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The differential equation
Ly =y"+ay=zy
whereq is a periodic locally integrable function of perigdand \ is a complex
parameter is known as Hill's equation. Whetfz, -) andy,(z, -) are solutions of
the equation satisfying,(z, 0) = y4(z, 0) = 1 andy;(z, 0) = y»(z, 0) = 0 then the
function
T(2) = y1(z, p) + Y5(z,p)

which is (not quite rightly) called the discriminant of the differential expreskion
determines the spectrum of the operatbon H%2(R) defined byHy = y” +qy.
In fact, according to a result of Rofe-Beketov [11],

ocH)={z:-2<T(z) < 2}.
In 1963 Hochstadt [10] proved the following

Theorem 1. When q is real-valued and periodic with period p and wis€Hl )
consists of a finite number of closed intervals then the discriminant T may be
uniquely determined from the endpoints of these spectral intervals.

In fact, Hochstadt gives an explicit formula for the discriminant which will be
reproduced below.

Since Hochstadt's work there has been a considerable interest in finite-band
potentials, i.e., potentialg such that the spectrum of the operator associated
with d?/dx?+q consists of finitely many regular analytic arcs, due to their close
relationship with the Korteweg-de Vries hierarchy and hence with integrable sys-
tems. However, the interest is not restricted to real-valued potentials. For instance,
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96 R. Weikard

Guillemin and Uribe [9] considered potentials of the foby -, b e?®*. Birnir

in his work [3] on the complex version of Hill's equation has a generalization
of Hochstadt's theorem for which he assumes that the algebraic multiplicities
of the (semi-)periodic eigenvalues of the equation which are the zeros of the
discriminant are equal to the geometric multiplicities of these eigenvalues and
hence are never larger than two. (He also remarks that, in the complex case, any
algebraic multiplicity is possible.) Gesztesy and myself have treated potentials
which are elliptic functions. Many classical real-valued finite-band potentials, in
particular the Laré potentials, are elliptic functions restricted to some line in the
complex plane but the methods used to treat them work just as well when the
function is complex-valued (see [5]-[8]) or even when certain singularities are
present (see [12]).

In this paper | will present a theorem (Theorem 3) which specifies infor-
mation from which an entire function from a certain class may be recovered
uniquely. Hochstadt's theorem follows then immediately from this theorem since
the required pieces of information are well-known properties of discriminants of
real-valued periodic differential expressions. However, the theorem applies to
any entire function with a certain asymptotic behavior. In particular, it applies to
discriminants of complex-valued periodic differential equations regardless what
the multiplicities of the (semi-)periodic eigenvalues may be. As an illustration
the new theorem is applied below to some simple égmotentials. In particular,
Example 3 constructs explicitly a potential with a periodic eigenvalue whose
algebraic multiplicity is three.

We start with a theorem on the counting of zeros of certain entire functions.

Theorem 2. Let T be an entire function with the following asymptotic prop-

erty: there exists a nonzero complex number p such [iétk?) — 2 coskp|

and|kT’(—k?) — psinkp| are of order|k|~*exp( Im(k)|p) as|k| tends to infinity.
Let By = {z : |z| < (2m+1)?72/(4|p|®)}. Then the number of zerosf T2 — 4

in By is 2m+1 and the number of zeros of Th By, is m whenever m is a suitably

large positive integer. Moreover, the number of zeros ef Z in B, is odd and

the number of zeros of ¥ 2 in By, is even.

Proof. Let To(—k?) = 2 coskp and note thalj(—k?) = pk~!sinkp. ThenTy — 2
has a simple zero at zero and double zeros(@)?7?/p?,j € N. Also, To+2 has
double zeros at- (2] —1)>72/p?,j € N, andT} has simple zeros at= —j72/p?,
j € N. Hence whem € Ny the number of zeros ofp — 2, To + 2, andT{ in By,
equals 2m/2] +1, 2|(m+1)/2], andm, respectively. (Heréx| = max{n € Z :
n <x}.)

Thus the theorem holds whéh = Ty. In general it follows from Roudis
theorem whemn is so large thaiT — To| < [To £ 2| and|T' — T§| < |T4| on the
boundary ofBp,.

Note that Roucé’s theorem shows also that the zerosTéf— 4 outside a
suitably large disk are such that always two of them are closejta?/p2. In

1 Zeros are counted according to their multiplicities unless noted otherwise.
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particular, these zeros are either simple or double. Also there is one z8ro of
close to—j?n?/p? for all largej € N and this accounts for all large zeros of
T’. Hence, if we assume that only finitely many zerosTéf— 4 are simple then
there existam € N such that all zeros of 2 — 4 which have odd multiplicity are
in By, In fact there is then necessarily an odd number of distinct zerd$ of4
which have odd multiplicity.

