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A local Borg-Marchenko theorem for difference equations
with complex coefficients

Rudi Weikard

Abstract. We investigate the asymptotic behavior of the Titchmarsh-Weyl
m-function for a difference equation with complex coefficients and prove a local
Borg-Marchenko theorem. The proofs are based on a nesting circles analysis.

1. Introduction

The goal of this paper is to establish the asymptotic behavior of the Titchmarsh-
Weyl m-function and a local Borg-Marchenko theorem for a Jacobi difference ex-
pression in the case of complex coefficients. Note that the associated Jacobi operator
will not be selfadjoint in this case.

Let CN0 and CN be the sets of complex-valued sequences defined on N0 and N,
respectively, and denote the first order forward difference operator by a ′, i.e., let
f ′(n) = f(n+1)−f(n). The (symmetric) Jacobi difference expression L : CN0 → CN
is defined by1

(Ly)(n) = an−1y(n−1)+bny(n)+any(n+1) = (ay′)′(n−1)+(an−1 +bn +an)y(n)

where
(1) a0 = 1,
(2) an 6= 0 for all n ∈ N,
(3)

∑∞
n=1 1/|an| = ∞, and

(4) Q(L), the closed convex hull of the set {an−1+bn+an−ran : n ∈ N, r ≥ 0},
is a proper subset of the complex plane (and hence a subset of a closed
half plane).

If y ∈ CN0 we denote the vector in CN obtained by chopping off the first component
by ŷ. Then we may write Ly = µŷ to represent all equations (Ly)(n) = µy(n) for
n ∈ N.

The (Dirichlet) m-function associated with L is defined by

m : Ω → C∞ : µ 7→ ψ′(µ, 0)
ψ(µ, 0)
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1We will mostly write an for a(n).
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where Ω is the subset of C for which there is a square summable solution of Ly = µŷ
which is then denoted by ψ(µ, ·). It will be shown in the next section that this is a
valid definition since, under the given circumstances, there can not be two linearly
independent square summable solutions of Ly = µŷ.

In this paper the following three statements will proved:
(1) The set Ω contains at least a half plane (Theorem 3.2). This was proved by

Wilson [12] by a nesting circles analysis. As it provides useful estimates
needed later and to make this paper self-contained, a (much condensed)
version of that proof is provided in Section 3.

(2) m(µ) = −1 + 1/µ + O(1/µ2) as µ tends to infinity (Theorem 4.2).
(3) Two Dirichlet m-functions, m and m̃, respectively associated with dif-

ference expressions L and L̃, satisfy m(µ) − m̃(µ) = O(µ−2N−1) on a
suitable ray if and only if the coefficients of L and L̃ satisfy bn = b̃n and
a2

n−1 = ã2
n−1 whenever 1 ≤ n ≤ N (Theorem 5.1, check there for a precise

statement).
To any difference expression L there is associated in a natural way a Jacobi

operator J from `2(N) to `2(N) (possibly defined only on a dense subset of `2(N)). If
U is a bounded multiplication operator with a bounded inverse, then J ′ = U−1JU
is also a Jacobi operator with the same m-function as J . The associated difference
expression will be of the form

ãn−1y(n− 1) + bny(n) + c̃ny(n + 1)

where ãnc̃n = a2
n but, generally, ãn 6= c̃n. Therefore our results apply also to certain

nonsymmetric Jacobi expressions.
Selfadjoint Jacobi operators have, of course, a long history. We mention here

the monumental work by Berezans’kĭı [2], a recent monograph by Teschl [11], and
the paper [6] by Gesztesy and Simon. The classical Titchmarsh-Weyl nesting circles
analysis was first applied to a one-dimensional Schrödinger equation with a complex
potential by Sims [10] in 1957. That work was later generalized to nonselfadjoint
Sturm-Liouville equations by Brown et al. [3] and carried over to difference equa-
tions by Wilson [12]. A local version of the celebrated Borg-Marchenko theorem
for a onedimensional Schrödinger operator with real potential was first given by
Simon [9]. Simplified versions are due to Gesztesy and Simon [7] and Bennewitz
[1]. In [4] this result was extended to complex-valued potentials. Borg-Marchenko
theorems for selfadjoint Jacobi operators were given by Gesztesy and Simon [6]
and by Gesztesy, Kiselev, and Makarov [5]. Closely related to the present work is
Gusĕınov [8], who considers the inverse problem for a nonselfadjoint Jacobi operator
after introducing a generalized spectral function.

