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1. Introduction

This extended abstract is a summary of the main results in [4]. We consider a stability result for
the inverse problem associated with the Sturm-Liouville equation

−y′′ + q0(x)y = λy, x ∈ (0, 1),

in which the potential q0 ∈ L2(0, 1) is allowed to be complex-valued and the spectral data consists of
the firstN Dirichlet-Dirichlet eigenvalues and the firstN Dirichlet-Neumann eigenvalues, determined
to within an accuracy ε. As the spectral data is finite the problem may be expected to have infinitely
many solutions (this appears to be unproven in the non-selfadjoint case). The usual philosophy in
the numerical analysis literature is to construct recovery algorithms which select one of the infinitely
many possible solutions. Numerical experiments are then carried out in which finite spectral data
are generated from some known potential and the algorithm is declared to be good or bad according
to how well it manages to recover the selected potential, in some norm. This process is meaningless
unless one can prove that all of the infinitely many solutions to the finite data inverse problems are
‘close’, in some suitable sense. The point of this article is to establish such results. For reviews of
reconstruction methods for inverse Sturm-Liouville problems see Rundell [10] and McLauglin [6].

There appears to be little published on stability for inverse Sturm-Liouville problems with finite
data. For full data and a real potential, Ryabushko [12] proves the result

‖q1 − q2‖2 ≤ C(‖λ(q1)− λ(q2)‖2 + ‖µ(q1)− µ(q2)‖2) (1)

where λ is the sequence of Dirichlet-Dirichlet eigenvalues, µ is the sequence of Dirichlet-Neumann
eigenvalues, and ‖ · ‖2 denotes either the norm in L2(0, 1) or in `2(N) as appropriate. The potentials
q1 and q2 are assumed to have the same mean value. McLaughlin [5] proved that when the average
value of the potential is zero, there is a local diffeomorphism between the potential in L2(0, 1) and
the sequences {λn−n2π2, ρn} in `2× `2, where {ρn} are the ‘norming constants’. The closest result
to ours, in spirit, is that of Hitrik [1], which concerns an inverse scattering problem in L2(R) when
finitely many values of the reflection coefficient are known.

Notation We use the notation f (n,m)(x0, y0) to denote the value at (x0, y0) of the partial derivative
∂n+mf
∂xn∂ym , since it will be particularly important to indicate the points at which partial derivatives are
evaluated.

2. Statement of the main result

Assume q0 and q are complex-valued functions in L2([0, 1]). Let λj(q), j ∈ N denote the eigen-
values of the boundary value problem

−y′′ + qy = λy, y(0) = 0, y(1) = 0

and assume that they are repeated according to their algebraic multiplicities. Similarly, let µj(q),
j ∈ N be the eigenvalues of the boundary value problem

−y′′ + qy = λy, y(0) = 0, y′(1) = 0
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also repeated according to their algebraic multiplicities. The quantities λj(q0) and µj(q0) denote
the eigenvalues of those problems where q is replaced by q0. We will always assume that these
eigenvalues are labeled in such a way that identical values are adjacent and that their moduli form
nondecreasing sequences.

The main result of [4] is the following:

Theorem 2.1. Assume q0 and q are complex-valued functions in L2([0, 1]) with the same mean
value. Define aj = |λj(q) − λj(q0)| and bj = |µj(q) − µj(q0)| and let ε0 > 0 and N0 ∈ N be fixed.
Then there exists a constant C, depending only on q0, ε0, and N0 such that the following is true:

If 0 ≤ ε ≤ ε0, N ≥ N0, and max{a1, ..., aN , b1, ..., bN} ≤ ε then∣∣∣∣∫ x

0

(q(t)− q0(t))dt
∣∣∣∣ ≤ C exp(‖q‖2)

(
ε logN +

‖a‖2 + ‖b‖2
N1/2

)
for all x ∈ [0, 1].

In fact this result is obtained as a result of a proof which also establishes the following.

Theorem 2.2. With the notation of Theorem 2.1, for all x ∈ [0, 1]∣∣∣∣∫ x

0

(q(t)− q0(t))dt
∣∣∣∣ ≤ C exp(‖q‖2)

(∥∥∥{aj/j}∞j=1

∥∥∥
1

+
∥∥∥{bj/j}∞j=1

∥∥∥
1

)
.