Given a contoury and a continuous functioh we denote subsequently the
change in the argument 6{z) azz moves alongy by A, argf.

Theorem 3. Let T be an entire function with asymptotic behavior as described
in Theorem 2 and assume that only finitely many zeros’ef & are simple. Then

T is uniquely determined by the following data:

1. the distinct zerosez..., 7o, of T2 — 4 which have odd multiplicity,

2. the number p,

3. the numbersA,, arg(T + VT2 —4), | = 1,..., g, wherer, ...,7, are simple
mutually nonintersecting contours which do not pagsuch thaty; connects the
points z 1 and 2; (these numbers are always multiplesmf

Proof. If Z is a zero ofT? — 4 with multiplicity n > 1 then it is also a zero of
T’ with multiplicity n — 1. In particular, whem = 2 we find that a double zero
of T? — 4 is a simple zero of’. Hence there is am € N such that outsid®&,
the zeros off2 — 4 (which are double) coincide with the zerosTf (which are
simple) and thus, by Theorem 2, there exists an entire fun®imuch that

2m
T@?-4=c | [[—-2) | D@

j=0

and
m
T@=c (][~ | D@
j=1
whereZ, j =0,...,2m and )j, j = 1,...,m are respectively the zeros af — 4
andT’ in By, repeated according to their multiplicities. Therefore

T@)  _ [Tz - )_ [1j(z -
VT@r—2 2 P ) 2\/Hf%<z—

wherecz = 2c2c1_1/2 and where, to obtain the last equality, we might have
relabeled the\;. Let me emphasize here that the numlmyrs.., z, in the right
most member of (1) are pairwise distinct while some of the numhers., A\,
may still coincide. In fact, if is a zero ofT2 —4 of order 21+1 thenz appears
n times among the;.

Introduce the hyperelliptic curve

1)

C ={(z,w) € C*: w? = 4@ — 2)...(Z — 22,)}
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and letM be the Riemann surfad@ U {P., } obtained upon compactification of
C.

The functionp = %(T ++/T2 — 4) which satisfie§ = p+1/p is single-valued
on C. We find

V=%@—1ML T?—4=(—1/p)

and hence
T'@)/VT@2—4=0/p.

From the asymptotic behavior af we may infer that

p(—k?) = explkp + O(k ™) )

ask tends to infinity.
On M define the holomorphic differentials; = zZ/~1dz/w for j = 1,....g
and the meromorphic differential = z9dz/w (with a second order pole &..).

Hence T'd '
z)dz z
dj = (2)dz _p
VT@Z-4 »
is a meromorphic differential oM . Denoting by (1)*'7,.1_j the elementary
symmetric polynomials in the variables, ..., Ay, i. e.,

g

g
7= Ay = (DN

j=1 j=1
we may write

g
dB=p@ - _7d)
=1
sincecs = p as will be shown next. Let =z"1/2 = —j /k be a local coordinate
at P, andP; # P, a point in the domain of. Define 3(P) =c + fppl dg where
c is a constant which will be determined latér.is a single-valued function in
the domain ot. If P tends toP,, then

B(P) = tf—;) +0(1) = ikes + O(1).

Sinced 3 = (log p)’'dz we obtain that = e’*°) and hence, using (2), that
exp(kp + O(k ™)) = expkes + O(1))

which implies thatcs = p.

The numbersy = A, arg(T + VT2 —4)/7 are integers. They are even or
odd depending on whethdr(zy 1) = T(zy) or T(z_1) = —T(zy). Hence, if
a1+ ...+ a4 is even then the number of points {z; : 1 <j < ¢,T(z) = 2}
is also even. Now Theorem 2 implies thB(z) = 2. Similarly, T(z) = —2 if
ayt...+ag is odd. In the first case we fix the constansuch that3((z,0)) =0
while we let 3((zy,0)) = iw in the second case. With this choice we have that
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T =p+1/p=2cos{p). The theorem is then proven once we have determined
the vectorr = (r, ..., 7,)' from the data given in the statement of the theorem.
Define the closed curves

(t) = (m(2t), w(n (2t)) if t€[0,1/2],
a (2= 2t), —wmn(@—2t) ifte[l/21]

and choose also closed cunes...,b, on M such that the seftay, ..., b, } forms
a canonical homology basis fof .
It is well-known that the matrix 2 with entries 22 j = fa4 ¢; is nonsingular.