2. Basic notation and some basic facts

We denote by S(L) the set of all open half planes which do not intersect Q(L).
Whenever Λ is in S(L) then there is a Möbius transformation of the form λ 7→
e−iη(λ−K) which maps Λ to the upper half of the complex plane. Thus, if µ ∈ Λ
and q ∈ Λc (the complement of a set Ω ∈ C is denoted by Ωc), then there are
η ∈ [0, 2π) and K ∈ C such that =(e−iη(λ−K)) > 0 and =(e−iη(K − q)) ≥ 0.

The equation (Ly)(n) = µy(n) is equivalent to(
y(n)

any(n + 1)

)
=

(
0 1/an−1

−an−1 (µ− bn)/an−1

) (
y(n− 1)
an−1y(n)

)
.
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Since the matrix figuring here has determinant one we see that the (modified)
Wronskian

[f, g](n) = an(f(n)g′(n)− g(n)f ′(n)) = an(f(n)g(n + 1)− g(n)f(n + 1))

of two solutions f and g of Ly = µŷ is independent of n.
For any µ ∈ C let c(µ, ·) and s(µ, ·) be the unique linearly independent solutions

of Ly = µŷ satisfying c(µ, 0) = s′(µ, 0) = 1 and c′(µ, 0) = s(µ, 0) = 0. Note that
c(·, n) and s(·, n) are polynomials for every n ∈ N0. We have [c(µ, ·), s(µ, ·)](n) = 1
for all n ∈ N0. This equation and Schwarz’s inequality give that

( ∞∑
n=0

1
|an|

)2

≤ 4
∞∑

n=0

|c(µ, n)|2
∞∑

n=0

|s(µ, n)|2.

Since, by our assumptions, the left hand side of this inequality is infinity, at least
one of c(µ, ·) and s(µ, ·) is not square summable. In particular, the space of square
summable solutions of Ly = µŷ is either trivial or one-dimensional.

Lemma 2.1. If (Ly)(n) = µy(n), 1 ≤ n ≤ N , then

aNy′(N)y(N) = a0y
′(0)y(0) +

N∑
n=1

{an−1|y′(n− 1)|2 + (µ− qn)|y(n)|2}

where qn = an−1 + bn + an.

Proof. Using the summation by parts formula
N∑

n=1

g(n)f ′(n− 1) = g(N)f(N)− g(0)f(0)−
N∑

n=1

g′(n− 1)f(n− 1)

and (Ly)(n) = µy(n) yields
N∑

n=1

µ|y(n)|2 = aNy′(N)y(N)− a0y(0)y′(0) +
N∑

n=1

(qn|y(n)|2 − an−1|y′(n− 1)|2).

A rearrangement of the terms completes the proof. ¤

Lemma 2.2. Fix n ∈ N. The function s(·, n) is a polynomial of order n − 1
with leading coefficient (a0...an−1)−1. In particular, s(µ, n)/s(µ, n + 1) = anµ−1 +
O(µ−2) as µ tends to infinity and Cn|µ|n−1 ≤ |s(µ, n)| ≤ Dn|µ|n−1 for a suitable
constants Cn and Dn and sufficiently large µ.

Proof. The first statement follows from induction on n. The remaining state-
ments are immediate corollaries of the first. ¤

3. Nesting circles analysis

Let N be a natural number and β a complex number. For every µ there is
a one-dimensional space of finite sequences y defined on {0, ..., N + 1} satisfying
(Ly)(n) = µy(n) for n = 1, ..., N and the boundary condition

y(N)
aNy′(N)

= β.

Except for a countable set of µ any such sequence y is a multiple of ψm(µ, ·) =
c(µ, ·)+ms(µ, ·) for some appropriate number m which depends on µ, β and N . In
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fact, the connection between β and m (for fixed µ and N) is given by the Möbius
transformation

β = Bµ,N (m) =
ψm(µ,N)

aNψ′m(µ,N)
=

c(µ,N) + ms(µ,N)
aN [c′(µ,N) + ms′(µ, N)]

.

