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Toward a Characterization of Elliptic Solutions
of Hierarchies of Soliton Equations

F. Gesztesy and R. Weikard

Abstract. The current status of an explicit characterization of all elliptic

algebro-geometric solutions of hierarchies of soliton equations is discussed and

the case of the KdV hierarchy is considered in detail. More precisely, we review
our recent result that an elliptic function q is a solution of some equation of

the stationary KdV hierarchy, if and only if the associated differential equation

ψ′′(E, z)+q(z)ψ(E, z) = Eψ(E, z) has a meromorphic fundamental system for
every complex value of the spectral parameter E.

This result also provides an explicit condition under which a classical

theorem of Picard holds. This theorem guarantees the existence of solutions
which are elliptic of the second kind for second-order ordinary differential

equations with elliptic coefficients associated with a common period lattice.
The fundamental link between Picard’s theorem and elliptic algebro-geometric

solutions of completely integrable hierarchies of nonlinear evolution equation

is the principal new aspect of our approach.
In addition, we describe most recent attempts to extend this circle of

ideas to n-th-order scalar differential equations and first-order n × n systems

of differential equations with elliptic functions as coefficients associated with
Gelfand-Dickey and matrix-valued hierarchies of soliton equations.

1. Introduction

The principal purpose of this review is to describe the basic ideas underlying
an efficient characterization of elliptic algebro-geometric solutions of general hier-
archies of soliton equations. Since at this time the only case worked out in all
details is that of the KdV hierarchy, we will focus to a large extent on this case
and turn in our final two sections to possible extensions to the Gelfand-Dickey and
matrix-valued hierarchies.

Before describing our approach in some detail, we shall give a brief account of
the history of the problem involved. This theme dates back to a 1940 paper of Ince
[65] who studied what is presently called the Lamé–Ince potential

q(x) = −g(g + 1)℘(x+ ω3), g ∈ N, x ∈ R(1.1)
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in connection with the second-order ordinary differential equation

ψ′′(E, x) + q(x)ψ(E, x) = Eψ(E, x), E ∈ C.(1.2)

Here ℘(x) = ℘(x;ω1, ω3) denotes the elliptic Weierstrass function with fundamental
periods 2ω1 and 2ω3 (Im(ω3/ω1) ̸= 0). In the special case where ω1 is real and ω3

is purely imaginary, the potential q(x) in (1.1) is real-valued and Ince’s striking
result [65], in modern spectral theoretic terminology, yields that the spectrum of
the unique self-adjoint operator associated with the differential expression L2 =
d2/dx2 + q(x) in L2(R) exhibits finitely many bands (respectively gaps), that is,

σ(L2) = (−∞, E2g] ∪
g∪

m=1

[E2m−1, E2m−2] , E2g < E2g−1 < . . . < E0.(1.3)

What we call the Lamé–Ince potential has, in fact, a long history and many
investigations of it precede Ince’s work [65]. Without possibly trying to be complete
we refer the interested reader, for instance, to [3], [4], Sect. 59, [6], Ch. IX, [9],
Sect. 3.6.4, [18], Sects. 135–138, [19], [20], [22], [54], [63], p. 494–498, [64], p.
118–122, 266–418, 475–478, [66], p. 378–380, [69], [71], p. 265–275, [87], [88],
[118], [120], [124], Ch. XXIII as pertinent publications before and after Ince’s
fundamental paper.

Following the traditional terminology, any real-valued potential q that gives
rise to a spectrum of the type (1.3) is called an algebro-geometric potential. The
proper extension of this notion to general complex-valued meromorphic potentials
q and its connection with stationary solutions of the KdV hierarchy on the basis
of elementary algebro-geometric concepts is then obtained as follows. Let L2(t) be
the second-order differential expression

L2(t) =
d2

dx2
+ q(x, t), (x, t) ∈ R2,(1.4)

where q depends on the additional (deformation) parameter t. It is well known
(see, e.g., Ohmiya [87], Schimming [100], Wilson [125], [126]) that one can find
coefficients pj(x, t) in

P2g+1(t) =
d2g+1

dx2g+1
+ p2g(x, t)

d2g

dx2g
+ · · ·+ p0(x, t),(1.5)

in such a way that [P2g+1, L2] is a multiplication operator. The coefficients pj
are then certain differential polynomials in q, that is, polynomials in q and its
x-derivatives. The pair (P2g+1, L2) is called a Lax pair, and the equation

d

dt
L2 = [P2g+1, L2] , that is, qt = [P2g+1, L2](1.6)

is a nonlinear evolution equation for q. The collection of all such equations for all
possible choices of P2g+1, g ∈ N0 is then called the KdV hierarchy (see Section
2 for more details). Due to the commutator structure in (1.6), solutions q(., t)
of the nonlinear evolution equations of the KdV hierarchy represent isospectral
deformations of L2(0). In this context, q(x, t) is called an algebro-geometric solution
of the KdV equation if it satisfies one of the stationary higher-order equations
[P2g+1, L2] = 0 for some g ≥ 0 for some (and hence for all) t ∈ R

Novikov [85], Dubrovin [30], Its and Matveev [68], and McKean and van
Moerbeke [79] then showed that a real-valued smooth potential q is an algebro-
geometric potential if and only if it satisfies one of the higher-order stationary (i.e.,
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t-independent) KdV equations. Because of these facts it is common to call any
complex-valued meromorphic function q an algebro-geometric potential if q satisfies
one (and hence infinitely many) of the equations of the stationary KdV hierarchy.
Therefore, without loss of generality, we mostly focus on stationary solutions in the
remainder of this review.

The stationary KdV hierarchy, characterized by qt = 0 or [P2g+1, L2] = 0, is
intimately connected with the question of commutativity of ordinary differential ex-
pressions. Thus, if [P2g+1, L] = 0, a celebrated theorem of Burchnall and Chaundy
[16], [17] implies that P2g+1 and L2 satisfy an algebraic relation of the form

P 2
2g+1 =

2g∏
m=0

(L2 − Em), {Em}2gm=0 ⊂ C.(1.7)

The locations Em of the (finite) branch points and singular points of the associated
hyperelliptic curve

F 2 =

2g∏
m=0

(E − Em)(1.8)

are precisely the band (gap) edges of the spectral bands of L2 (see (1.3)) whenever
q(x) is real-valued and smooth for x ∈ R (with appropriate generalizations to
the complex-valued case, see Section 2). It is the (possibly singular) hyperelliptic
compact Riemann surface Kg of (arithmetic) genus g, obtained upon one-point
compactification of the curve (1.8), which signifies that q in L2 = d2/dx2 + q(x)
represents an algebro-geometric potential.

While these considerations pertain to general solutions of the stationary KdV
hierarchy, we now concentrate on the additional restriction that q be an elliptic func-
tion (i.e., meromorphic and doubly periodic) and hence return to our main subject,
elliptic algebro-geometric potentials q for L2 = d2/dx2+q(x), or, equivalently, ellip-
tic solutions of the stationary KdV hierarchy. Ince’s remarkable algebro-geometric
result (1.3) remained the only explicit elliptic algebro-geometric example until the

KdV flow qt =
1

4
qxxx +

3

2
qqx with the initial condition q(x, 0) = −6℘(x) was ex-

plicitly integrated by Dubrovin and Novikov [34] in 1975 (see also [36], [37], [38],
[67]), and found to be of the type

q(x, t) = −2

3∑
j=1

℘(x− xj(t))(1.9)

for appropriate {xj(t)}1≤j≤3. As observed above, all potentials q(·, t) in (1.9) are
isospectral to q(·, 0) = −6℘(·). Given these results it was natural to ask for a
systematic account of all elliptic solutions of the KdV hierarchy, a problem posed,
for instance, in [86], p. 152.

In 1977, Airault, McKean and Moser, in their seminal paper [2], presented the
first systematic study of the isospectral torus IR(q0) of real-valued smooth potentials
q0(x) of the type

q0(x) = −2

M∑
j=1

℘(x− xj)(1.10)

with an algebro-geometric spectrum of the form (1.3). Among a variety of results
they proved that any element q of IR(q0) is an elliptic function of the type (1.10)
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(with different xj) withM constant throughout IR(q0) and that dim IR(q0) ≤M . In
particular, if q0 evolves according to any equation of the KdV hierarchy it remains
an elliptic algebro-geometric potential. The potential (1.10) is intimately connected
with completely integrable many-body systems of the Calogero-Moser-type [19],
[84] (see also [20], [22]). This connection with integrable particle systems was
subsequently exploited by Krichever [74] in his fundamental construction of elliptic
algebro-geometric solutions of the Kadomtsev-Petviashvili equation. In particular,
he explicitly determined the underlying algebraic curve Γ and characterized the
Baker-Akhiezer function associated with it in terms of elliptic functions as well as
the corresponding theta function of Γ. The next breakthrough occurred in 1988
when Verdier [119] published new explicit examples of elliptic algebro-geometric
potentials. Verdier’s examples spurred a flurry of activities and inspired Belokolos
and Enol’skii [11], Smirnov [105], and subsequently Taimanov [110] and Kostov
and Enol’skii [70] to find further such examples by combining the reduction process
of abelian integrals to elliptic integrals (see [7], [8], [9], Ch. 7, [10]) with the afore-
mentioned techniques of Krichever [74], [75]. This development finally culminated
in a series of recent results of Treibich and Verdier [115], [116], [117] where it was
shown that a general complex-valued potential of the form

q(x) = −
4∑

j=1

dj ℘(x− ωj)(1.11)

(ω2 = ω1 + ω3, ω4 = 0) is an algebro-geometric potential if and only if dj/2 are
triangular numbers, that is, if and only if

dj = gj(gj + 1) for some gj ∈ Z, 1 ≤ j ≤ 4.(1.12)

We shall from now on refer to potentials of the type

q(x) = −
4∑

j=1

gj(gj + 1)℘(x− ωj), gj ∈ Z, 1 ≤ j ≤ 4(1.13)

as Treibich-Verdier potentials. The methods of Treibich and Verdier are based on
hyperelliptic tangent covers of the torus C/Λ (Λ being the period lattice generated
by 2ω1 and 2ω3). The state of the art of elliptic algebro-geometric solutions up
to 1993 was recently reviewed in issues 1 and 2 of volume 36 of Acta Applicandae
Math., see, for instance, [12], [40], [76], [107], [111], [114] and also in [13], [24],
[27], [39], [61], [98], [108], [113]. In addition to these investigations on elliptic
solutions of the KdV hierarchy, the study of other soliton hierarchies, such as the
modified KdV hierarchy, nonlinear Schrödinger hierarchy, and Boussinesq hierarchy
has also begun. We refer, for instance, to [21], [35], [54], [55], [77], [80], [82], [96],
[97], [103], [104], [106], [109].

