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ON THE INVERSE RESONANCE PROBLEM

B. M. BROWN, I. KNOWLES and R. WEIKARD

Abstract

A new technique is presented which gives conditions under which perturbations of certain base potentials
are uniquely determined from the location of eigenvalues and resonances in the context of a Schrödinger
operator on a half line. The method extends to complex-valued potentials and certain potentials whose
first moment is not integrable.

1. Introduction

Marchenko [14] showed in 1955 that a real-valued potential q on [0,∞) for which
(1 + x)q(x) is integrable is uniquely determined from the scattering phase, the
eigenvalues and their norming constants. The scattering phase is given in terms
of the Jost function of the problem for real arguments. (The solution ψ(z, ·) of
−y′′ + qy = z2y which asymptotically equals exp(izx) is called the Jost solution of
the problem; the function ψ(·, 0) is then called the Jost function.) The eigenvalues are
the squares of the zeros of the Jost function in the upper half plane and the norming
constants can also be expressed in terms of the Jost function at least when it can be
analytically extended to the entire complex z-plane. This is certainly the case when
the potential has compact support. The Jost function is then an entire function of
growth order one and thus the location of its zeros determines it uniquely up to a
factor exp(az+ b). This factor may also be determined since it is known that ψ(z, 0)
tends to one as z tends to infinity on any ray which emanates from zero and lies in
the upper half plane. From a physical point of view these zeros represent (Dirichlet)
eigenvalues or resonances (depending on whether they are in the upper or lower
half plane). In short, one may say therefore that the location of eigenvalues and
resonances determines a compactly supported real-valued potential. (The function
ψ(·, 0) cannot have real zeros except for zero. Whether or not this is the case is, of
course, also required information.)

In this paper we are setting out to prove analogous statements in more general
contexts. In particular, we want to treat complex-valued potentials as well as
potentials with slower or perhaps no decay at infinity but where the concept of
a resonance still makes sense. The starting point in this endeavour is the Weyl–
Titchmarsh m-function which uniquely determines a potential q even if q is just
locally integrable and which also holds for complex-valued potentials as was shown
recently in [7]. Our interest in relating the m-function to eigenvalues and resonances
stems from the fact that the former can not be obtained directly from laboratory
measurements while the latter are fundamental objects in quantum physics with a
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long history, dating back to the early days of the theory when Weisskopf and Wigner
[19] and others [5, 12, 16] studied the behavior of unstable particles. Physically,
while eigenvalues represent real energy levels and states in which the particles are
permanently localized, unless disturbed, resonances correspond to quasi-stationary
(metastable) states that only exist for a finite time, proportional to the inverse of the
imaginary part of the resonance, and have energy proportional to the real part of
the resonance. Resonances are intimately connected with the dynamics of quantum
particles, and in particular their scattering properties [2, 21]; non-classical properties
like quantum tunnelling relate directly to the finite lifetime of these quasi-stationary
states. In many ways, resonances are most naturally considered in the context of the
time-dependent Schrödinger equation, as much of the more recent activity in this
field (see for example [15], and references therein), and the above heuristics, indicate.
Resonances that are close to the real axis appear as bumps in the scattering cross
section and are thus of great physical interest; in particular, they can be measured
in the laboratory.

Our main results in the present paper (Theorems 1 and 2) provide (somewhat
implicit) conditions under which a statement of the desired nature remains true. Our
method allows for the potential to be complex-valued (in which case eigenvalues and
resonances may have multiplicities larger than one). The proofs of these theorems are
fairly simple and use essentially only the residue theorem, Hadamard’s factorization
theorem, and the fact that the m-function determines the potential. Theorem 1 works
for sufficiently fast decaying perturbations of q0 = 0 while Theorem 2 is designed
for fast decaying perturbations of q0(x) = 2/(x + x0)

2. We emphasize here that, in
the latter case, xq0(x) is not integrable.

These theorems have to be viewed as models for similar theorems which work
for perturbations of some base potential q0, whose Jost function is defined on some
Riemann surface which is a twofold cover of the complex plane. The perturbations
are such that this property is not destroyed. A potential should then be uniquely
determined by the Riemann surface and the zeros of an analytic function on this
Riemann surface. With such theorems in place one still has a hurdle to overcome,
namely to find an explicit characterization of the class of potentials for which it
holds. Technically the biggest problem there is to estimate the asymptotic behavior
of the m-function on the unphysical sheet (cf. Section 4). A better understanding of
the m-function on the unphysical sheet would perhaps be useful in other contexts,
too. As an example of the intended applications of Theorem 1, we show that the
hypotheses of the theorem are satisfied for certain classes of compactly supported
potentials (cf. Theorem 3).