The inverse of this transformation is

m = B−1
µ,N (β) = −aNc′(µ,N)β − c(µ,N)

aNs′(µ,N)β − s(µ, N)
.

We are looking for a condition on µ such that the half plane given by =(βeiη) ≥ 0,
for a suitably chosen η ∈ [0, 2π), is mapped to a disk by B−1

µ,N .
Recall that the Möbius transformation

α 7→ −Aα + B

Cα + D

maps the upper half plane onto a disk of diameter |AD − BC|/=(DC) provided
that the point αs = −D/C, which is mapped to infinity, lies in the lower half
plane. Also note that αs = −DC/|C|2 is in the lower half plane if and only if
=(DC) = =(−DC) > 0.

According to this the half plane =(βeiη) ≥ 0 is mapped to a disk DN (µ, η) if
and only if

dN (µ, η)−1 = =(aNs′(µ,N)s(µ,N)e−iη) > 0. (1)
The number dN (µ, η) is then the diameter of the disk.

By Lemma 2.1 we have

aNs′(µ,N)s(µ,N) =
N∑

n=1

(µ− γ∞(n))|s(µ, n)|2

where

γ∞(n) = qn − an−1

∣∣∣∣
s′(µ, n− 1)

s(µ, n)

∣∣∣∣
2

∈ Q(L).

Hence

dN (µ, η)−1 = =[e−iη(µ−K)]
N∑

n=1

|s(µ, n)|2 +
N∑

n=1

=[e−iη(K − γ∞(n))]|s(µ, n)|2.

Suppose µ ∈ Λ ∈ S(L). If η and K are chosen such that Λ is mapped to the upper
half plane by the Möbius transformation λ 7→ e−iη(λ−K) then the first summand
on the right of this equation is positive while the second is nonnegative.

Hence we proved the following lemma.

Lemma 3.1. Suppose µ ∈ Λ ∈ S(L). Then there is an η ∈ [0, 2π) such that the
Möbius transformation B−1

µ,N maps the closed half plane =(βeiη) ≥ 0 onto a closed
disk DN (µ, η) of diameter dN (µ, η), given through equation (1).

We now investigate the behavior of the disks DN (µ, η) when N tends to infinity.
First note that m ∈ DN (µ, η) if and only if

βeiη = eiη ψm(µ,N)
aNψ′m(µ,N)

is in the upper half plane which happens if and only if

=(aNψ′m(µ,N)ψm(µ, N)e−iη) < 0.
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Applying once more Lemma 2.1 we get

aNψ′m(µ,N)ψm(µ, N) = m +
N∑

n=1

(µ− γm(n))|ψm(n)|2

where

γm(n) = qn − an−1

∣∣∣∣
ψ′m(µ, n− 1)

ψm(n)

∣∣∣∣
2

∈ Q(L).

Hence m ∈ DN (µ, η) if and only if
N∑

n=1

=[e−iη(µ− γm(n))]|ψm(µ, n)|2 < =(−e−iηm). (2)

Since γm(n) ∈ Q(L) ⊂ Λc and µ ∈ Λ each summand on the left hand side is positive
and therefore the sum may only increase when N increases. The right hand side,
however, is independent of N . Therefore, if M > N and m ∈ DM (µ, η) then also
m ∈ DN (µ, η), i.e., the discs are nested.

It follows immediately from inequality (2) that

=[e−iη(µ−K)]
N∑

n=1

|ψm(µ, n)|2 < =(−e−iηm)

which shows that ψm(µ, ·) ∈ `2(N0) provided that m ∈ ⋂∞
N=1 DN (µ, η). Since we

know that under our assumptions there is at most one square summable solution,
this lemma shows also that

⋂∞
N=1 DN (µ, η) consists of just a single point, the

value of the m-function at the point µ. In particular, D∞(µ) =
⋂∞

N=1 DN (µ, η) is
independent of η (if there ever was choice for η).

We have therefore the following theorem.