Despite the efforts described thus far, an efficient characterization of all elliptic
solutions of the KdV hierarchy remained an open problem until 1994. Around 1992
we became aware of this problem and started to develop our own approach toward
its solution. In contrast to all existing basically algebro-geometric approaches in
this area, we realized early on that the most powerful analytic tool in this context,
a theorem of Picard (Theorem 4.1) concerning the existence of solutions which
are elliptic of the second kind of ordinary differential equations with elliptic coef-
ficients, had not been applied at all. As we have recently shown in [59] (see also
[58]), Picard’s theorem combined with Floquet theoretic results indeed provides a
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very simple and efficient characterization of all elliptic algebro-geometric solutions
of the KdV hierarchy. Moreover, for reflection symmetric elliptic algebro-geometric
potentials q (i.e., q(z) = q(2z0 − z) for some z0 ∈ C) including Lamé-Ince and
Treibich-Verdier potentials, our approach reduces the computation of the branch
points and singular points of the underlying hyperelliptic curve Kg to certain (con-
strained) linear algebraic eigenvalue problems as shown in [54], [55], and [56].

Since the main hypothesis in Picard’s theorem for a second-order differential
equation of the form

ψ′′(z) + q(z)ψ(z) = Eψ(z), E ∈ C(1.14)

with an elliptic potential q assumes the existence of a fundamental system of solu-
tions meromorphic in z for each value of the spectral parameter E ∈ C, we call any
such elliptic function q which gives rise to this property a Picard potential. The
principal result, a characterization of all elliptic algebro-geometric solutions of the
stationary KdV hierarchy, then reads as follows:

Theorem 1.1. ([59]) q is an elliptic algebro-geometric potential if and only
if q is a Picard potential (i.e., if and only if for each E ∈ C every solution of
ψ′′(z) + q(z)ψ(z) = Eψ(z) is meromorphic with respect to z).

In particular, Theorem 1.1 sheds new light on Picard’s theorem since it identifies
the elliptic coefficients q for which there exists a meromorphic fundamental system
of solutions of (1.14) precisely as the elliptic algebro-geometric solutions of the
stationary KdV hierarchy. Moreover, we stress its straightforward applicability
based on an elementary Frobenius-type analysis which decides whether or not (1.14)
has a meromorphic fundamental system for each E ∈ C. In addition, we might
mention the obvious connections between this result and the Weierstrass theory of
reduction of abelian to elliptic integrals.

The proof of Theorem 1.1 in Section 4 (Theorem 4.7) relies on two main ingre-
dients: A purely Floquet theoretic part to be discussed in Section 3 and an elliptic
function part sketched in Section 4.

The result embodied by Theorem 1.1 in the special context of the KdV hierar-
chy, uncovers a new general principle in connection with elliptic algebro-geometric
solutions of completely integrable systems: The existence of such solutions appears
to be in a one-to-one correspondence with the existence of a meromorphic (with re-
spect to z) fundamental system of solutions for the underlying linear Lax differential
expression (for all values of the corresponding spectral parameter E).

Having dealt with the second-order Lax differential expression L2 = d2/dx2+q
underlying the KdV hierarchy, it is natural to seek extensions to n-th-order Lax
differential expressions Ln associated with the Gelfand-Dickey hierarchy and more
generally, to matrix-valued hierarchies of soliton equations. At present our results
in these directions are promising but far from being complete. We provide a re-
cent generalization of Picard’s theorem to first-order n × n systems of differential
equations in Section 5 and devote Section 6 to partial progress in the context of
n-th-order scalar differential expressions with elliptic coefficients.

2. The KdV Hierarchy and Hyperelliptic Curves

In this section we review basic facts on the stationary KdV hierarchy. Since
this material is well-known (see, e.g., [5], [23], [26], Ch. 12, [28], [29], [49], [53],
[87], [100], [101], [126]), we confine ourselves to a brief account. Assuming q ∈



6 F. GESZTESY AND R. WEIKARD

C∞(R) or q meromorphic in C (depending on the particular context in which one
is interested) and hence either x ∈ R or x ∈ C, consider the recursion relation

f̂ ′j+1(x) =
1

4
f̂

′′′

j (x) + q(x)f̂ ′j(x) +
1

2
q′(x)f̂j(x), 0 ≤ j ≤ g, f̂0(x) = 1(2.1)

and the associated differential expressions (Lax pair)

L2 =
d2

dx2
+ q(x),(2.2)

P̂2g+1 =

g∑
j=0

[
−1

2
f̂ ′j(x) + f̂j(x)

d

dx

]
Lg−j
2 , g ∈ N0(2.3)

(here N0 := N ∪ {0}). One can show that[
P̂2g+1, L2

]
= 2f̂ ′g+1 =

1

2
f̂ ′′′g (x) + 2q(x)f̂ ′g(x) + q′(x)f̂g(x)(2.4)

([·, ·] the commutator symbol) and explicitly computes from (2.1),

f̂0 = 1, f̂1 =
1

2
q + c1, f̂2 =

1

8
q
′′
+

3

8
q2 +

c1
2
q + c2, etc.,(2.5)

where the cj are integration constants. Using the convention that the corresponding
homogeneous quantities obtained by setting cℓ = 0 for ℓ = 1, 2, . . . are denoted by

fj , that is, fj = f̂j(cℓ ≡ 0), the (homogeneous) stationary KdV hierarchy is then
defined as the sequence of equations

KdVg(q) = 2f ′g+1 = 0, g ∈ N0.(2.6)

Explicitly, this yields

KdV0(q) = qx = 0, KdV1(q) =
1

4
q
′′′
+

3

2
qq′ = 0, etc.(2.7)

The corresponding non-homogeneous version of KdVg(q) = 0 is then defined by

f̂ ′g+1 =

g∑
j=0

cg−jf
′
j+1 = 0,(2.8)

where c0 = 1 and c1, ..., cg are arbitrary complex constants.

If one assigns to q(ℓ) = dℓq/dxℓ the degree deg(q(ℓ)) = ℓ+ 2, ℓ ∈ N0, then the
homogeneous differential polynomial fj with respect to q turns out to have degree
2j, that is,

deg(fj) = 2j, j ∈ N0.(2.9)

Next, introduce the polynomial F̂g(E, x) in E ∈ C,

F̂g(E, x) =

g∑
j=0

f̂g−j(x)E
j .(2.10)

Since f̂0(x) = 1,

R̂2g+1(E, x) = (E − q(x))F̂g(E, x)
2 − 1

2
F̂ ′′
g (E, x)F̂g(E, x) +

1

4
F̂ ′
g(E, x)

2(2.11)
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is a monic polynomial in E of degree 2g + 1. However, equations (2.1) and (2.8)
imply that

1

2
F̂

′′′

g − 2(E − q)F̂ ′
g + q′F̂g = 0(2.12)

and this shows that R̂2g+1(E, x) is in fact independent of x. Hence it can be written
as

R̂2g+1(E) =

2g∏
m=0

(E − Êm), {Êm}2gm=0 ⊂ C.(2.13)

By (2.4) the non-homogeneous KdV equation (2.8) is equivalent to the com-

mutativity of L2 and P̂2g+1. This shows that

[P̂2g+1, L2] = 0,(2.14)

and therefore, if L2ψ = Eψ, this implies that P̂ 2
2g+1ψ = R̂2g+1(E)ψ. Thus

[P̂2g+1, L2] = 0 implies

P̂ 2
2g+1 = R̂2g+1(L2) =

2g∏
m=0

(L2 − Êm),(2.15)

a celebrated theorem by Burchnall and Chaundy [16], [17] (see, e.g., [27], [47],
[61], [98], [126] for more recent accounts).

In the second part of Section 3 we will need the converse of the above procedure.
It is given by

Lemma 2.1. ([59]) Assume that F̂g(E, x), given by (2.10) with f̂0(x) = 1, is
twice differentiable with respect to x, and that

(E − q(x))F̂g(E, x)
2 − 1

2
F̂ ′′
g (E, x)F̂g(E, x) +

1

4
F̂ ′
g(E, x)

2(2.16)

is independent of x. Then q ∈ C∞(R). Also the functions f̂j(x) are infinitely often
differentiable and satisfy the recursion relations (2.1) for j = 0, ..., g−1. Moreover,

f̂g satisfies

1

4
f̂

′′′

g (x) + q(x)f̂ ′g(x) +
1

2
q′(x)f̂g(x) = 0,(2.17)

that is, the differential expression P̂2g+1 given in (2.3) commutes with the expression
L2 = d2/dx2 + q.