We mention here that recently both Korotyaev [13] and Zworski [22] have worked
on related questions. For real compactly supported potentials on [0,∞), Korotyaev
describes the set of all possible Jost functions. Zworski observes that compactly
supported even potentials on � are uniquely determined by the scattering matrix,
which he recovers from the location of its poles. These poles are the zeros of
the product ψ(·, 0)ψ′(·, 0) so that, in fact, he needs both the Dirichlet poles and
the Neumann poles, in the language of the half line problem, rather than just the
Dirichlet poles as in Marchenko’s approach, even though the scattering matrix and
hence the potential are not uniquely determined when z = 0 is a pole of ψ(·, 0)ψ′(·, 0).
(The scattering problem for an even potential on � is in one-to-one correspondence
with the scattering problem on a half line.) The seeming contradiction is resolved
when one realizes that there is information in knowing whether a scattering pole is
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a root of ψ(·, 0) or of ψ′(·, 0). One might mention that Zworski’s theorem contains
a slight inaccuracy when he says that there are precisely two distinct compactly
supported even potentials with the same scattering poles. The case of q= 0 is a
counterexample to this statement, albeit the only one.

The paper is organized as follows. In Section 2 we provide some technical
background concerning complex-valued potentials and a formal definition of the m-
function and its extension M to the two-sheeted Riemann surface mentioned above.
In Section 3 we state and prove our main theorems. In Section 4 we treat compactly
supported potentials as an example of an application of Theorem 1. Appendices A
and B give some background on entire functions and asymptotics of m-functions,
respectively.

2. Preliminaries

Let Σ be a fixed open sector of the complex plane whose vertex is at the origin.
If S is a subset of the complex plane we denote its complement by S c and its closed
convex hull by co(S). Then define QΣ to be the set of those complex-valued, locally
integrable functions on [0,∞) for which there is an open half plane Λ satisfying the
following two requirements.

(1) Λc ∩ Σ is bounded.
(2) The set Q = co({q(x) + r : x, r ∈ [0,∞)}) does not intersect Λ.

Remark 1. (1) Conditions of this type were first introduced by Brown
et al. [6].

(2) If Σ contains the positive real axis then QΣ is empty.
(3) When one is interested in real-valued potentials only (so that the sets Q are

subsets of the real line), one may choose for Σ any sector (with vertex zero) contained
in the upper or lower half plane. When q is real and bounded below, Σ could be
any sector (with vertex zero) not containing the positive real axis.

Given a function q ∈ QΣ we consider the differential expression L = −d2/dx2 + q

on [0,∞). We will say that q is of Class I, if at most one (up to constant multiples)
solution of Ly= λy is square integrable on [0,∞). Otherwise, if all solutions of
Ly= λy are square integrable on [0,∞), we will say that q is of Class II. This
classification is independent of the choice of λ. For real-valued potentials it coincides
with the classical limit-point and limit-circle distinction. However, for complex-
valued potentials it does not coincide with Sims’s distinction (cf. [18]) between the
limit-point and limit-circle cases. See [7] for a discussion of this issue.

Throughout the paper, we will use the following notation for derivatives. If f is a
function of several variables, ḟ and f′ denote the derivative of f with respect to the
first and last variable, respectively. If f is a function of two variables, f(j,k) denotes
the function obtained by differentiating j times with respect to the first variable and
k times with respect to the second. Now let θ(λ, ·) and φ(λ, ·) be linearly independent
solutions of Ly = λy satisfying the initial conditions

θ(λ, 0) = 1, φ(λ, 0) = 0,

θ′(λ, 0) = 0, φ′(λ, 0) = 1.
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It is shown in Brown et al. [6] (see also [7]) that for every λ ∈ Λ there is at
least one square integrable solution of Ly= λy which is not a multiple of φ(λ, ·).
Hence if q is of Class I then there is precisely one square integrable solution (up to
constant multiples) for those λ and there is a unique number m(λ) such that Ψ(λ, ·) =
θ(λ, ·) +m(λ)φ(λ, ·) is square integrable. This function m : Λ −→ � : λ �→ m(λ) is the
generalization of the Titchmarsh–Weyl m-function to the case of complex-valued
potentials. Note that

m(λ) =
Ψ′(λ, 0)

Ψ(λ, 0)
.