3. The transformation operator

We introduce the transformation operator (see, e.g., Levitan [3]). Let D0 and D be the sets

D0 = {y ∈ AC([0, 1]) : y′ ∈ AC([0, 1]),−y′′ + q0y ∈ L2([0, 1]), y(0) = 0}

and
D = {Y ∈ AC([0, 1]) : Y ′ ∈ AC([0, 1]),−Y ′′ + qY ∈ L2([0, 1]), Y (0) = 0}.

Then there exists an integral operator K : D0 → D, the transformation operator, defined by

Y (x) = (Ky)(x) = y(x) +
∫ x

0

K(x, t)y(t)dt (2)

such that −(Ky)′′ + qKy = K(−y′′ + q0y) for all y ∈ D0. The kernel of this operator can be
characterized in two ways. Firstly, it admits an expansion

K(x, t) =
∞∑

n=0

Kn(x, t)

where

K0(x, t) =
1
2

∫ (x+t)/2

(x−t)/2

(q(s)− q0(s))ds

and

Kn(x, t) =
∫ (x+t)/2

(x−t)/2

∫ (x−t)/2

0

(q(α+ β)− q0(α− β))Kn−1(α+ β, α− β)dβdα.

Secondly, it can also be written as follows. Let f = K(1, ·) and g = Kx(1, ·) = K(1,0)(1, ·) and
extend f and g to odd functions on [−1, 1]. f is absolutely continuous and g is integrable. Let

K̃0(x, t) =
1
2

∫ x+t−1

x−t−1

(f ′(s) + g(s))ds (3)

and

K̃n(x, t) =
1
2

∫ 1

x

∫ t−x+u

t+x−u

(q(u)− q0(v))K̃n−1(u, v)dvdu (4)
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Then one has the second representation of K(x, t) given by

K(x, t) =
∞∑

n=0

K̃n(x, t) (5)

By induction, the functions K̃n may be shown to satisfy the inequality

|K̃n(x, t)| ≤ ‖K̃0‖∞
Qn(1− x)3n/2

n!
(6)

where Q = (‖q‖22 + ‖q0‖22)1/2 ≤ ‖q‖2 + ‖q0‖2. As an immediate consequence of this result we obtain

Theorem 3.1. Suppose that q, q0 ∈ L2([0, 1]). Then∣∣∣∣∫ x

0

(q − q0)(s)ds
∣∣∣∣ = 2|K(x, x)| ≤ 4 exp(‖q‖2 + ‖q0‖2)‖K̃0‖∞.

�
In order to connect this estimate to the differences λj(q)− λj(q0) and µj(q)− µj(q0) we use the

definition (3) of K̃0 in terms of the functions f = K(1, ·) and g = Kx(1, ·). The problem of estimating
‖K̃0‖∞ is reduced to the problem of estimating ‖f‖∞ and ‖G‖∞, where G(ξ) =

∫ ξ

0
g(s)ds. To do

this we introduce some notation.
We denote by s(λ, ·) the solution of the initial value problem

−y′′ + qy = λy, y(0) = 0, y′(0) = 1

and by s0(λ, ·) the corresponding solution for the potential q0. The λj(q) are the zeros of s(·, 1)
while the µj(q) are the zeros of s′(·, 1). The transformation equation (2) yields

s(λ, x) = s0(λ, x) +
∫ x

0

K(x, t)s0(λ, t)dt. (7)

Algebraically simple eigenvalues. Suppose that all the λk(q0) are algebraically simple. Evalu-
ating (7) at x = 1, λ = λk(q0) yields, upon recalling that K(1, t) = f(t),

s(λk(q0), 1) =
∫ 1

0

f(t)s0(λk(q0), t)dt. (8)

Similarly, evaluating at λk(q) yields

0 = s0(λk(q), 1) +
∫ 1

0

f(t)s0(λk(q), t)dt. (9)

Define

αk :=
√

2 kπ
∫ 1

0

f(t)s0(λk(q0), t)dt. (10)

Equations (8,9,10) together with the fact that s0(λk(q0), 1) = 0 imply that

αk√
2 kπ

= s0(λk(q0), 1)− s0(λk(q), 1) +
∫ 1

0

f(t) (s0(λk(q0), t)− s0(λk(q), t)) dt. (11)

Elementary estimates now yield
|αk|√
2 kπ

≤ (1 + ‖f‖1)‖s0(λk(q0), ·)− s0(λk(q), ·)‖∞

≤ (1 + ‖f‖1)|λk(q0)− λk(q)| sup
λ∈[λk(q0),λk(q)]

∥∥∥s(1,0)
0 (λ, ·)

∥∥∥
∞
.