Equation (2.15) illustrates the intimate connection between the stationary KdV

equation f̂ ′g+1 = 0 in (2.8) and the compact (possibly singular) hyperelliptic curve
Kg of (arithmetic) genus g obtained upon one-point compactification of the curve

F 2 = R̂2g+1(E) =

2g∏
m=0

(E − Êm).(2.18)

The above formalism leads to the following standard definition.

Definition 2.2. Any solution q of one of the stationary KdV equations (2.8)
is called an algebro-geometric potential associated with the KdV hierarchy.

Algebro-geometric potentials q can be expressed in terms of the Riemann theta
function or through τ -functions associated with the curve Kg (see, e.g., [68], [102]).
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3. Floquet Theory and Algebro-Geometric Potentials

In the first part of this section we discuss Floquet theory in connection with a
complex-valued non-constant periodic potential q. In the second part we recall a
criterion for q to be an algebro-geometric potential in terms of Floquet solutions.

Suppose

q ∈ L1
loc(R), q(x+Ω) = q(x), x ∈ R(3.1)

for some Ω > 0 and let L(E) be the (two-dimensional) space of solutions of
L2y = Ey. Then T (E), the restriction of the operator defined by y 7→ y(· + Ω) to
L(E), commutes with the corresponding restriction of L2 and hence maps L(E) to
itself. The eigenvalues and eigenfunctions of T (E) are called Floquet multipliers
and Floquet solutions of L2y = Ey. On L(E) we introduce the basis c(E, x, x0)
and s(E, x, x0) defined by

c(E, x0, x0) = s′(E, x0, x0) = 1, c′(E, x0, x0) = s(E, x0, x0) = 0.(3.2)

Using this basis the operator T (E) is represented by the so called monodromy
matrix (

c(E, x0 +Ω, x0) s(E, x0 +Ω, x0)
c′(E, x0 +Ω, x0) s′(E, x0 +Ω, x0)

)
.(3.3)

Since det(T (E)) = 1 the Floquet multipliers ρ±(E) are given by

ρ±(E) = ∆(E)±
√
∆(E)2 − 1,(3.4)

where ∆(E) denotes the Floquet discriminant,

∆(E) =
1

2
tr(T (E)) = [c(E, x0 +Ω, x0) + s′(E, x0 +Ω, x0)]/2.(3.5)

For each E ∈ C there exists at least one nontrivial Floquet solution. In fact,
since together with ρ(E), 1/ρ(E) is also a Floquet multiplier, there are two linearly
independent Floquet solutions for a given E provided ρ(E)2 ̸= 1. Floquet solutions
can be expressed in terms of the fundamental system c(E, x, x0) and s(E, x, x0) by

ψ±(E, x, x0) = c(E, x, x0) +
ρ±(E)− c(E, x0 +Ω, x0)

s(E, x0 +Ω, x0)
s(E, x, x0),(3.6)

if s(E, x0 +Ω, x0) ̸= 0, or by

ψ̃±(E, x, x0) = s(E, x, x0) +
ρ±(E)− s′(E, x0 +Ω, x0)

c′(E, x0 +Ω, x0)
c(E, x, x0),(3.7)

if c′(E, x0 + Ω, x0) ̸= 0. If both s(E, x0 + Ω, x0) and c
′(E, x0 + Ω, x0) are equal to

zero, then s(E, x, x0) and c(E, x, x0) are linearly independent Floquet solutions.
Associated with the second-order differential expression L2 = d2/dx2+ q(x) we

consider the densely defined closed linear operators H, HD(x0), H(β, x0), β ∈ C,
and H(θ), θ ∈ C. While H will be an operator in L2(R), the others will be defined
in L2(I(x0)), where I(x0) = (x0, x0+Ω) for some x0 ∈ R. Specifically, the operators
are given as restrictions of the expression L2 to the following domains:

D(H) = {g ∈ L2(R) : g, g′ ∈ ACloc(R), (g′′ + qg) ∈ L2(R)},(3.8)

D(HD(x0)) = {g ∈ Dx0
: g(x0) = g(x0 +Ω) = 0},(3.9)

D(H(β, x0)) = {g ∈ Dx0 : U1(β, g)(x0) = U1(β, g)(x0 +Ω) = 0},(3.10)

D(H(θ)) = {g ∈ Dx0
: U2(θ, g)(x0) = U2(θ, g)

′(x0) = 0},(3.11)
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where

Dx0
= {g ∈ L2(I(x0)) : g, g

′ ∈ AC([x0, x0 +Ω]), (g′′ + qg) ∈ L2(I(x0))}(3.12)

and U1(β, y) = y′ +βy and U2(θ, y) = y(·+Ω)− eiθy(·). Here AC(·) (ACloc(·)) de-
notes the set of (locally) absolutely continuous functions. Next we denote the purely
discrete spectra of HD(x0), H(β, x0), and H(θ) by σ(HD(x0)) = {µn(x0)}n∈N,
σ(H(β, x0)) = {λn(β, x0)}n∈N0

and σ(H(θ)) = {En(θ)}n∈N0
, respectively. While

H(θ) depends on x0 its spectrum does not. We agree that here, as well as in the
rest of the paper, all point spectra (i.e., sets of eigenvalues) are recorded in such
a way that all eigenvalues are consistently repeated according to their algebraic
multiplicity unless explicitly stated otherwise.

The eigenvalues of HD(x0) are called Dirichlet eigenvalues with respect to the
interval [x0, x0 + Ω]. The eigenvalues of H(θ) are precisely those values E where
T (E) has eigenvalues ρ = e±iθ. The eigenvalues En(0) (En(π)) of H(0) (H(π))
are called the periodic (antiperiodic) eigenvalues associated with q. Note that the
(anti)periodic eigenvalues En(0) (En(π)) are the zeros of ∆(·)−1 (∆(·)+1) and that
their algebraic multiplicities coincide with the orders of the respective zeros (see,
e.g., [57]). In the following we denote the zeros of ∆(E)2 − 1 by En, n ∈ N0. They
are repeated according to their multiplicity and are related to the (anti)periodic
eigenvalues via

E4n = E2n(0), E4n+1 = E2n(π), E4n+2 = E2n+1(π), E4n+3 = E2n+1(0)

(3.13)

for n ∈ N0. We also introduce

p(E) = ordE(∆(·)2 − 1),(3.14)

the order of E as a zero of ∆(·)2 − 1 (p(E) = 0 if ∆(E)2 − 1 ̸= 0).
Similarly, the eigenvalues of HD(x0) and H(β, x0) are the zeros of the functions

s(·, x0 + Ω, x0) and h(·, β, x0) = (β2s + β(s′ − c) − c′)(·, x0 + Ω, x0), respectively.
Again their algebraic multiplicities coincide precisely with the multplicities of the
respective zeros (see, e.g., [57]). These multiplicities depend in general on x0. We
introduce the notation

d(E, x0) = ordE(s(·, x0 +Ω, x0)),(3.15)

r(E, β, x0) = ordE(h(·, β, x0)),(3.16)

and remark that d(E, x0) and r(E, β, x0) are combinations of movable and im-
movable parts. Specifically, define di(E) = min{d(E, x0) : x0 ∈ R}, ri(E, β) =
min{r(E, β, x0) : x0 ∈ R} and dm(E, x0) and rm(E, x0) by

d(E, x0) = di(E) + dm(E, x0),(3.17)

r(E, β, x0) = ri(E, β) + rm(E, β, x0).(3.18)

If di(E) > 0 then E is a Dirichlet eigenvalue irrespective of the value of x0 and
we will call E an immovable Dirichlet eigenvalue. Otherwise, if di(E) = 0 but
d(E, x0) > 0 we call E a movable Dirichlet eigenvalue. (Note that here we use a
notation different from the one in [59], in particular, the multiplicties d, di, and
dm now refer to Dirichlet eigenvalues while the multiplicities p refer to periodic or
antiperiodic eigenvalues).

The functions c(·, x, x0) and s(·, x, x0) and their x-derivatives are entire func-
tions of order 1/2 for every choice of x and x0. This and their asymptotic behavior as
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|E| tends to infinity is obtained via Volterra integral equations. Invoking Rouché’s
theorem then yields the following facts:

1. The zeros µn(x0) of s(E, x0+Ω, x0) and the zeros λn(β, x0) of h(·, β, x0) are
simple for n ∈ N sufficiently large.

2. The zeros En of ∆(E)2 − 1 are at most double for n ∈ N large enough.
3. µn(x0), λn(β, x0), and En can be arranged (and will be subsequently) such

that they have the following asymptotic behavior as n tends to infinity:

µn(x0) = −n
2π2

Ω2
+O(1),(3.19)

λn(β, x0) = −n
2π2

Ω2
+O(1),(3.20)

E2n−1, E2n = −n
2π2

Ω2
+O(1).(3.21)

The Hadamard factorization of s(E, x0 +Ω, x0) therefore reads

s(E, x0 +Ω, x0) = c1(x0)

∞∏
n=1

(
1− E

µn(x0)

)
= FD(E, x0)D(E),(3.22)

where all those factors which do not depend on x0 are collected in D(E). Here we
assume that none of the eigenvalues is equal to zero; otherwise, obvious modifica-
tions have to be used.