Just as in the self-adjoint case, m is an analytic function (see [6]). It may well be
possible to extend it analytically to a larger domain than Λ. Sometimes m may even
be extended to the Riemann surface of λ �→

√
λ. This is the case we are interested in

and therefore we introduce the function

M(z) = m(z2),

putting the branch cut on the positive real axis (so that �(z) > 0 represents the
so-called physical λ-sheet).

3. The main theorems

Theorem 1. Let C be the family of potentials q ∈ QΣ which are of Class I and for
which there exist functions ψ : � × [0,∞) −→ � satisfying the following conditions:

(i) For every complex number z the functions ψ(z, ·) and ψ(−z, ·) are nontrivial
solutions of the differential equation −y′′ + qy = z2y.

(ii) The Wronskian of ψ(z, ·) and ψ(−z, ·) satisfies

W (ψ(z, ·), ψ(−z, ·)) = ψ(z, ·)ψ′(−z, ·) − ψ(−z, ·)ψ′(z, ·) = −2iz.

(iii) ψ(z, ·) is square integrable for all z in some open subset of �.
(iv) ψ(·, 0) and ψ′(·, 0) are entire functions of finite growth order.
(v) There exists a ray such that ψ(z, 0) tends to one as z tends to infinity along the

ray.
(vi) There is an integer p and a sequence of circles t �→ rn exp(it) such that rn tends

to infinity and |M(rn exp(it))|r−p−1
n tends to zero uniformly for t ∈ [0, 2π].

Then the zeros of ψ(·, 0) and their multiplicities determine q uniquely among the
elements of C.

Remark 2. Conditions (i) through (v) are satisfied for all sufficiently fast decaying
potentials and, in particular, for q = 0. We show the validity of condition (vi) for
certain classes of compactly supported potentials in Section 4.

Proof of Theorem 1. It is well known that, in the self-adjoint case, the
Titchmarsh–Weyl m-function determines the potential q. A rather concise proof
of this fact was given by Bennewitz in [4] who, in fact, showed that q is uniquely
determined from knowing the m-function along some non-real ray. This proof has
recently been extended to complex potentials of Class I in [7], the only difference
being that the knowledge of m on two non-real rays which are eventually in Λ is
needed to reach the conclusion. (The condition of the rays being non-real can be
dropped when the boundary of Λ is not parallel to the real axis.) Since, of course, M
determines m, we only have to show that the given information suffices to determine
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M. In fact we will determine M and hence m everywhere so that there will be plenty
of rays to choose from.

Note that

M(z) =
ψ′(z, 0)

ψ(z, 0)

is meromorphic and that its poles are the zeros of ψ(·, 0). We denote the nonzero
poles of M by the pairwise distinct numbers z1, z2, . . . and we use n1, n2, . . . for their
respective multiplicities. The zeros are labelled such that |z1| � |z2| � . . . . Assume
for now that ψ(0, 0) 	= 0.

Let hz(µ) = (z/µ)p+1/(z − µ). Also define γn(t) = rn exp(it) for t ∈ [0, 2π] and Bn =
{z : |z| < rn}. Then, by the residue theorem,

1

2πi

∫
γn

hz(µ)M(µ) dµ = −M(z) +

p∑
k=0

M(k)(0)

k!
zk +

∑
zj∈Bn

reszj (hzM)

if 0 	= |z| < rn and if z is none of the poles of M. According to our assumption
on M the integral on the left tends to zero as n tends to infinity, proving firstly the
convergence of the series and secondly that

M(z) =

p∑
k=0

M(k)(0)

k!
zk +

∞∑
j=1

reszj (hzM). (3.1)

Suppose that we had already determined the infinite series on the right-hand side of
equation (3.1). We can then find the polynomial

∑p
k=0M

(k)(0)zk/k! from the asymp-
totic behavior of the m-function along some ray. It is well known that, in the self-
adjoint case, m(z2) = iz+o(1) as z tends to infinity in sectors contained in the upper
half plane. Theorem 6 in Appendix B extends this result to the case at hand.

Thus the theorem is proved once we determine the residues of hzM at the poles
of M. To do this, let

fj(µ) =
(µ− zj)

nj

ψ(µ, 0)
.