(12)

(Note that the interval [λk(q0), λk(q)] is, in general, a straight line-segment in C.) Further progress
now depends on asymptotic estimates of the solution s0 and of its partial derivatives with respect
to λ, as well as the corresponding estimates of the eigenvalues λj(q) and λj(q0). The following two
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results may be proved by standard techniques. The proofs are given in [4]. Note that the results do
not assume self-adjointness of the problem.

Lemma 3.2. Let z2 = λ, Im(z) ≥ 0, and suppose q0 ∈ L1(0, 1). Then there exist constants C and
C̃ not depending on q0 such that∣∣∣∣s0(λ, x)− sin(zx)

z

∣∣∣∣ ≤ C|z|−1

{
exp

(
|z|−1

∫ x

0

|q0(t)|dt
)
− 1
}
≤ C̃‖q0‖2

|z|2
, (|z| → ∞); (13)

moreover for every k ∈ N0 there exists a constant ck not depending on q0 such that

|s(k,0)
0 (λ, x)| ≤ ckeIm(z)x|z|−k−1 (14)

and
|s(k,1)

0 (λ, x)| ≤ ckeIm(z)x|z|−k. (15)

Lemma 3.3. Suppose that q0 and q lie in L2(0, 1). Then there exist sequences (βj(q0)) and (βj(q))
in `2 such that

λj(q0) = j2π2 + βj(q0), λj(q) = j2π2 + βj(q).
In particular, for all sufficiently large j the eigenvalues λj(q0) and λj(q) are simple.

Substituting these results back into (12) yields

|αk| ≤ C(Q)kπ(1 + ‖f‖1)
|λk(q)− λk(q0)|

k2π2
≤ π−1C(Q)(1 + ‖f‖2)

ak

k
(16)

where C = C(Q) is a constant depending only on Q = (‖q‖22 + ‖q0‖22)1/2. We now make some
observations about the numbers αk. Let φk = kπ

√
2s0(λk(q0), ·). Then from Lemma 3.2, eqn. (13),

the φk are quadratically close to orthonormal and hence may be shown to form a Riesz basis of
L2(0, 1) (Mihailov [9]). Consequently, the set of functions

ψk(x) = φk(x),

which are eigenfunctions of the problem with q0 replaced by q0, also form a Riesz basis of L2(0, 1).
Expanding f in a generalized Fourier series

f =
∞∑

k=1

γkψk, (17)

the coefficients γk are given by

γk =
(f, φk)
(ψk, φk)

=
αk

(ψk, φk)
= αk(1 + o(1)). (18)

Consequently

‖f‖2 ≤ C

( ∞∑
k=1

|αk|2
)1/2

≤ C(Q)(1 + ‖f‖2) ‖{ak/k}∞k=1‖2 .

Provided the norm
‖{ak/k}∞k=1‖2

is sufficiently small (less than 1/(2C(Q)), for instance) this establishes a bound on ‖f‖2. From (16)
and (18) it now follows that for some constant C = C(Q),

|γk| ≤ C(Q)
ak

k
. (19)

The functions ψk may be shown to satisfy a bound

sup
k∈N

‖ψk‖∞ < +∞. (20)

As an immediate corollary of (17), (19) and (20) we have the following result.
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Lemma 3.4. For some constant C = C(Q),

‖f‖∞ ≤ C(Q) ‖{ak/k}∞k=1‖1 . (21)

We now seek a similar bound on ‖G‖∞, where G(ξ) =
∫ ξ

0
g(s)ds.

Differentiating (7) with respect to x and evaluating at x = 1,

s′(λ, 1) = s′0(λ, 1) +
∫ 1

0

g(t)s0(λ, t)dt

where the boundary condition K(1, 1) = 0 has been used - this being an immediate consequence of
the fact that 2K(x, x) =

∫ x

0
(q(s)− q0(s))ds and the assumption that q and q0 have the same mean

value. Next observe that

s′(µk(q0), 1) =
∫ 1

0

g(t)s0(µk(q0), t)dt =
(g, ωk)√

2kπ
,

where ωk =
√

2kπs0(µk(q0), ·). Also,

0 = s′0(µk(q), 1) +
∫ 1

0

g(t)s0(µk(q), t)dt.