For more details on algebraic versus geometric multiplicities of eigenvalue prob-
lems of the type of HD(x0) and H(θ) see, for instance, [57].

It was shown by Rofe-Beketov [99] that the spectrum of H is equal to the
conditional stability set of L2, that is, the set of all spectral parameters E for
which a nontrivial bounded solution of L2ψ = Eψ exists. Hence

σ(H) =
∪

θ∈[0,2π]

σ(T (θ)) =
∪

n∈N0

σn, where σn =
∪

θ∈[0,π]

En(θ).(3.23)

We note that in the general case where q is complex-valued some of the spectral
arcs σn may cross each other, see, for instance, [57] and [91] for explicit examples.

The Green’s function G(E, x, x′) of H, that is, the integral kernel of the resol-
vent of H,

G(E, x, x′) = (H − E)−1(x, x′), E ∈ C\σ(H), x, x′ ∈ R,(3.24)

is explicitly given by

G(E, x, x′) =W (f−(E, x), f+(E, x))
−1

{
f+(E, x)f−(E, x

′), x ≥ x′

f−(E, x)f+(E, x
′), x ≤ x′

.(3.25)

Here f±(E, ·) solve L2f = Ef and are chosen such that

f±(E, ·) ∈ L2((R,±∞)), E ∈ C\σ(H), R ∈ R,(3.26)

with W (f, g) = fg′ − f ′g the Wronskian of f and g.
Equation (3.25) implies that the diagonal Green’s function is twice differentiable

and satisfies the nonlinear second-order differential equation (see, e.g., [48], [83])

4(E − q(x))G(E, x, x)2 − 2G(E, x, x)G′′(E, x, x) +G′(E, x, x)2 = 1(3.27)

(the primes denoting derivatives with respect to x).
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It follows from (3.23) that |ρ(E)| ̸= 1 unless E ∈ σ(H). Therefore, if E ̸∈ σ(H)
there is precisely one Floquet solution in L2((−∞, R)) and one in L2((R,∞)).
Letting ρ±(E) = e±iθ with Im(θ) > 0 we obtain |ρ+(E)| < 1 < |ρ−(E)|. Hence
f+(E, x) = ψ+(E, x, x0) and f−(E, x) = ψ−(E, x, x0). Since ψ±(E, x0, x0) = 1,
equations (3.4) and (3.6) imply

W (f−(E, ·), f+(E, ·)) =
eiθ − e−iθ

s(E, x0 +Ω, x0)
= −2

[∆(E)2 − 1]1/2

s(E, x0 +Ω, x0)
.(3.28)

The sign of the square root was chosen such that [∆(E)2 − 1]1/2 is asymptotically
equal to ρ−(E)/2 for large positive E. Equation (3.28) implies (see also [50])

G(E, x0, x0) = −s(E, x0 +Ω, x0)

2[∆(E)2 − 1]1/2
.(3.29)

Theorem 3.1. ([59], [123]) If q is a locally integrable periodic function on R
then p(E)− 2di(E) ≥ 0 for all E ∈ C.

Proof. Equations (3.22), (3.27), and (3.29) show that

4(E − q(x))FD(E, x)2 − 2FD(E, x)F ′′
D(E, x) + F ′

D(E, x)2 =
4(∆(E)2 − 1)

D(E)2
.

(3.30)

Since the left hand side is entire the claim follows immediately from the definitions
of the numbers p(E) and di(E).

A somewhat bigger effort allows one to prove also

Theorem 3.2. ([59], [123]) If q is a locally integrable periodic function on R
then di(E) = ri(E, β) unless q is a constant and E = q+β2. Moreover, if di(E) > 0
then there exist two linearly independent Floquet solutions of L2y = Ey. Finally,
p(E) − 2di(E) > 0 if and only if there exists an x0 ∈ R such that W (z, x0), the
Wronskian of the Floquet solutions ψ± given by (3.6), tends to zero as z tends to
E.

Hence, if there are not two linearly independent Floquet solutions for L2y = Ey
then ρ2 = 1 and p(E) > 0 but di(E) = 0 and thus p(E) − 2di(E) > 0 at all such
points.

Nowhere in this section did we use thus far that q is an algebro-geometric
potential. Next we give necessary and sufficient conditions for this in terms of
properties of multiplicities of eigenvalues of (anti)periodic boundary value problems
on one hand and the Dirichlet problem on the other hand. We begin with

Definition 3.3. The number def(L2) =
∑

E∈C(p(E) − 2di(E)) is called the
Floquet defect. The number

∑
E∈C dm(E, x0) will be called the number of movable

Dirichlet eigenvalues; similarly,
∑

E∈C rm(E, β, x0) denotes the number of movable
eigenvalues of H(β, x0).

Note that by Theorem 3.1, def(L2) is either infinite or else a nonnegative in-
teger. If it is finite then def(L2) = deg(4(∆2 − 1)/D2). Both, def(L2) and the
number of movable Dirichlet eigenvalues are in general infinite.

Theorem 3.4. ([59], [123]) Assume that q is a locally integrable, periodic func-
tion of period Ω > 0 on R. Then the following statements are equivalent:
1. The Floquet defect def(L2) equals 2g + 1.
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2. The number of movable Dirichlet eigenvalues equals g.
3. There exists a monic differential expression P̂2g+1 of odd order 2g + 1 which
commutes with L2 but none of smaller odd order, i.e., q is an algebro-geometric
potential.

In particular, def(L2) is either odd or infinite.

Sketch of proof. If def(L2) is finite, asymptotic considerations show that
only finitely many Dirichlet eigenvalues can be movable. Hence FD(·, x0) is a poly-
nomial, say of degree ĝ. By equation (3.30) 4(∆2−1)/D2 is a polynomial of degree
2ĝ + 1. Hence ĝ = g. This shows the equivalence of the first two statements.

Next one shows that the leading coefficent of FD(·, x0) is independent of x0.
The third statement follows then from the second using Lemma 2.1. To prove
that the third statement implies the other two one has to show that the zeros of
the function F̂g(·, x0) in (2.10) are precisely the movable Dirichlet eigenvalues. This

follows from applying P̂2g+1 as given in (2.3) succesively to the generalized Dirichlet
eigenfunctions.

Theorem 3.5. ([59], [123]) Assume that q is a non-constant, locally inte-
grable, periodic function of period Ω > 0 on R and that any (and hence all) of
the three statements in Theorem 3.4 is satisfied. Then the following statements
hold.
1. The number of movable eigenvalues of H(β, x0) equals g + 1, i.e.,∑

E∈C

rm(E, β, x0) = g + 1.(3.31)

2. q ∈ C∞(R).
3. The differential expression P̂2g+1 satisfies the Burchnall-Chaundy relation

P̂ 2
2g+1 =

∏
z∈C

(L− z)p(z)−2di(z).(3.32)

4. The diagonal Green’s function G(·, x, x) of H is continuous on C\{z : p(z) −
2di(z) > 0} and is of the type

G(E, x, x) = −1

2

∏
z∈C(E − z)dm(z,x)∏

z∈C(E − z)p(z)−2di(z)
.(3.33)

5. The spectrum of H consists of finitely many bounded spectral arcs σ̃n, 1 ≤ n ≤ g̃
for some g̃ ≤ g and one unbounded (semi-infinite) arc σ̃∞ which tends to −∞+ <

q >, with < q >= Ω−1
∫ x0+Ω

x0
q(x)dx, that is,

σ(H) =

(
g̃∪

n=1

σ̃n

)
∪ σ̃∞,(3.34)

where each σ̃n and σ̃∞ is a union of some of the spectral arcs σn in (3.23).

Note that the set B of values of E where p(E) − 2di(E) > 0 contains B1,
the set of all those points where less than two linearly independent Floquet so-
lutions exist. For B\B1 to be nonempty, it is necessary that p(z) ≥ 3 for some
(anti)periodic eigenvalue z. While it seems difficult to construct an explicit ex-
ample where B\B1 ̸= ∅, the very existence of this phenomenon has first been
noted in [59]. References [45], [46], [62], [89], [90] treat potentials with p(E) ≤ 2
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and references [14], [15] require that algebraic and geometric multiplicities of all
(anti)periodic eigenvalues coincide and hence also that p(E) ≤ 2. Generically one
has p(E)− 2di(E) = 1 if this is positive at all and B = B1 (cf. [112]).

Remark 3.6 (Singularity structure of the Green’s function). As Theorem 3.5
shows, it is precisely the multiplicity p−2di of the branch and singular points in the
Burchnall-Chaundy polynomial (3.32) which determines the singularity structure
of the diagonal Green’s function G(E, x, x) of H. Moreover, since (see, e.g., [83])

G(E, x, x′) = [G(E, x, x)G(E, x′, x′)]1/2 exp[−1

2

∫ max(x,x′)

min(x,x′)

G(E, s, s)−1ds],

(3.35)

this observation extends to the off-diagonal Green’s function G(E, x, x′) of H as
well.

Remark 3.7 (Inverse square singularities). The case of the Lamé-Ince poten-
tial, where q has singularities of the form −g(g + 1)/x2, indicates the necessity
to consider also potentials with such singularities. This is possible by modifying
the usual approach via Volterra integral equations which are used to obtain the
asymptotic properties (3.19)–(3.21) of the corresponding eigenvalue distributions.
One obtains essentially the same results as in the present review, the only difference
being that the conditional stability set cannot be interpreted as the spectrum of
an operator in L2(R). This approach has been worked out in detail in [122] and
[123].