Then

reszj (hzM) =
1

(nj − 1)!
(ψ′(·, 0)hzfj)

(nj−1)(zj)

=
1

(nj − 1)!

nj−1∑
r=0

(
nj − 1

r

)
ψ(r,1)(zj , 0)(hzfj)

(nj−1−r)(zj)

and this quantity may be computed once we know the function ψ(·, 0) (and hence
the functions fj) and the numbers ψ(r,1)(zj , 0) for r = 0, . . . , nj − 1. We will now show
that this information can be obtained from the given data.

Firstly, ψ(·, 0) is given through Hadamard’s factorization theorem as

ψ(z, 0) = zk exp(g(z))

∞∏
j=1

Eρ(z/zj)
nj

where k and ρ are integers and where g is a polynomial. The number ρ is to be
chosen such that

∑∞
j=1 nj |zj |−ρ+1 is finite. This is always possible since otherwise

ψ(·, 0) would not have finite growth order (cf. Appendix A). The polynomial g may
be determined from the given asymptotic behavior of ψ(·, 0) and we have k = 0
since ψ(0, 0) 	= 0.
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Secondly, taking r derivatives of the equation W (ψ(z, ·), ψ(−z, ·)) = −2iz with
respect to z and evaluating them at zj gives

ψ(r,1)(zj , 0)ψ(−zj , 0) = −W (r)(zj) −
r−1∑
s=0

(−1)r−nr!

(r − n)!n!
ψ(s,1)(zj , 0)ψ(r−s,0)(−zj , 0)

as long as r� nj − 1 since zj is a zero of ψ(·, 0) = 0 of order nj . We know that
ψ(−zj , 0) 	= 0 since ψ(zj , ·) and ψ(−zj , ·) are linearly independent. Hence the numbers
ψ(0,1)(zj , 0), . . . , ψ(nj−1,1)(zj , 0) may be recursively computed.

We still have to discuss the case when z = 0 happens to be a zero of ψ(·, 0). We
will show shortly that z = 0 is a simple zero of ψ(·, 0). Therefore the residue theorem
gives

M(z) =

p∑
k=0

g(k+1)(0)

(k + 1)!
zk +

res0(M)

z
+

∞∑
j=1

reszj (hzM)

where g is defined by g(µ) = µM(µ). The series and the polynomial occurring here are
determined in the same way as before but, since we know the asymptotics of M only
up to order o(1), we can not determine res0(M) = ψ′(0, 0)/ψ̇(0, 0) from asymptotic
considerations. Instead we differentiate the equation W (ψ(z, ·), ψ(−z, ·)) = −2iz with
respect to z and evaluate at (0, 0) to find ψ̇(0, 0)ψ′(0, 0) = −i. This proves firstly,
as promised, that ψ̇(0, 0) 	= 0 and secondly that the residue of M at z = 0 equals
−i/ψ̇(0, 0)2. �

Theorem 2. Let C be the family of potentials q ∈ QΣ which are of Class I and for
which there exist functions ψ : � × [0,∞) −→ � satisfying the following conditions:

(i) For every complex number z the functions ψ(z, ·) and ψ(−z, ·) are nontrivial
solutions of the differential equation −y′′ + qy = z2y.

(ii) The Wronskian of ψ(z, ·) and ψ(−z, ·) satisfies

W (ψ(z, ·), ψ(−z, ·)) = ψ(z, ·)ψ′(−z, ·) − ψ(−z, ·)ψ′(z, ·) = −2iz3.

(iii) ψ(z, ·) is square integrable for all z in some open subset of �.
(iv) ψ(·, 0) and ψ′(·, 0) are entire functions of finite growth order.
(v) There exists a ray such that ψ(z, 0)/(iz) tends to one as z tends to infinity along

the ray.
(vi) There is an integer p and a sequence of circles t �→ rn exp(it) such that rn tends

to infinity and |M(rn exp(it))|r−p−1
n tends to zero uniformly for t ∈ [0, 2π].

If ψ(0, 0) 	= 0, then the zeros of ψ(·, 0) together with their multiplicities determine
q uniquely among the elements of C. If ψ(0, 0) = 0, then z = 0 is a zero of order
two or three which we denote by r. In this case the zeros of ψ(·, 0) together with their
multiplicities and the number ψ(r−2,1)(0, 0) determine q uniquely among the elements
of C.

