials then one obtains a one-soliton solution,
i.e., a sech2-wave. This solution, however, involves two parameters
instead of one in the Boussinesq case.

However if one linearly combines all three of the exponentials then
something unexpected happens: initially there are two solitons well
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separated moving with constant velocity towards each other. When
they eventually get into the same region they collide inelastically,
i.e., one soliton only emerges after the interaction. This situation
is shown in Figure 1, where q2,1 − q1,1 is plotted as a function of x
for five different t. Defining the mass of a soliton to be the product
of height and width then mass as well as momentum are conserved
during this collision but (kinetic) energy gets destroyed.

Considering q3,1 instead of q2,1 or performing the transformation
t → −t shows that one can also have the reverse situation, namely
a single soliton moving along that all of a sudden decays into two
different solitons under conservation of mass and momentum but
producing kinetic energy while it decays.

Finally using the method of repeated commutation, i.e., formula
(3) one can construct other interesting solutions. In the case j = 2
one gets according to the different possibilities of linearly combining
ψ1,1 and ψ2,1 out of appropriate exponential functions besides the
already known two further phenomena:

– Two elastically interacting solitons moving towards each other or
following each other. In contrast to the Boussinesq case the
smaller one is here the faster one. This situation is shown in
Figure 2.

– Three solitons two of which collide inelastically forming one soliton
after the collision while the third interacts elastically with both
of the other two. This situation is shown in Figure 3.
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Figure 1: Two inelastically colliding solitons.
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Figure 2: Two solitons interacting elastically the smaller one being
faster than the bigger one.
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Figure 3: Three solitons, two of which collide inelastically while the
third one is interacting elastically with both of the others.
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