Remark 3.8 (Finite-band potentials). For real-valued potentials Novikov [85]
and Dubrovin [30] showed that q is an algebro-geometric potential if and only if the
spectrum of the operator H consists of only finitely many bands. This is no longer
true for complex-valued potentials. In fact, for q = eix one infers σ(H) = (−∞, 0]
but every Dirichlet eigenvalue is movable (see [123]).

4. A Characterization of Elliptic Solutions of the KdV Hierarchy

In this section we discuss the principal result in [59], an explicit characteri-
zation of all elliptic algebro-geometric solutions of the KdV hierarchy. One of the
two key ingredients in our main Theorem 4.7 (the other being Theorem 3.4) is a
systematic use of a powerful theorem of Picard (see Theorem 4.1 below) concerning
the existence of solutions which are elliptic functions of the second kind of ordinary
differential equations with elliptic coefficients.

We start with Picard’s theorem.

Theorem 4.1. ([93] – [95], see also [4], p. 182–187, [66], p. 375–376) Let
qm, 0 ≤ m ≤ n be elliptic functions with a common period lattice spanned by the
fundamental periods 2ω1 and 2ω3. Consider the differential equation

n∑
m=0

qm(z)ψ(m)(z) = 0, qn(z) = 1, z ∈ C(4.1)

and assume that (4.1) has a meromorphic fundamental system of solutions. Then
there exists at least one solution ψ0 which is elliptic of the second kind, that is, ψ0

is meromorphic and

ψ0(z + 2ωj) = ρjψ0(z), j = 1, 3(4.2)
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for some constants ρ1, ρ3 ∈ C. If in addition, the characteristic equation corre-
sponding to the substitution z → z+2ω1 or z → z+2ω3 (see [66], p. 358, 376) has
distinct roots then there exists a fundamental system of solutions of (4.1) which are
elliptic functions of the second kind.

The characteristic equation associated with the substitution z → z+2ωj alluded
to in Theorem 4.1 is given by

det[A− ρI] = 0,(4.3)

where

ϕℓ(z + 2ωj) =

n∑
m=1

aℓ,mϕm(z), A = (aℓ,m)1≤ℓ,m≤n(4.4)

and ϕ1, ...., ϕn is any fundamental system of solutions of (4.1).
What we call Picard’s theorem following the usual convention in [4], p. 182–

185, [18], p. 338–343, [63], p. 536–539, [71], p. 181–189, appears, however, to have
a longer history. In fact, Picard’s investigations [93], [94], [95] were inspired by
earlier work of Hermite in the special case of Lamé’s equation [64], p. 118–122, 266–
418, 475–478 (see also [9], Sect. 3.6.4 and [124], p. 570–576). Further contributions
were made by Mittag-Leffler [81], and Floquet [42], [43], [44]. Detailed accounts
on Picard’s differential equation can be found in [63], p. 532–574, [71], p. 198–288.

In this context it seems appropriate to recall the well-known fact (see, e.g., [4],
p. 185–186) that ψ0 is elliptic of the second kind if and only if it is of the form

ψ0(z) = Ceλz
m∏
j=1

[σ(z − aj)/σ(z − bj)](4.5)

for suitable m ∈ N and C, λ, aj , bj ∈ C, 1 ≤ j ≤ m. Here σ(z) is the Weierstrass
sigma function associated with the period lattice Λ spanned by 2ω1, 2ω3 (see [1],
Ch. 18).

Picard’s Theorem 4.1, restricted to the second-order case

ψ′′(z) + q(z)ψ(z) = Eψ(z),(4.6)

motivates the following definition.

Definition 4.2. Let q be an elliptic function. Then q is called a Picard po-
tential if and only if the differential equation (4.6) has a meromorphic fundamental
system of solutions (with respect to z) for each value of the spectral parameter
E ∈ C.

For completeness we recall the following result.

Theorem 4.3. ([56]) (i) Any non-constant Picard potential q has a represen-
tation of the form

q(z) = C −
m∑
j=1

sj(sj + 1)℘(z − bj)(4.7)

for suitable m, sj ∈ N and C, bj ∈ C, 1 ≤ j ≤ m, where the bj are pairwise distinct
mod(Λ) and ℘(z) denotes the Weierstrass ℘-function associated with the period lat-
tice Λ ([1], Ch. 18).
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(ii) Let q(z) be given as in (4.7). If ψ
′′
+ qψ = Eψ has a meromorphic fun-

damental system of solutions for a number of distinct values of E which exceeds
max{s1, . . . , sm}, then q is a Picard potential.

We emphasize that while any Picard potential is necessarily of the form (4.7),
a potential q of the type (4.7) is a Picard potential only if the constants bj satisfy
a series of additional intricate constraints, see, for instance, Section 3.2 in [56].

The following result indicates the connection between Picard potentials and
elliptic algebro-geometric potentials.

Theorem 4.4. (Its and Matveev [68], Krichever [72], [73], Segal and Wilson
[102]) Every elliptic algebro-geometric potential q is a Picard potential.

Sketch of Proof. For nonsingular curves Kg : F 2 =
∏2g

j=0(E − Êj) asso-

ciated with q (see (2.18)), where Êℓ ̸= Êℓ′ for ℓ ̸= ℓ′, Theorem 4.4 is obvious
from the standard representation of the Baker-Akhiezer function in terms of the
Riemann theta function of Kg ([32], [68], [72], [73]). For singular curves Kg the
result follows from the τ -function representation of the Floquet solutions ψ±(E, x)
associated with q

ψ±(E, x) = e±k(E)xτ±(E, x)/τ(x),(4.8)

where

q(x) = C + 2{ln[τ(x)]}′′(4.9)

and from the fact that τ(x) and τ±(E, x) are entire with respect to x (cf. [102]).

Naturally, one is tempted to conjecture that the converse of Theorem 4.4 is
true as well. The rest of this section will explain our proof of this conjecture in
[59].

We start with a bit of notation. Let q(z) be an elliptic function with funda-
mental periods 2ω1, 2ω3 and assume, without loss of generality, that Re(ω1) > 0,
Re(ω3) ≥ 0, Im(ω3/ω1) > 0. The fundamental period parallelogram then consists
of the points z = 2ω1s+ 2ω3t, where 0 ≤ s, t < 1.

We introduce

eiϕ =
ω3

ω1

∣∣∣∣ω1

ω3

∣∣∣∣ , ϕ ∈ (0, π),(4.10)

and

tj = ωj/|ωj |, j = 1, 3(4.11)

and define

qj(x) := t2jq(tjx+ z0), j = 1, 3(4.12)

for a z0 ∈ C which we choose in such a way that no pole of qj , j = 1, 3 lies on the
real axis. (This is equivalent to the requirement that no pole of q lies on the line
through the points z0 and z0 + 2ω1 or on the line through z0 and z0 + 2ω3. Since
q has only finitely many poles in the fundamental period parallelogram this can
always be achieved.) For such a choice of z0 we infer that qj(x) are real-analytic
and periodic of period Ωj = 2|ωj |, j = 1, 3. Comparing the differential equations

ψ′′(z) + q(z)ψ(z) = Eψ(z)(4.13)
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and

w′′(x) + qj(x)w(x) = λw(x), j = 1, 3,(4.14)

connected by the variable transformation

z = tjx+ z0, ψ(z) = w(x),(4.15)

one concludes that w is a solution of (4.14) if and only if ψ is a solution of (4.13)
with

λ = t2jE, j = 1, 3.(4.16)

Next, consider q̃ ∈ C0(R) of period Ω̃ > 0 and let c̃(λ, x), s̃(λ, x) be the correspond-

ing fundamental system of solutions of w̃
′′
+ q̃w̃ = λw̃ defined by

c̃(λ, 0) = s̃′(λ, 0) = 1, c̃′(λ, 0) = s̃(λ, 0) = 0.(4.17)

The corresponding Floquet discriminant is now given by

∆̃(λ) = [c̃(λ, Ω̃) + s̃(λ,Ω)]/2(4.18)

and Rouché’s theorem then yields

∆̃(λ) = cos[iΩ̃λ1/2(1 +O(λ−1))](4.19)

as |λ| tends to infinity.

Lemma 4.5. Let λ̃n be a periodic or antiperiodic eigenvalue of q̃. Then there
exists an m ∈ Z such that ∣∣∣λ̃n +m2π2Ω̃−2

∣∣∣ ≤ C̃(4.20)

for some C̃ > 0 independent of n ∈ N0. In particular, all periodic and antiperiodic
eigenvalues λ̃n, n ∈ N0 of q̃ are contained in a half-strip S̃ given by

S̃ = {λ ∈ C| |Im(λ)| ≤ C̃, Re(λ) ≤ M̃}(4.21)

for some M̃ ∈ R.

In order to apply Lemma 4.5 to q1 and q3 we note that according to (4.19),

∆j(λ) = cos[iΩjλ
1/2(1 +O(λ−1))], j = 1, 3(4.22)

as |λ| tends to infinity, where, in obvious notation, ∆j(λ) denotes the discriminant of

qj(x), j = 1, 3. Next, denote by λj,n an Ωj-(anti)periodic eigenvalue of w
′′
+ qjw =

λw. Then Ej,n = t−2
j λj,n is a 2ωj-(anti)periodic eigenvalue of ψ

′′
+ qψ = Eψ and

vice versa. Hence Lemma 4.5 immediately yields the following result.