Remark 3. Conditions (i) through (v) are satisfied for sufficiently fast decaying
perturbations of the base potential q0(x) = 2/(x + x0)

2 (where x0 is any complex
number away from the closed negative real axis). The Jost functions (or rather their
generalizations) for q0 are given by

ψ(z, x) =
iz(x+ x0) − 1

x+ x0
exp(izx).
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We have not studied whether condition (vi) holds, for instance, for compactly
supported perturbations of q0. Note that xq0(x) is not integrable and that therefore
Marchenko’s approach does not work. We also mention again that these theorems are
model theorems which have analogues for different base potentials each associated
with its own Riemann surface.

Proof of Theorem 2. The proof of Theorem 2 is nearly identical to the proof of
Theorem 1 except when it comes to the case when ψ(0, 0) = 0. If z = 0 is a zero of
ψ(·, 0) of order r then the residue theorem gives

M(z) =

p∑
k=0

1

(k + r)!
g(k+r)(0)zk +

r−1∑
k=0

1

k!
g(k)(0)zk−r +

∞∑
j=1

reszj (hzM)

where g(µ) = µrM(µ). Again we obtain the polynomial part by asymptotic considera-
tions and also the infinite series is determined as before. However, we now need the
numbers g(0), . . . , g(r−1)(0). These may be computed when ψ(0,1)(0, 0), . . . , ψ(r−1,1)(0, 0)
are known (recall that ψ(·, 0) and therefore its derivatives with respect to the first
variable are known).

Again we will obtain the necessary information by taking derivatives of

W (ψ(z, ·), ψ(−z, ·)) = −2iz3

and evaluating at z = 0. Note that the equations obtained from even derivatives are
always trivially satisfied. From the first derivative we obtain

ψ̇(0, 0)ψ′(0, 0) = 0

which implies that ψ̇(0, 0) is necessarily zero so that r � 2. The third derivative gives

3ψ(2,0)(0, 0)ψ(1,1)(0, 0) − ψ(3,0)(0, 0)ψ(0,1)(0, 0) = 6i (3.2)

which shows that r � 3. If indeed r = 3, the fifth derivative gives

−10ψ(3,0)(0, 0)ψ(2,1)(0, 0) + 5ψ(4,0)(0, 0)ψ(1,1)(0, 0) − ψ(5,0)(0, 0)ψ(0,1)(0, 0) = 0. (3.3)

If r = 2 we need to know ψ(0,1)(0, 0) and ψ(1,1)(0, 0). Our hypothesis gives us the
first while the second may be obtained using equation (3.2). If r = 3 then ψ(0,1)(0, 0)
is determined by equation (3.2), our hypothesis provides ψ(1,1)(0, 0) while ψ(2,1)(0, 0)
is computed using equation (3.3).

It may be worth mentioning that ψ̇(0, ·) is also a solution of −y′′ + qy = 0. �

4. Compactly supported potentials

In this section we will apply Theorem 1 to prove that the resonances determine
uniquely a potential q : [0,∞) −→ � supported and absolutely continuous on [0, R]
for which q(R) 	= 0. However, some of our intermediate results hold under less
restrictive conditions.

The approach we are taking in this section follows in part the one in Simon’s
paper [17].

Suppose that q ∈ L1([0,∞)). Consider the integral equation

y(x) = exp(izx) +

∫∞

x

K(z, t, x)q(t)y(t) dt
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where

K(z, t, x) =
sin(z(t− x))

z
= exp(−iz(t− x))

∫ t−x
0

exp(2izl) dl.

Define ψ0(z, x0) = exp(izx0) and, recursively,

ψn(z, x0) =

∫∞

x0

K(z, x1, x0)q(x1)ψn−1(z, x1) dx1

=

∫
x0<x1<...<xn

exp(izxn)

n∏
j=1

[K(z, xj , xj−1)q(xj)] dxn. . . dx1.

For 0 � x0 � x1 � . . . � xn and α ∈ �, define

Rn(x0, . . . , xn; α) =

∫xn−xn−1

0

. . .

∫x1−x0

0

δ(x0/2 + l1 + . . . + ln − α) dl1. . . dln

(where we consider the integrals to be taken over closed intervals). Furthermore, for
0 � x and α ∈ �, let

tn(α, x) =

∫
x<x1<...<xn

q(x1). . . q(xn)Rn(x, x1, . . . , xn; α) dxn. . . dx1.