We introduce also the vectok$ anda whose components atd = fa. /2 and
a = A, arg(T +T2 — 4)/m, respectively. Then

g9
zinor = [ (ogpydz= [ d5=2p(H ~ >0 2,). 3)
a a j=1
Thus denoting the transpose of the vectar, (., 7,) by 7 we obtain
Qr=H - %a @)

and this determines the vecter

Remark 1. The present result is not directly concerned with differential equa-
tions. However, differential equations are its motivation and a major applica-
tion. Therefore a few remarks comparing Theorems 2 and 3 with the work of
Birnir, who, as mentioned above, gave a generalization of Hochstadt's theorem
to complex potentials, seem to be in order. Firstly, there are no restrictions on
the multiplicities of eigenvalues. Secondly, the theorem applies to any potential
whose discriminant satisfies the hypotheses. This includes particularly potentials
with certain inverse square singularities (see [12]), i.e., potentials which are not
locally integrable. Thirdly, the straightforward application of Ro&lshtheorem

in Theorem 2 replaces Birnir's more complicated deformation analysis when
counting eigenvalues. Finally, some caution is necessary when reading Birnir's
theorem which is Theorem 1.1 in [3]. It reads “The simple spectrum determines
the double.? but its proof shows that the third piece of information in Theorem 3
is also required to determine the numbers.., n, figuring there. (Birnir assumes
thatp = 1.)

Remark 2. Note thats is a multi-valued function which is determined only up
to adding an integer linear combination of the and b-periods ofd3. Since

T = 2cos g this fact does not affect provided the periods ofi3 are integer
multiples of 2ri. Since arg{(z)++/T(z)? — 4) is always a multiple ofr whenz
equals one of the points, ..., 2, thea-periods ofd 3 are indeed integer multiples

2 The spectrum means here the collection of zero$%f- 4. In view of Birnir's condition that
no zero has multiplicity larger than two the simple spectrum gives therefore the collection of zeros
of T2 — 4 with odd multiplicity.
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of 27 according to equation (3). Defining the matriX and the vectoH’ by
20} = fb. ¢ and H,' = fb. 1 and integratingl 3 along theb-curves rather than
the a-curves gives

g
/b di=2p(H/ — S 7.0,). (5)
| j=1

Since the numbersy, ..., 7, are already determined the fact thgltdﬂ is an
integer multiple of Zi gives a restriction on possible valuesmpfHence when,
in addition to the numbersy, ..., o the numberfbl dg = Ay arg( +v/T2 - 4)

is known for one of the curvel it is generally possible to determine the value
of p uniquely since equations (4) and (5) represent a system ‘ofl linear
equations for thgy + 1 variablesr and 1/p.

Proof of Hochstadt's theorem: We next prove Hochstadt's theorem as a special
case of Theorem 3 by obtaining the information required from well-known prop-
erties of discriminants of real, periodic differential expressions. Specifically,
has the asymptotic behavior required in Theorem 3, it is real on the real line, the
zeros of T2 — 4 are all real and have multiplicity not larger than tilqz) > 2
whenz is a maximum ofT, andT(z) < —2 whenz is a minimum ofT (see,

e.g., Eastham [4]).

Proof of Theorem 1L et p be the period of. Sincec(H) ={z: -2<T(z) < 2}

the simple zeros of > —4 are precisely the endpoints of the spectral bands. Since
there are only finitely many bands there are only finitely many simple zeros of
T2 — 4. When they are labeled such tmaf, < ... < z thenT(z) = 2 since
T(z) tends to infinity whenz does. AlsoT(z;_1) = T(zyg) forj = 1,...,9.
Assume thafl (zy) = 2. As z moves fromzy t0 z;_1 we have thaflT (z) > 2

and hence that arg(z) + /T(z)> — 4) = 0. Similarly, whenT(z;) = —2 then
arg(T(z)++/T(z)> — 4) = . Hence lettingy; = (1—t)zy +tzy_1 we haveo; =0

forj =1, ...,¢. Thus, by Theorem 3, the functioh is uniquely determined. In
fact, according to the proof of Theorem 3 we have

Z 59 _ g-1_ _
A(z) = p/ z TgZ Tle
2

w

wherew = \/4(2 —2)...(z — zoy) and wherery, ..., 7, are given by the system
of equations

g
ZTJ'“QLJ:HU |:17...,g
j=1
usin
g -1 Zj—ldZ Z2-1 79qz
2 :/ and H :/ .
2] w 2 w

T is now given byT (z) = 2 cos{5(2)).