Lemma 4.6. Let j = 1 or 3. Then all 2ωj-(anti)periodic eigenvalues Ej,n,
n ∈ N0 associated with q lie in the half-strip Sj given by

Sj = {E ∈ C : | Im(t2jE)| ≤ Cj , Re(t
2
jE) ≤Mj}(4.23)

for suitable constants Cj > 0,Mj ∈ R. The angle between the axes of the strips S1

and S3 equals 2ϕ ∈ (0, 2π).

Lemmas 4.5 and 4.6 apply to any elliptic potential whether or not they are
algebro-geometric. In our final step we shall now invoke Picard’s Theorem 4.1 to
obtain our characterization of elliptic algebro-geometric potentials.
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Theorem 4.7. q is an elliptic algebro-geometric potential if and only if q is
a Picard potential (i.e., if and only if for each E ∈ C every solution of ψ′′(z) +
q(z)ψ(z) = Eψ(z) is meromorphic with respect to z).

Proof. By Theorem 4.4 it remains to prove that a Picard potential is algebro-
geometric. Hence we assume in the following that q is a Picard potential. Since
all 2ωj-(anti)periodic eigenvalues Ej,n of q yield zeros λj,n = t2jEj,n of the entire

functions ∆j(λ)
2 − 1, the Ej,n have no finite limit point. Next we choose R > 0

large enough such that the exterior of the closed disk D(0, R) centered at the origin
of radius R > 0 contains no intersection of S1 and S3 (defined in (4.23)), that is,

(C\D(0, R)) ∩ (S1 ∩ S3) = ∅.(4.24)

Let ρj,±(λ) be the Floquet multipliers of qj(x), that is, the solutions of

ρ2j − 2∆jρj + 1 = 0, j = 1, 3.(4.25)

Then (4.24) implies that for E ∈ C\D(0, R), at most one of the numbers ρ1(t1E)
and ρ3(t3E) can be in {−1, 1}. In particular, at least one of the characteristic
equations corresponding to the substitution z → z + 2ω1 or z → 2ω3 (cf. (4.3) and
(4.4)) has two distinct roots. Since by hypothesis q is a Picard potential, Picard’s

Theorem 4.1 applies and guarantees for all E ∈ C\D(0, R) the existence of two

linearly independent solutions ψ1(E, z) and ψ2(E, z) of ψ
′′
+ qψ = Eψ which are

elliptic of the second kind. Then wj,k(x) = ψk(tjx + z0), k = 1, 2 are linearly
independent Floquet solutions associated with qj . Therefore the points λ for which

w′′ + qjw = λw has only one Floquet solution are necessarily contained in D(0, R)
and hence finite in number. This is true for both j = 1 and j = 3. Applying
Theorem 3.4 then proves that both q1 and q3 are algebro-geometric potentials.

By (2.8) (in slight abuse of notation)

g∑
k=0

cg−k
dfk+1(q1(x))

dx
= 0,(4.26)

where g ∈ N0, fk+1, k = 0, ..., g, are differential polynomials in q1 homogeneous of
degree 2k + 2 (cf. (2.9)), and ck, k = 0, ..., g are complex constants. Since

q
(ℓ)
1 (x) = tℓ+2

1 q(ℓ)(z),(4.27)

(where z = t1x+ z0) we obtain

g∑
k=0

cg−kt
2k+3
1

dfk+1(q(z))

dz
= 0,(4.28)

that is, q is an algebro-geometric potential as well. A similar argument would
have worked using the relationship between q3 and q. In particular, the order of
the operators commuting with d2/dz2 + q(z), d2/dx2 + q1(x), and d

2/dx2 + q3(x),
respectively, is the same in all cases, namely 2g + 1.

We add a series of remarks further illustrating the significance of Theorem 4.7.

Remark 4.8 (Complementing Picard’s theorem). First we note that Theorem
4.7 extends and complements Picard’s Theorem 4.1 in the sense that it determines
the elliptic functions which satisfy the hypothesis of the theorem precisely as (el-
liptic) algebro-geometric solutions of the stationary KdV hierarchy.
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Remark 4.9 (Characterizing elliptic algebro-geometric potentials). While an
explicit proof of the algebro-geometric property of q is, in general, highly nontrivial
(see, e.g., the references cited in connection with special cases such as the Lamé-
Ince and Treibich-Verdier potentials in Remark 4.11 below), the fact of whether or

not ψ
′′
(z)+ q(z)ψ(z) = Eψ(z) has a fundamental system of solutions meromorphic

in z for a finite (but sufficiently large) number of values of the spectral parameter
E ∈ C can be decided by means of an elementary Frobenius-type analysis (see, e.g.,
[54] and [55]). Theorem 4.7 appears to be the only effective tool to identify general
elliptic algebro-geometric solutions of the KdV hierarchy.

Remark 4.10 (Reduction of abelian integrals). Theorem 4.7 is also relevant in
the context of the Weierstrass theory of reduction of abelian to elliptic integrals,
a subject that attracted considerable interest, see, for instance, [7], [8], [9], Ch.
7, [10], [11], [21], [36], [37], [38], [67], [70], [74], [77], [104], [105], [110]. In
particular, the theta functions corresponding to the hyperelliptic curves derived
from the Burchnall-Chaundy polynomials (2.15), associated with Picard potentials,
reduce to one-dimensional theta functions.

Remark 4.11 (Computing genus and branch points). Even though Theorem
4.7 characterizes all elliptic algebro-geometric potentials as Picard potentials, it
does not yield an effective way to compute the underlying hyperelliptic curve Kg;
in particular, its proof provides no means to compute the branch and singular points
nor the (arithmetic) genus g of Kg. To the best of our knowledge Kg has been com-
puted only for Lamé-Ince potentials and certain Treibich-Verdier potentials (see,
e.g., [6], [11], [70], [86], [105], [110], [118], [120], [124]). Even the far simpler
task of computing g previously had only been achieved in the case of Lamé-Ince po-
tentials (see [65] and [115] for the real and complex-valued case, respectively). In
[54], [55], and [56] we have treated these problems for Lamé-Ince, Treibich-Verdier,
and reflection symmetric elliptic algebro-geometric potentials, respectively. In par-
ticular, in [55] we computed g for all Treibich-Verdier potentials and in [56] we
reduced the computation of the branch and singular points of Kg for any reflection
symmetric elliptic algebro-geometric potential to the solution of constraint linear
algebraic eigenvalue problems. We refrain from reproducing a detailed discussion of
this matter here, instead we just recall an example taken from [55] which indicates
some of the subtleties involved: Consider the potentials

q4(z) = −20℘(z − ωj)− 12℘(z − ωk),(4.29)

q̂4(z) = −20℘(z − ωj)− 6℘(z − ωk)− 6℘(z − ωℓ),(4.30)

q5(z) = −30℘(z − ωj)− 2℘(z − ωk),(4.31)

q̂5(z) = −12℘(z − ωj)− 12℘(a− ωk)− 6℘(z − ωℓ)− 2℘(z − ωm),(4.32)

where j, k, ℓ,m ∈ {1, 2, 3, 4} (ω2 = ω1 + ω3, ω4 = 0) are mutually distinct. Then q4
and q̂4 correspond to (arithmetic) genus g = 4 while q5 and q̂5 correspond to g = 5.
However, we emphasize that all four potentials contain precisely 16 summands of
the type – 2℘(x− bn) (cf. the discussion following (1.10)). q5 and q̂5 are isospectral
(i.e., correspond to the same curve K5) while q4 and q̂4 are not.

5. Picard’s Theorem for First-Order Systems

Having characterized all elliptic algebro-geometric solutions of the KdV hierar-
chy which are related to the second-order expression L2 = d2/dz2 + q, it is natural
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to try to extend Theorem 4.7 to n-th order expressions Ln (connected with the
Gel’fand-Dickey hierarchy). Actually, a more general extension to integrable sys-
tems related to general first-order n×n matrix-valued differential expressions seems
very desirable in order to include AKNS systems (see, e.g., [51]) and the matrix
hierarchies of integrable equations described in detail, for instance, in [26], Sects.
9, 13–16, [31], [33]. Picard’s Theorem 4.1 generalizes in a straightforward manner
to first-order systems, that is, pairwise distinct Floquet multipliers in one of the
fundamental directions and a meromorphic fundamental system of solutions guar-
antee the existence of a fundamental system of solutions which are elliptic of the
second kind (see (5.3)). Moreover, it is possible to obtain the explicit Floquet-type
structure of these solutions (cf. Theorem 5.2).

Denote by M(n) the set of n × n matrices with entries in C and consider the
linear homogeneous system

Ψ′(z) = Q(z)Ψ(z), z ∈ C,(5.1)

where Q(z) ∈ M(n) and where the entries of Q(z) are elliptic functions with a
common period lattice Λ spanned by 2ω1 and 2ω3 which satisfy the same conditions
as before.

Assuming without loss of generality that no pole of Q(z) lies on the line con-
taining the segments [0, 2ωj ], Floquet theory with respect to these directions yields
the existence of fundamental matrices Φj(z) of the type

Φj(z) = Pj(z) exp (zKj) ,(5.2)

where Pj(z) is a periodic matrix with period 2ωj and Kj is a constant matrix.
The monodromy matrix is given by Mj = exp(2ωjKj). We want to establish the
existence of a Floquet representation simultaneously for both directions 2ω1 and
2ω3. More precisely, we intend to find solutions ϕ of Ψ′(z) = Q(z)Ψ(z) satisfying

ϕ(z + 2ωj) = ρjϕ, j = 1, 3,(5.3)

where ρj ∈ C\{0}. Solutions ϕ(z) of (5.1) satisfying (5.3) are again called elliptic
of the second kind.