With these definitions we have

ψn(z, x) =

∫∞

−∞
tn(α, x) exp(2izα) dα.

We will now investigate the functions Rn. Let us first compute R1 and R2 explicitly.
We find

R1(x0, x1; α) =

{
1 if x0/2 � α � x1 − x0/2

0 otherwise

and

R2(x0, x1, x2; α) =

∫x2−x1

0

R1(x0, x1; α− l2) dl2 = [τ− σ]+

where τ = min{α− x0/2, x2 − x1} and σ = max{0, α+ x0/2 − x1}.

Lemma 1. The functions Rn have the following properties:

(i) 0 � Rn(x0, . . . , xn; α) for all α ∈ � and 0 � x0 � x1 � . . . � xn.
(ii) Rn(x0, . . . , xn; α) =

∫xn−xn−1

0
Rn−1(x0, . . . , xn−1; α− ln) dln.

(iii) Rn(x0, . . . , xn; α) = Rn(x0, . . . , xn; xn − α).
(iv) Rn(x0, . . . , xn; α) = 0 unless x0/2 � α � xn − x0/2.
(v) Let R(k)

n denote the kth derivative of Rn with respect to the last argument. Then
R(k)
n (x0, . . . , xn; ·) is continuous if k � n− 2 and piecewise continuous if k = n− 1.
(vi) The following estimate holds for k � n− 1

∣∣R(k)
n (x0, . . . , xn; α)

∣∣ �
2k

(n− 1 − k)!
min{[α− x0/2]+, [xn − x0/2 − α]+}n−1−k.

Proof. The proof of the first statement is trivial. The representation (ii) is proven
by induction and is the basis of the (inductive) proofs of the remaining statements.
To prove (iii) the substitution u(ln) = xn − xn−1 − ln is useful. To prove (v) note that

R(k)
n (x0, . . . , xn; α) = R

(k−1)
n−1 (x0, . . . , xn−1; α) − R

(k−1)
n−1 (x0, . . . , xn−1; α− (xn − xn−1)).
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Finally, for (vi) one proves the first estimate for the case k = 0 by induction over n
using the fact that

Rn(x0, . . . , xn; α) �

∫ α−x0/2

0

(α− x0/2 − t)n−2

(n− 2)!
dt

since Rn−1(x0, . . . , xn−1; α− t) = 0 when t > α > α−x0/2. Then induction over k gives
the first estimate for any k ∈ �. The second estimate follows from the symmetry
property of Rn. �

We now turn to the properties of the functions tn.

Lemma 2. Suppose that q ∈L1([0,∞)). Then the functions tn have the following
properties:

(i) t1(α, x) =
∫∞
α+x/2 q(t) dt if α � x/2.

(ii) If n � 2 then tn(·, x) is n − 2 times differentiable and t(n−2,0)
n (·, x) is absolutely

continuous on �.
(iii) If k � n− 2 then∣∣t(k,0)

n (α, x)
∣∣ �

2k[α− x/2]n−1−k
+

(n− 1 − k)!

‖q‖n−1
1

(n− 1)!

∫∞

α+x/2

|q(t)| dt.

(iv) If q is supported on [0, R] and k � n− 2 then also∣∣t(k,0)
n (α, x)

∣∣ �
2k[R − x/2 − α]n−1−k

+

(n− 1 − k)!

‖q‖n−1
1

(n− 1)!

∫R
α+x/2

|q(t)| dt.

(v) For every α ∈ � the series
∑∞

n=1 tn(α, ·) converges absolutely and uniformly to
a function t(α, ·).

Proof. Statement (i) is immediate. As for (ii) note that, due to the dominated
convergence theorem, derivatives up to order n − 2 can be placed inside the
integral defining tn. The absolute continuity follows since, according to Lemma 1(vi),
|R(n−1)
n (x0, . . . , xn, ·)| is bounded by 2n−1 so that∣∣R(n−2)

n (x0, . . . , xn, β) − R(n−2)
n (x0, . . . , xn, α)

∣∣ � 2n−1|β − α|.
We now prove (iii). If α+ x0/2 � xn−1 we have∫∞

xn−1

|q(xn)|
∣∣R(k)

n (x0, . . . , xn; α)
∣∣ dxn �

2k[α− x0/2]n−1−k
+

(n− 1 − k)!

∫∞

α+x0/2

|q(xn)| dxn.