Defining βk = (g, ωk) we obtain

βk√
2 kπ

=
∫ 1

0

g(t)[s0(µk(q0), t)− s0(µk(q), t)]dt+ [s′0(µk(q0), 1)− s′0(µk(q), 1)].

Recalling that s′0 is s(0,1)
0 , we use the results of Lemmas 3.2 and 3.3 to obtain, by reasoning similar

to that used to obtain (16),

|βk| ≤ C(Q) k
[
bk
k2
‖g‖2 +

bk
k

]
(22)

where bk = |µk(q)− µk(q0)|. The quantity ‖g‖2 may be bounded a priori by the same reasoning as
we used to bound ‖f‖2, giving

|βk| ≤ C(Q)bk. (23)
As in the arguments which we followed for dealing with f , the functions ωk form a Riesz basis, as
do the functions ϕk = ωk. Expanding G as

G(ξ) =
∞∑

k=1

ηkϕk(ξ), (24)

the coefficients in (24) are given by

ηk =
(G,ωk)
(φk, ωk)

=
βk

(φk, ωk)
= βk(1 + o(1)).

In view of (23) we therefore have
|ηk| ≤ C(Q)bk.

Now

|G(ξ)| =

∣∣∣∣∣
∫ ξ

0

g(s)ds

∣∣∣∣∣ = |(χ[0,ξ], g)| ≤
∞∑

k=1

|ηk||(χ[0,ξ], ϕk)|.

The asymptotic estimates which yield

ϕk(x) ∼
√

2 sin(
√
µk(q0)x)

also give

(χ[0,ξ], ϕk) =
∫ ξ

0

ϕk(x)dx ∼
√

2√
µk(q0)

(1− cos(
√
µk(q0)ξ))

which is an O(1/k) quantity. Hence we have
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Lemma 3.5. The function G defined by G(ξ) =
∫ ξ

0
g(s)ds satisfies

‖G‖∞ ≤ C(Q) ‖{bk/k}∞k=1‖1 .

We can now prove Theorems 2.1 and 2.2, at least for the case of simple eigenvalues.
Proof of Theorems 2.1 and 2.2. In view of Theorem 3.1 and the remarks which follow it, for all
x ∈ [0, 1] ∣∣∣∣∫ x

0

(q − q0)(s)ds
∣∣∣∣ ≤ 4 exp(Q) {‖f‖∞ + ‖G‖∞} .

Lemmas 3.4 and 3.5 now yield the result of Theorem 2.2. In order to obtain the proof of Theorem
2.1, we make the estimates∥∥∥{aj/j}∞j=1

∥∥∥
1

=
N∑

j=1

aj

j
+

∞∑
j=N+1

aj

j

≤ ε
N∑

j=1

1
j

+

 ∞∑
j=N+1

|aj |2
1/2 ∞∑

j=N+1

j−2

1/2

≤ ε log(N + 1) +
‖(aj)‖2
N1/2

and similarly for
∥∥∥{bj/j}∞j=1

∥∥∥
1
. These yield the result of Theorem 2.1.

Multiple eigenvalues. The case of multiple eigenvalues involves various technicalities which are
described in detail in [4]. Here we only mention them briefly. Since the problem can possess at
most finitely many multiple eigenvalues we may assume without loss of generality that any multiple
eigenvalue is one of the first N which are approximated with accuracy ε.

Let λκ(q0) be an eigenvalue of multiplicity ν > 0. We may assume that there are ν eigenvalues
λκ(q), . . . , λκ+ν−1(q), counted according to algebraic multiplicity and therefore not necessarily dis-
tinct, in a disc of centre λκ(q0) and radius ε. For each t, let p(λ, t) and p0(λ, t) be, respectively,
the unique polynomials of degree at most (ν − 1) interpolating s(λ, t) and s0(λ, t) at the points
λκ(q), . . . , λκ+ν−1(q). From (7) we know that

p(λ, 1) = p0(λ, 1) +
∫ 1

0

f(t)p0(λ, t)dt

for λ = λκ(q), . . . , λκ+ν−1(q) and hence for all λ, since both sides of the equation are polynomials of
degree at most ν−1. We can therefore differentiate this formula ν− j−1 times, for j = 0, . . . , ν−1,
and obtain

p(ν−1−j,0)(λ, 1) = p
(ν−1−j,0)
0 (λ, 1) +

∫ 1

0

f(t)p(ν−1−j,0)
0 (λ, t)dt. (25)