Even though Picard did mention certain extensions of his result to first-order
systems (see, e.g., [60], p. 248–249), apparently he did not seek a Floquet repre-
sentation for systems in the elliptic case. The first to study such a representation
seems to have been Fedoryuk who proved the following result.

Theorem 5.1. ([41]) Let Q(z) be an n × n matrix whose entries are elliptic
functions with fundamental periods 2ω1 and 2ω3 and suppose that (5.1) has a single-
valued fundamental matrix of solutions. Then (5.1) admits a fundamental matrix
Φ(z) of the type

Φ(z) = D(z) exp (zS + ζ(z)T ) , z ∈ C,(5.4)

where S, T ∈M(n), D(z) is invertible and doubly periodic and

S =
1

πi
[2ω3ζ (ω1)K3 − 2ω1ζ (ω3)K1] , T = −2ω1ω3

πi
(K3 −K1) .(5.5)

Moreover, K1 and K3, and hence S and T commute.

Fedoryuk’s representation (5.4) has the peculiar feature that it seems to stress
an apparent essential singularity structure of solutions at z = 0. Indeed, since ζ(z)
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has a first-order pole at z = 0, the term exp (ζ(z)T ) in (5.4) exhibits an essen-
tial singularity unless T is nilpotent. Hence, the doubly periodic matrix D(z), in
general, will cancel the essential singularity of exp (ζ(z)T ) and therefore cannot be
meromorphic and hence not elliptic. Thus Fedoryuk’s result cannot be considered
the natural extension of Picard’s Theorem 4.1.

In the remainder of this section we shall focus on an alternative to Theorem
5.1 and describe a generalization of Picard’s theorem in the context of first-order
systems with elliptic coefficients.

Theorem 5.2. ([52]) Let Q(z) be an elliptic n × n matrix with fundamental
periods 2ω1 and 2ω3 and suppose that (5.1) has a meromorphic fundamental matrix
Ψ(z) of solutions. Then (5.1) admits a fundamental matrix of the type

Φ(z) =E(z)σ(z)−1σ

(
zIn − 2ω1ω3

πi
(K3 −K1)

)
(5.6)

× exp
{ z
πi

[2ω3ζ (ω1)K3 − 2ω1ζ (ω3)K1]
}
, z ∈ C,

where E(z) is an elliptic matrix with periods 2ωj and K1, K3 (and hence Mj =
exp (2ωjKj), j = 1, 3) are commuting matrices. Moreover, linearly independent
solutions ϕ

m
(z) ∈ Cn, 1 ≤ m ≤ n of (5.1), that is, column vectors of (5.6), are of

the type

ϕ
m
(z) =

n1∑
k1=0

n2∑
k2=0

em,k1,k2
(z) exp (zµm,k1,k2

) zk1ζ(z)k2 ,(5.7)

where the vectors em,k1,k2
(z) are elliptic, the numbers µm,k1,k2

denote the (not nec-
essarily distinct) eigenvalues of

(1/πi) [2ω3ζ (2ω1/2)K3 − 2ω1ζ (2ω3/2)K1] ,(5.8)

and, most notably, the upper limits of the sums in (5.7) satisfy

n1 + n2 ≤ n− 1.(5.9)

In particular, there exists at least one solution ϕ
m0

(z) of (5.1) which is elliptic of

the second kind, that is, ϕ
m0

(z) is meromorphic on C and

ϕ
m0

(z + 2ωj) = ρm0,jϕm0
(z), j = 1, 3, z ∈ C(5.10)

for some ρm0,j = exp (2ωjµm0,0,0) ∈ C\{0}, j = 1, 3. In addition, if all eigenval-
ues of M1 or M3 are distinct, then there exists a fundamental system of solutions
{ϕ

m
(z)}1≤m≤n of (5.1) with all ϕ

m
(z) elliptic of the second kind.

For the proof one considers a meromorphic fundamental matrix Ψ̃(z) of 5.1 and
defines

E(z) =Ψ̃(z) exp
(
− z

πi
[2ω3ζ (ω1)K3 − 2ω1ζ (ω3)K1]

)
(5.11)

× σ

(
zIn − 2ω1ω3

πi
(K3 −K1)

)−1

σ(z).

By hypothesis, E(z) is meromorphic and, applying the addition theorem

σ(z + 2ωj) = −σ(z) exp {2ζ (ωj) [z + (ωj)]} , 1 ≤ j ≤ 3(5.12)
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(more precisely, a matrix-valued generalization thereof), one verifies that

E(z + 2ωj) = E(z), j = 1, 3,(5.13)

that is, E(z) is elliptic. The remaining assertions in Theorem 5.2 follow by trans-
forming (K3 − K1) and, say, K1 (separately) into their Jordan normal forms (cf.
[52]).

Remark 5.3. IfM1 orM3 has distinct eigenvalues, one can show that equation
(5.1) has a fundamental system of solutions ϕ

m
(z) of the form,

ϕ
m
(z) =em(z)σ(z)−1σ

(
z − 2ω1ω3

πi
k3,1,m

)
(5.14)

× exp

(
2ω3z

πi
ζ (ω1) k3,1,m

)
exp (zk1,m) , 1 ≤ m ≤ n, z ∈ C,

where em(z) are elliptic with period lattice Λ and {k3,1,m}1≤m≤n and {k1,m}1≤m≤n

are the eigenvalues of (K3 −K1) and K1, respectively.

Remark 5.4. In the special scalar case (4.1), the bound (5.9) was proved in
[66], p. 377–378 for n = 2 and stated (without proof) for n ≥ 3.

6. The Higher-Order Scalar Case

In our final section we consider a differential expression Ln of the form

Lny = y(n) + qn−2y
(n−2) + ...+ q0y,(6.1)

where initially the coefficients q0, ..., qn−2 are continuous complex-valued functions
of a real variable periodic with period Ω > 0. Again we denote the (n-dimensional)
vector space of solutions of the differential equation Lny = Ey by L(E) and the
operator which shifts the argument of a function in L(E) by a period Ω by T (E). As
before T (E) and Ln commute which implies that T (E) maps L(E) to itself. Floquet
multipliers, that is, eigenvalues of T (E) are given as zeros of the polynomial

F(E, ρ) = (−1)nρn + (−1)n−1a1(E)ρn−1 + ...− an−1(E)ρ+ 1 = 0,(6.2)

where the functions a1, ..., an−1 are entire. This is obvious after choosing the basis
ϕ1(E, x), ..., ϕn(E, x) of L(E) satisfying the initial conditions ϕk−1

j (E, x0) = δj,k.

Note that F(E, ·) has n distinct zeros unless the discriminant of F(E, ·), which
is an entire function of E, is equal to zero. Thus, this happens at most at count-
ably many points. Denote by mg(E, ρ) and mf (E, ρ) the geometric and alge-
braic multiplicity, respectively, of the eigenvalue ρ of T (E). Then the number
mf (E, ρ) − mg(E, ρ) ∈ {0, 1, ..., n − 1} counts the “missing” Floquet solutions of
Lny = Ey with multiplier ρ. We will be interested in the case where this number
is positive only for finitely many points E.

For θ ∈ C, consider the operatorH(θ) associated with the differential expression
Ln in L2([x0, x0 +Ω]) with domain

D(H(θ)) = {g ∈ H2,n([x0, x0 +Ω]) : g(k)(x0 +Ω) = eiθg(k)(x0), k = 0, ..., n− 1},
(6.3)

where Hp,r(·) denote the usual Sobolev spaces with r distributional derivatives in
Lp(·).

H(θ) has discrete spectrum. In fact, its eigenvalues, which will be called Floquet
eigenvalues, are given as the zeros of F(·, ρ). Moreover, the algebraic multiplicity
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ma(E, ρ) of E as an eigenvalue of H(θ) is given as the order of E as a zero of F(·, ρ)
(see, e.g., [57]).

With any differential expression Ln given by (6.1) with continuous complex-
valued periodic coefficients q0, ..., qn−2 of a real variable we associate the corre-
sponding closed operator H : H2,n → L2(R), Hy = Lny.

Rofe-Beketov’s result [99], referred to in Section 3, originally was proved for an
n-th order operator. Hence the spectrum σ(H) of H equals the conditional stability
set S(Ln) of Ln, that is, the set of all complex numbers E for which the differential
equation Lny = Ey has a nontrivial bounded solution. For E to be in S(Ln) it is
necessary and sufficient that Lny = Ey has a Floquet multiplier of modulus one.
Hence

S(Ln) = {E ∈ C : F(E, eit) = 0 for some t ∈ R},(6.4)

where F is given by (6.2). Since F is entire in both its variables, it follows that
σ(H) = S(Ln) consists of (generally) infinitely many regular analytic arcs (i.e.,
spectral bands). They end at a point where the arc fails to be regular analytic or
extends to infinity. Finite endpoints of the spectral bands are called band edges.

Definition 6.1. (i) H is called a finite-band operator if and only if σ(H)
consists of a finite number of regular analytic arcs.
(ii) Ln is called a Picard differential expression if and only if all its coefficients
are elliptic functions associated with a common period lattice and if Lny = Ey has
a meromorphic fundamental system (with respect to the independent variable) for
any value of the spectral parameter E ∈ C.