If α+ x0/2 > xn−1 we obtain the same estimate since Rn(x0, . . . , xn−1, ·; α) is identically
equal to zero on the interval [xn−1, α+ x0/2]. Since∫

x0<x1<...<xn−1

|q(x1)|. . .|q(xn−1)| dxn−1. . . dx1 =
‖q‖n−1

1

(n− 1)!

we have proved (iii). Statement (iv) follows similarly using the inequality in
Lemma 1(vi) and the fact that one may assume that xn � R.

Finally, to prove the last statement, note that t(α, x) = 0 if α < 0 and that, for
α � 0,

∞∑
n=1

|tn(α, x)| �
∞∑
n=1

(α‖q‖1)
n−1

(n− 1)!2

∫∞

α

|q(s)| ds � eα‖q‖1

∫∞

α

|q(s)| ds

regardless of x ∈ [0,∞). �
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Lemma 3. Suppose that q decays super-exponentially in the mean, that is, for every
positive r the integral

∫∞
0

erx|q(x)|dx is finite. Then the following statements are true:

(i) t(·, x) decays super-exponentially in the mean for every x ∈ [0,∞).
(ii) t(·, x) is locally absolutely continuous on [x/2,∞) for every x ∈ [0,∞).
(iii) The integral ϕ(z, x) =

∫∞
−∞ t(α, x) exp(2izα) dα exists for every z ∈ � and every

x ∈ [0,∞).
(iv) ψ(z, x) =

∑∞
n=0 ψn(z, x) = exp(izx) + ϕ(z, x). Moreover, ψ(z, ·) and ψ′(z, ·) are

locally absolutely continuous. ψ(z, ·) satisfies the integral equation y(x) = exp(izx) +∫∞
x
K(z, t, x)q(t)ψ(z, t) dt and the differential equation −y′′ + qy = zy. Finally, ψ(·, x)

and ψ′(·, x) are entire.

Proof. Since q decays super-exponentially in the mean we find that

∫∞

0

|t(α, x)|erα dα �

∫∞

0

eα(r+‖q‖1)

∫∞

α

|q(s)| ds dα =

∫∞

0

|q(s)|
∫ s
0

eα(r+‖q‖1) dα ds

is finite. This proves (i).
Obviously, t1(·, x) is absolutely continuous on [x/2,∞) while t2(·, x) is absolutely

continuous on � by Lemma 2(ii). For n � 3, tn(·, x) is continuously differentiable
and ∣∣t(1,0)

n (α, x)
∣∣ � 2‖q‖1

αn−2

(n− 2)!

‖q‖n−1
1

(n− 1)!
.

Hence
∑∞

n=3 tn(·, x) is continuously differentiable. This proves (ii).
Only if z is in the lower half plane, is the existence of ϕ at all questionable.

However, the function α �→ t(α, x) exp(2izα) is always integrable due to the fact that
q decays super-exponentially in the mean. This proves (iii). The proof of the last
statement is standard. �

We want an estimate from above for |M| on a sequence of circles whose radii tend
to infinity. We will see that it is enough to estimate |ψ(z, 0)| from below. In various
parts of the plane we need different hypotheses on q to achieve this goal. Lemmas 4
and 5 provide estimates outside the sectors −K|�(z)| � �(z) � 0 which contain all
sufficiently large zeros of ψ(·, 0). Estimates in these sectors are therefore somewhat
more delicate. Lemmas 6 and 7 are concerned with these.

Lemma 4. Suppose that q decays super-exponentially in the mean and let ϕ be the
function defined in Lemma 3. Then the following statements hold:

(i) Let v be a fixed real number. Then ϕ(u+ iv, x) tends to zero as u ∈ � tends to
±∞.

(ii) ϕ(u+ iv, x) tends to zero uniformly in u ∈ � as v � 0 tends to ∞.

Proof. Statement (i) follows immediately from the Riemann–Lebesgue lemma.
To prove (ii) note that, if 2v > ‖q‖1,

|ϕ(u+ iv, x)| �

∫∞

0

|t(α, x)|e−2vα dα � ‖q‖1

∫∞

0

e(‖q‖1−2v)α dα =
‖q‖1

2v − ‖q‖1
. �
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Lemma 5. Suppose that q is supported on [0, R] and that there exist numbers ν > 0,
c1 	= 0 and c2 > 0 such that

lim
s↓0
s−ν

∫R
R−s

q(x) dx = c1 and s−ν
∫R
R−s

|q(x)| dx � c2 for s ∈ [0, R].