Theorem 3.2. Suppose µ ∈ Λ ∈ S(L). If m ∈ D∞(µ) then ψm(µ, ·) = c(µ, ·)+
ms(µ, ·) is in `2(N0), i.e., there exists a square summable solution of Ly = µŷ.

4. Asymptotic behavior of the m function

A ray R(t) = bt, t ≥ 0 is called admissible for L if it eventually lies in some
Λ ∈ S(L) and if it is not parallel to the boundary of that Λ.

Lemma 4.1. Fix N ∈ N. Let µ be sufficiently large and on an admissible ray.
Then the diameter dN (µ, η) of the disk DN (µ, η) satisfies dN (µ, η) = O(µ1−2N ) as
µ tends to infinity on the ray.

Proof. Note that
aNs′(µ,N)

s(µ,N)
= µ− qN + aN−1

(
1− s(µ,N − 1)

s(µ,N)

)
.

Since =(e−iη(µ − qN )) ≥ 2ε|µ| for sufficiently large µ on the ray and since, by
Lemma 2.2, aN−1(1− s(µ, N − 1)/s(µ,N)) is bounded we find that eventually

=(e−iηaNs′(µ,N)/s(µ,N)) ≥ ε|µ|.
Also, again by Lemma 2.2, |s(µ,N)| ≥ CN |µ|N−1. These estimates complete the
proof because

dN (µ, η)−1 = |s(µ,N)|2=(e−iηaNs′(µ,N)/s(µ,N)).

¤
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Theorem 4.2. Suppose µ is on an admissible ray. Then

m(µ) = −1 +
1

µ− b1
+ O(µ−3) = −1 +

1
µ

+
b1

µ2
+ O(µ−3)

as µ tends to infinity on the ray.

Proof. The point B−1
µ,2(0) = −c(µ, 2)/s(µ, 2) lies in the disk D2(µ, η) whose

diameter is of order µ−3 at most as µ tends to infinity. Hence m+ c(µ, 2)/s(µ, 2) =
O(µ−3). Computing c(µ, 2) and s(µ, 2) explicitly completes the proof. ¤

5. A local Borg-Marchenko theorem

If m = m(µ) define

mn(µ) = −1 +
ψm(µ, n + 1)
anψm(µ, n)

=
ψm(µ, n + 1)− anψm(µ, n)

anψm(µ, n)
.

Note that mn(µ) is the value of the m-function for the Jacobi problem where all
coefficients have been shifted n times to the left because the restriction of ψm(µ, ·)
to the set {n, n + 1, ...} is still square summable but where one has to take account
of the fact that an might be different from one. In particular, m(µ) = m0(µ). The
difference equation yields that the mn satisfy the recurrence relation

a2
n(mn(µ) + 1) = µ− bn − 1

mn−1(µ) + 1
. (3)

Let Σ denote a fixed open sector of the complex plane whose vertex is at the
origin and let LΣ denote the set of those Jacobi expressions satisfying the conditions
in Section 1 for which there is Λ ∈ S(L) such that Λc ∩ Σ is bounded.

Theorem 5.1. Let L and L̃ be two Jacobi expressions in LΣ and let m and m̃
be the associated m-functions. Let R be a ray in Σ. Then the following statement
holds: m(µ) − m̃(µ) = O(µ−2N−1) on R if and only if bn = b̃n and a2

n−1 = ã2
n−1

for n ∈ {1, ..., N}.
Proof. First note that R is admissible for both L and L̃.
Assume bn = b̃n and a2

n−1 = ã2
n−1 for n ∈ {1, ..., N}. Using this information

one may show inductively that a1c(µ, 2) = ã1c̃(µ, 2), ..., a1...aNc(µ,N + 1) =
ã1...ãN c̃(µ,N + 1). Similarly, a1...aNs(µ,N + 1) = ã1...ãN s̃(µ,N + 1). Hence

− c(µ, N + 1)
s(µ, N + 1)

= − c̃(µ,N + 1)
s̃(µ, N + 1)

= B−1
µ,N+1(0)

is a point on the boundary of both DN+1(µ, η) and D̃N+1(µ, η̃). If µ is as described
then m and m̃ are in these disks, respectively. Therefore their distance cannot be
any larger than the sum of the diameters of those disks. Because of Lemma 4.1 the
first part of the theorem is therefore proven.