As indicated in Remark 2 we may even figpdfrom one more piece of
information.
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Theorem 4. When q satisfies the hypothesis of Theorem 1 then the value of p
may be determined from the number of zeros (counting multiplicitiesy of
in any one of the finite spectral bands.

Proof. Assume thaff?2 — 4 hasm’ zeros (counting multiplicities) betweem .1
andzy for somel € {0,...,g—1}. Let9(t) = (1—t)zy+1+tZy. ThenA; arg(T +
VT2 —4) = +2)r/2. This gives

g .
(M + 2)ri
H -3 ey = T2 ©
=1 P
where 2 Zi-1gz 2 79dz
2 ; :/ and H,’:/ :
2l+1 221+1 w

Equation (6) determineg since its left hand side is independentpof

Example 1. Assume that there is only one zero®f — 4 with odd multiplicity,

i.e., g = 0. Calling this zerazy we know thatT (z)) = 2 sinceT — 2 must have

at least one zero. Note also that there is no information required from part 3. of
Theorem 3 whery = 0. Hence we obtain

_ [0 _pdz _
= [ =PV
choosing the branch of the root accordingRo Now T = 2cos{pv/z — 2)
(which is independent of the branch chosen for the root). This proves also that
2 is necessarily a simple root @ — 4 and that all other roots are double.

T is the discrimimant of any differential expressidi/dx? + q for which
g has periodp and whose conditional stability set consists of only one regular
analytic arc which ends a. In particular, 2 cosr\/z) is the discriminant for
d?/dx? (when g = 0 is regarded as a function of periof) as well as for
d?/dx? + €. Both of these differential expressions have the nonpositive real
axis as their conditional stabiltity set (see [12] for the second one).

Example 2. Next assume that there are three zero§ ®f- 4 with odd multi-
plicity. We denote them by, z;, andz. Then we havel = 2 cos(3) where3
is the elliptic integral

P Z—T1

2.0) VAZ —20)Z — z1)(Z — 2)
and wherek = 0 or k = 1 depending on whethér(z) = 2 or T(z) = —2.
The numberr will have to be determined from the numbei = A,, arg(T +

VTZ—a)/r.

Introducea = (o + z; + %) /3,

8=p dz+ikm )

&= —-a, =2 —-4a, =2—a,
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g2 = 2(ef + € + €5) and gs = 4e;ees.
Let p(u) denote Weierstrass’s elliptic function with invarians and g3 and
choose fundamental periods«(2w’) such that

pw)=e, pw+w)=6, pw)=e
Also recall that then
(W)=n, Cw+u)=n+n, W=7

(see, e.g., Abramowitz and Stegun [1] or Akhiezer [2]).
Using the substitutioz = p(u) + a yields

p(u+a—m ,
s=p [ M

on account of the basic relation

©'(U)? = 4(p(u) — en)(p(u) — e)(p(u) — es).
Now let v1(t) = p(w’ +tw) +a for t € [0, 1] which joins the points, and
7. Since the number of zeros df — 2 is odd we obtain thaf (z)) = 2 or
T(z0) = —2 depending on whether; = A, arg(T + /T2 — 4)/7 is even or odd.
We leta; = 2my + k wherek is the same as in (7).
It is now easy to compute that

9171 =w andH; = —n taw.
Therefore equations (3) yields

Tl:_w_ﬁ-}a
pw w

from which we get

Bz)=p / (o) +a — r) = —pc(u) — 2myri + GO P

and
T(z) = 2cos(-(2my + K)ru /w — ip(C(u) — nu/w)) 8)

wherez = p(u) + a.

As expected comparison with (11) shows that this agrees with the discriminant
of the Lané equationy” — 2p(x)y = zy when p(x) is considered as a function
of periodp = 2mw + 2m’w’ and when we choose’ = —2m; — k anda = 0.