We now observe that since s(λ, 1) = 0 at all of the points λκ(q), . . . , λκ+ν−1(q), the function p(λ, 1)
is identically zero. Thus the left hand side of (25) is identically zero, and in particular

0 = p
(ν−1−j,0)
0 (λκ(q0), 1) +

∫ 1

0

f(t)p(ν−1−j,0)
0 (λκ(q0), t)dt. (26)

The eigenfunction expansion of f is now replaced by an expansion in terms of eigen- and associated
functions. The part of this expansion associated with the root subspace of λκ(q0) has the form

ν−1∑
j=0

ακ+jφκ+j(x), (27)

where

φκ+j(x) =
j∑

k=0

γκ+j−k

k!
s
(k,0)
0 (λκ(q0), x),
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and the coefficients γκ+j−k are to be chosen. Define functions

ψκ+j(x) =
κπ

(ν − j − 1)!
s
(ν−j−1,0)
0 (λκ(q0), x).

The coefficients γκ+j−k can be chosen so that

(ψk, φj) = δk,j .

When this is done, the coefficients ακ+j in (27) are given by

ακ+j = (f, ψκ+j) =
κπ

(ν − 1− j)!

∫ 1

0

f(t)s(ν−1−j,0)
0 (λκ(q0), t)dt, j = 0, 1, . . . , ν − 1.

By virtue of (26) and the fact that s(ν−1−j,0)
0 (λj(q0), 1) = 0 we can write this equation in terms of

R(λ, t) := s0(λ, t)− p0(λ, t) as

ακ+j =
κπ

(ν − 1− j)!

∫ 1

0

f(t)R(ν−1−j,0)(λκ(q0), t)dt+R(ν−1−j,0)(λκ(q0), 1).

In [4] we use a result of Markushevich to establish the estimate

|R(ν−j−1)(λk(q0), t)| ≤ C2νεj+1 sup
|λ−λκ(q0)|=1

sup
t∈[0,1]

|s0(λ, t)|.

The term sup
|λ−λκ(q0)|=1

sup
t∈[0,1]

|s0(λ, t)| is bounded by a constant, in view of the asymptotic results

established for the solution s0 of the ODE. Thus the multiple eigenvalue contributes only an O(ε)
term to the coefficient ακ+j in the expansion of f . Again in view of L∞-bounds on the eigen- and
associated functions, this contributes only an O(ε) term to ‖f‖∞.

Similar arguments also hold for G when µκ(q0) is an eigenvalue of multiplicity greater than 1.

4. Extensions

We consider the possibility of improving the result in Theorem 2.1 in two ways: by strengthening
the norm, and by improving the factor of 1/

√
N in the error bound to something smaller.

The norm in Theorems 2.1 and 2.2 can be strengthened if one is prepared to make a-priori
assumptions about the boundedness of q−q0 in some stronger Sobolev space. For instance, Theorem
2.1 can be strengthened as follows.

Theorem 4.1. Suppose that q and q0 are complex-valued functions in in L2(0, 1) with the same
mean value. Suppose also that q − q0 lies in a bounded set in the Sobolev space Hn(0, 1). Let
aj = |λj(q) − λj(q0)| and bj = |µj(q) − µj(q0)|. Let ε0 ≥ 0 and N0 ∈ N be fixed. Then for each
−1 ≤ r ≤ n there exists a constant C depending only on ε0, N0, r and q0 such that the following
statement is true.

If 0 ≤ ε ≤ ε0, N ≥ N0, and max{a1, ..., aN , b1, ..., bN} ≤ ε then

‖q − q0‖Hr ≤ C

[
ε logN +

‖a‖2 + ‖b‖2√
N

](n−r)/(n+1)

.

Proof The hypothesis that q − q0 is bounded in Hn(0, 1) means that q lies in a bounded set in
L2(0, 1) determined by q0, since q0 ∈ L2(0, 1). Thus the term exp(‖q‖2) appearing in Theorem
2.1) can be absorbed into the constant C. The result is then immediate from standard results in
interpolation space theory, and in particular the inequality

‖f‖H(1−θ)r+θs ≤ C‖f‖1−θ
Hr ‖f‖θ

Hs ,

for 0 ≤ θ ≤ 1 (see, e.g., McLean [7]). �
Notice that q and q0 are not each required to be in Hn for this result: it is enough that their

difference lie in Hn. The technique of Rundell and Sacks [11] for solving the inverse problem by
finding some approximation q to q0 has the property that q − q0 is smoother than q0, and so this
improved error bound is available.
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