Now assume that m(µ)− m̃(µ) = O(µ−2N−1) on R. Firstly, Theorem 4.2 and
our assumption give

1
µ− b1

− 1
µ− b̃1

= O(µ−3).

This yields b1 = b̃1.
We will now prove by induction on n that a2

n−1 = ã2
n−1, bn = b̃n, and mn−1(µ)−

m̃n−1(µ) = O(µ−2(N−n)−3) for all n ∈ {1, ..., N}. This is true for n = 1. Assume
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now that these statements are true for some n ∈ {1, ..., N−1}. Then, using equation
(3),

a2
n(mn(µ)+1)− ã2

n(m̃n(µ)+1) =
mn−1(µ)− m̃n−1(µ)

(mn−1(µ) + 1)(m̃n−1(µ) + 1)
= O(µ−2(N−n)−1).

(4)
Since mn and m̃n are m-functions, Theorem 4.2 gives their asymptotic behavior so
that (4) implies

a2
n

µ− bn+1
− ã2

n

µ− b̃n+1

= O(µ−3).

Thus a2
n = ã2

n and bn+1 = b̃n+1. Equation (4) yields now also that mn(µ)−m̃n(µ) =
O(µ−2(N−n)−1). This completes the induction. ¤

We give now another proof for the “only if” part of Theorem 5.1, following
Bennewitz [1]. So, assume again that µ on R and m(µ)− m̃(µ) = O(µ−2N−1) as µ
tends to infinity. Fix n ∈ {1, ..., N + 1}. By Lemma 2.2, s̃(µ, n)/s(µ, n) is bounded
as µ tends to infinity. Moreover,

1
s(µ, n)ψm(µ, n)

=
ans(µ, n + 1)

s(µ, n)
− a2

n(mn(µ) + 1)

tends to infinity because the first term on the right does while the second tends to
zero. Therefore

s̃(µ, n)ψm(µ, n)− s(µ, n)ψ̃m(µ, n)

= s̃(µ, n)c(µ, n)− s(µ, n)c̃(µ, n) + (m(µ)− m̃(µ))s̃(µ, n)s(µ, n)

tends to zero as µ tends to infinity. By Lemma 2.2 and our assumption on m− m̃
the last term on the right hand side of this equation tends to zero so that the
polynomial

s̃(µ, n)c(µ, n)− s(µ, n)c̃(µ, n)

also tends to zero as µ tends to infinity. Hence it must be identically equal to zero,
i.e.,

c(µ, n)
s(µ, n)

=
c̃(µ, n)
s̃(µ, n)

for any n ∈ {1, ..., N + 1} and all µ ∈ C. Since

1
an−1s(µ, n)s(µ, n− 1)

=
c(µ, n− 1)
s(µ, n− 1)

− c(µ, n)
s(µ, n)

we obtain
an−1s(µ, n)s(µ, n− 1) = ãn−1s̃(µ, n)s̃(µ, n− 1) (5)

and, using this and the difference equation,

(µ− bn−1)s(µ, n− 1)2 = (µ− b̃n−1)s̃(µ, n− 1)2. (6)

In particular, for n = 2 ≤ N + 1 we find b1 = b̃1.
We now prove by induction on k that a2

k−1 = ã2
k−1, bk = b̃k, and s(µ, k)2 =

s̃(µ, k)2 for k = 1, ..., N . These statements are true for k = 1. Assume now that
they are true for some k ∈ {1, ..., N − 1}. We may then use the square of equation
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(5) for n = k + 1 and equation (6) for n = k + 2 to obtain the homogeneous linear
system (

a2
k −ã2

k

µ− bk+1 −(µ− b̃k+1)

)(
s(µ, k + 1)2

s̃(µ, k + 1)2

)
= 0.

The determinant of the matrix must be zero for almost all µ and this proves a2
k = ã2

k

and bk+1 = b̃k+1. Squaring the difference equation and using (5) for n = k shows
also that s(µ, k + 1)2 = s̃(µ, k + 1)2. This completes the proof.
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