Now let 41(t) = p((1 — t)w’ + w) + a which connects the pointg and z,.
Given the additional information thats, arg(T + v T2 — 4) = 1fy7 we are able
to determinep rather than having to provide it. Indeed, defining

P I GHCORTCHEY) if t €[0,1/2],
T @ - 2t), —w(m2 - 2t) if te[1/2,1]

we obtain that?; ; = —w" andH{ = ' —aw’. Therefore, from (5), @(n' —aw’+
Tw') = 2y which implies, given that;, has already been computed,

p = —2riyw — (4my + 2Kk)w'.
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Example 3. If we let in the previous example; = —n/w, my = 0, and (for
simplicity) a = 0 thenr, = z5. Since generally

_ 0, (T o~ h*
ea=-2+(3) Gﬁ8%;a+h%y>

whereh = exp{rw’/w) (see, e.g., [2], p. 204), we may enforce teat —n/w
by choosing the periods @f such that

e h2k
——=-1/8.
; (1 + h2k)2 /

In fact, 201 = 2 and 23 = 1 + 070945978 will approximately do. Note that
the associated invariangs and g3 are real but that the Weierstrass discriminant
g3 — 2793 is negative.

For this choice of periods we have

1
V(o — z)(20 — 2)

which implies thatT? — 4 has a third order zero a = e;. Hence, in this case,
% is a periodic eigenvalue of algebraic multiplicty threeddf/dx? — 2o(x).

(z—20)%%+ ...

5@) =

Example 4. Consider now the discriminant afy = y” — 6p(x)y = zy whenx

is a real variable angh has invariantg, = 0 andgs > 0 and hence fundamental
periods 2 > 0 and 20’ = w(1+i+/3). The conditional stability set df is then the
union of the interval { oo, —3g;] and an arc connecting 3e, and —3e; = —3e,
which passes through zero. According to (12) the discriminartt isfgiven by

T(2) = 2cos/3(20¢(Ur/¢) + 21 /<)) 9)

wheree = (1 +i/3)/2 andz = —3p(uy /). This fact can be recovered from the
results of Example 2: Choose = 0 and letp"and {, be Weierstrass'’s elliptic
functions with invariantg; = 0 andgz = t8gs. These functions have fundamental
periodsw = w/t andW’ = W'/t and satisfyp(u) = t2p(tu) and C(u) = t¢(tu). In
particular,& =t%g, 7j =ty andsj’ =t#’. Lettingt =i+/3 we have that the band
edges ol are given byer, &, and&;. Also A,, = —2r andA;, =7, i.e.,k =0,
my = —1, andni; = 1. We obtain therefore from (8) that

T(z) = 2cos(2ru/& — ip(C(u) — fu/d))

wherez = $(u) = t?p(tu). Sincep = 40’ — 20 = 2w andn = 7/(2w+/3) this
becomes

T(2) = 2 cos/3(2ntu + 2w (tu)))

which agrees with (9) whetu = u; /e.
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Appendix A. Lamé’s Equation
Lameé’s differential equation

y" —g(g + Dp(x)y = zy
has the solution

y(x) = H 7 S exptc(u)
provided
g
z2=(29-1)) p(u)

j=1
and
DG —u) = ¢u) +¢(u)) =0, fork=1,..g (10)
e
(see [5]). Assuming that«2 and 2.’ are fundamental periods @f one obtains
thaty(u + 2mw + 2m'w’) = pm my(u) Where

g
pma = | [ exp((@mw + 2m'w')¢ () — uj(2mn + 2m'n')),
=1

i.e.,y is a Floguet solution of Lagis equation with respect to the perioth@ +
2m’w’ with multiplier pm .

The discriminant of a periodic differential expressidfydx? +q is given by
T = p+1/p wherep is a Floquet multiplier of the associated equation. Hence
the discriminant of Lar@’'s equation with respect to the peripd= 2mw +2m’w’
is given by

T(z) = 2cos( zg:((me +2m'w’)¢(Yy) — uj(2mn + 2m'n’)))
j=1

where they; satisfy the conditions in (10) anah, m’ € Z.
We now consider the cage= 1. Using Legendre’s relationw’ —n'w =in/2
we find that the discriminant of”” — 2p(x)y = zy is given by

T(z) = 2cosm'mu/w — ip(¢(u) — nu/w)) (11)

whenz = p(u) and p(x) is considered as a function of peripd= 2mw +2m’w’
Note thatT(e;) = 2 if m’ is even andl (g;) = —2 if m’ is odd.

Finally we examine more closely the special case where2, g, = 0, and
p = 2w. Lete = (1 +i+/3)/2. Condition (10) is satisfied whem = cu; and we
find that then

T(2) = 2 cosf/3(2¢(Ur/2) + 27us /<)) (12)
and
z = 3p(ur) + 3p(eur) = —3p(ur/e).
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