Next, let Φ(E, x) be the fundamental matrix of Lny = Ey satisfying the initial
condition Φ(E, x0) = In where In is the n × n identity matrix. The Floquet
multipliers of the differential equation Lny = Ey are then the eigenvalues of the
monodromy matrix Φ(E, x0 +Ω).

Our aim is to determine multiplicities of Floquet eigenvalues and multipliers
for large values of the spectral parameter E. For large values of E the equation
Lny = Ey can be treated as a perturbation of y(n) = Ey. In this case there
exist n linearly independent Floquet solutions exp(λσkx) with associated Floquet
multipliers exp(λσk), where λ is such that λn = −E and the σk are the different n-
th roots of −1. The characteristic polynomial of the associated monodromy matrix
is therefore given by

F0(E, ρ) = (−1)nρn + (−1)n−1aF,1(E)ρn−1 + ...− aF,n−1(E)ρ+ 1,(6.5)

where the aF,j are the elementary symmetric polynomials in the variables exp(λσ1),
..., exp(λσn). Perturbation theory now yields that the coefficients aj in (6.2) are
related to the coefficients aF,j in (6.5) by

aj(E) = aF,j(E) + bj(E), j = 1, ...n− 1,(6.6)

where, for some suitable positive constant M ,

|bj | ≤
M

|λ|
| exp(λσn+1−j)... exp(λσn)|, j = 1, ..., n− 1(6.7)

having ordered the roots in such a way that | exp(λσj)| ≤ | exp(λσj+1)| for j =
1, ..., n−1. This allows one to show that asymptotically, in a certain small disk about
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exp(λσk), there are either one or two Floquet multpliers of Lny = Ey depending
on whether or not the inequality

|exp(λσk)− exp(λσj)| ≥ γmax{| exp(λσk)|, | exp(λσj)|} for all j ̸= k(6.8)

holds. From this one may prove the following theorem concerning algebraic mult-
plicities of Floquet multipliers.

Theorem 6.2. ([121]) Let Ln be defined as in (6.1). For every ε > 0 there
exists a disk B(ε) ⊂ C with the following two properties.
1. All values of E, where at least two Floquet multipliers of the differential equation
Lny = Ey coincide, lie in B(ε) or in the cone {E : | Im(E)|/|Re(E)| ≤ ε}.
2. Every degenerate Floquet multiplier outside B(ε) has multiplicity two.

This result has been obtained earlier by McKean [78] for n = 3 and by da Silva
Menezes [25] for general n.

Moreover the above observations may be used to obtain information concerning
algebraic multiplicities of Floquet eigenvalues.

Theorem 6.3. ([121]) Let θ0 ∈ C. Then there exists an R > 0 such that every
eigenvalue E of the Floquet operator H(θ0), which satisfies |E| > R, has at most
algebraic multiplicity two.

Now suppose that F(E, ρ) = 0 and that E ∈ S(Ln) is suitably large. Since
1 ≤ mf (E, ρ),ma(E, ρ) ≤ 2 we have to distinguish four cases and Weierstrass’s
preparation theorem provides us with the following information:
1. If mf (E, ρ) = ma(E, ρ) = 1 then one spectral band passes through E.
2. If mf (E, ρ) = 2 and ma(E, ρ) = 1 then two (possibly coinciding) spectral bands
end in E.
3. Ifmf (E, ρ) = 1 andma(E, ρ) = 2 then two spectral bands intersect in E forming
a right angle.
4. If mf (E, ρ) = ma(E, ρ) = 2 then two (possibly coinciding) spectral bands pass
through E.

This shows that a necessary condition for a suitably large E to be a band
edge is that ma(E, ρ) = 1 and mf (E, ρ) = 2 for some ρ. In particular, such an
E is necessarily a point where strictly less than n linearly independent Floquet
solutions exist. In addition, when n is odd then σ(H) is ultimately in a cone
with the imaginary axis as symmetry axis while the possible band edges (where
mf (E, ρ) = 2) are in a cone whose axis is the real axis. Therefore we have the
following result.

Theorem 6.4. ([121]) The operator H associated with the differential expres-
sion Ln introduced after (6.3) is a finite-band operator whenever n, the order of
Ln, is odd.

Finally we turn to the case where Ln is a Picard differential expression. The
principal result of this section, Theorem 6.5 below, then shows that algebraic and
geometric multiplicities of Floquet multipliers of Lny = Ey can be different only
when E is one of finitely many points.

Theorem 6.5. ([121]) Suppose the differential expression Ln is Picard. Then
there exist n linearly independent solutions of Lny = Ey which are elliptic of the
second kind for all but finitely many values of the spectral parameter E.



24 F. GESZTESY AND R. WEIKARD

Sketch of proof. The proof is modeled closely after the one of Theorem
4.7. Again, inside a compact set there can be only a finite number of values of E
where Floquet multipliers associated with a fundamental period of the coefficients
of Ln are degenerate. On the other hand when |E| becomes large we only have to
prove that for one of the fundamental periods of the coefficients of Ln all Floquet
multipliers of Lny = Ey are distinct according to Picard’s Theorem 4.1.

Assume that the fundamental periods 2ω1 and 2ω3 are such that the angle ϕ
between them is less than π/n and assume that z0 is such that no singularity of
q0, ..., qn−2 lies on the line through z0 and z0 + 2ω1 or on the line through z0 and
z0 + 2ω3.

Substituting w(x) = y(2ω1x+ z0) and defining pk(x) = (2ω1)
n−kqk(2ω1x+ z0)

transforms Lny = Ey into

w(n) + pn−2(x)w
(n−2) + ...+ p0(x)y = (2ω1)

nEw.(6.9)

Therefore, Theorem 6.2 implies that all Floquet multipliers associated with the
periods 2ω1 (2ω3) are pairwise distinct provided the spectral parameter (2ωj)

nE
lies outside the set Sj , j = 1, 3, where

Sj =

{
z :

∣∣∣∣ Im(z)

Re(z)

∣∣∣∣ ≤ ϕ

3

}
∪ {z : |z| ≤ Rj} ,(6.10)

with Rj , j = 1, 3 being suitable positive constants.
The two sets S1 and S3 do not intersect outside a sufficiently large disk D.

Hence, for each value of E outside D, Picard’s theorem guarantees the existence
of n linearly independent solutions of Lny = Ey which are elliptic functions of the
second kind.

In particular, when |E| is large and Ln is Picard, we infer that mf (E, ρ) =
mg(E, ρ) ≤ ma(E, ρ). Moreover, we have shown earlier that necessarily ma(E, ρ) =
1 and mf (E, ρ) = 2 for band edges E with |E| sufficiently large. Thus there are no
band edges with sufficiently large absolute values for Picard expressions. One may
also show that at most two bands extend to infinity. Hence we have the following
final theorem which, in view of Theorem 6.4, has significance only when n is even.

Theorem 6.6. ([121]) Let Ln be a Picard differential expression and H the
associated operator. Then, if σ(H) does not contain closed regular analytic arcs,
σ(H) consists of finitely many analytic arcs which are regular in their interior.
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[14] B. Birnir, Complex Hill’s equation and the complex periodic Korteweg-de Vries equations ,

Commun. Pure Appl. Math. 39 (1986), 1–49.
[15] , Singularities of the complex Korteweg-de Vries flows, Commun. Pure Appl. Math.

39 (1986), 283–305.

[16] J. L. Burchnall and T. W. Chaundy, Commutative ordinary differential operators, Proc.
London Math. Soc. Ser. 2, 21 (1923), 420–440.

[17] , Commutative ordinary differential operators, Proc. Roy. Soc. LondonA 118 (1928),

557–583.
[18] H. Burkhardt, Elliptische Funktionen, Verlag von Veit, Leipzig, 2nd ed., 1906.

[19] F. Calogero, Exactly solvable one-dimensional many-body problems , Lett. Nuovo Cim. 13

(1975), 411–416.
[20] D. V. Choodnovsky and G. V. Choodnovsky, Pole expansions of nonlinear partial differential

equations, Nuovo Cim. 40B (1977), 339–353.
[21] P. L. Christiansen, J. C. Eilbeck, V. Z. Enolskii, and N. A. Kostov, Quasi-periodic solutions

of the coupled nonlinear Schrödinger equations , Proc. Roy. Soc. London A 451 (1995),

685–700.
[22] D. V. Chudnovsky, Meromorphic solutions of nonlinear partial differential equations and

many-particle completely integrable systems, J. Math. Phys. 20 (1979), 2416–2422.

[23] D. V. Chudnovsky and G. V. Chudnovsky, Appendix I: Travaux de J. Drach (1919), Clas-
sical and Quantum Models and Arithmetic Problems (ed. by D. V. Chudnovsky and G. V.

Chudnovsky), Marcel Dekker, New York, 1984, 445–453.

[24] E. Colombo, G. P. Pirola, and E. Previato, Density of elliptic solitons, J. reine angew. Math.
451 (1994), 161–169.

[25] M. L. Da Silva Menezes, Infinite genus curves with hyperelliptic ends, Commun. Pure Appl.
Math. 42 (1989), 185–212.

[26] L. A. Dickey, Soliton Equations and Hamiltonian Systems, World Scientific, Singapore,

1991.
[27] R. Donagi and E. Markman, Spectral covers, algebraically completely integrable, Hamilton-

ian systems, and moduli of bundles, Integrable Systems and Quantum Groups (ed. by R.

Donagi, B. Dubrovin, E. Frenkel, and E. Previato), Lecture Notes in Mathematics 1620,
Springer, Berlin, 1996, 1–119.
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