Let K be a positive number. Then there are positive constants C and Z such that

|ψ(z, 0)| � C
e2R|�(z)|

|�(z)|ν+1

holds for all z satisfying �(z) � min{−Z,−K|�(z)|}.

Proof. First note that

|ψ(z, 0)| � |ψ1(z, 0)| −
∣∣∣∣∣1 +

∞∑
n=2

ψn(z, 0)

∣∣∣∣∣ .
According to our assumptions we obtain, using Lemma 2(i) and the substitution

u = R − α, that

ψ1(z, 0) = c1e
2iRz

∫R
0

uν(1 + h(u))e−2izu du

where h is some function such that limu→0 h(u) = 0. Furthermore,∣∣∣∣
∫R
0

uνe−2izu du− Γ(ν + 1)

(2iz)ν+1

∣∣∣∣ �

∫∞

R

uνe−2|�(z)|u du �
eR(µ−2|�(z)|)

|�(z)|
if we choose µ such that uν � eµu for all u�R and �(z)<−µ. Widder [20,
Theorem V.1] states that

lim sup
s→∞

∣∣∣∣sν+1

∫∞

0

e−ts dβ(t)

∣∣∣∣ � lim sup
t↓0

|Γ(ν + 2)β(t)t−ν−1|

if ν+1 > 0. Now let ε be given. Then |h(x)| < ε for all sufficiently small x and hence

Γ(ν + 2)t−ν−1

∫ t
0

xν |h(x)| dx � ε
Γ(ν + 2)

ν + 1

for all sufficiently small t. This shows, using β(t) =
∫t

0
xν |h(x)| dx, that

|2�(z)|ν+1

∫R
0

tν |h(t)|e−2|�(z)|t dt

tends to zero as |�(z)| tends to infinity. Hence, for any positive ε there is a positive
number Z (� µ) such that

|ψ1(z, 0)| � |c1e2iRz |
{

Γ(ν + 1)

(2|z|)ν+1
− eR(µ−2|�(z)|)

|�(z)| − ε

|2�(z)|ν+1

}

if �(z) � −Z . Choose a proper ε and note that |z| �
√

1 + 1/K2|�(z)| to obtain

|ψ1(z, 0)| � C ′ e2R|�(z)|

|�(z)|ν+1
(4.1)

for some C ′ > 0 provided that �(z) � −Z .
From Lemma 2(iv) and our hypotheses on q we obtain next that

|ψn(z, 0)| � c2
‖q‖n−1

1

(n− 1)!2

∫R
0

(R − α)ν+n−1e2α|�(z)| dα.
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Since, for n+ ν > 0 and s > 0,∫∞

0

un+ν−1e−us du =
Γ(ν + n)

sν+n
�

(n− 1)!(ν + 1)n−1Γ(ν + 1)

sν+n

this becomes

|ψn(z, 0)| � c2
Γ(ν + 1)

|2�(z)|ν+1

(ν + 1)n−1‖q‖n−1
1

|2�(z)|n−1(n− 1)!
e2R|�(z)|.

Also since e(ν+1)‖q‖1/|2�(z)| is bounded for those values of the variables we are
interested in, there is a constant C ′′ such that

1 +

∞∑
n=2

|ψn(z, 0)| � C ′′ e2R|�(z)|

|�(z)|ν+2

for sufficiently large |�(z)|. Combining this with (4.1) gives the desired result. �

Lemma 6. Let K and ν be positive numbers and c1 a non-zero complex number.
Suppose that

ϕ(z, 0) =

∫∞

0

t(α, 0)e2izα dα = c1
e2izR

zν
(1 + f1(z)) + f2(z)

where |f1(z)| � 1/48 and |f2(z)| � 1/3 for all sufficiently large z in the sectors
−K|�(z)| � �(z) � 0. Then there is a number τ such that |ψ(z, 0)| � 1/3 for all
z on the circular arcs given by |z| = (2nπ + τ)/(2R) and −K|�(z)| � �(z) � 0 and
sufficiently large integers n.

Proof. We write x = �(z), y = �(z), and c1 = eσ+iκ where σ, κ ∈ �. To prove
the lemma we distinguish three cases.

Case 1: −2Ry � ν log(nπ/R) − σ − 2.
In this case ϕ(z, 0) is negligible since∣∣∣∣c1 e2izR

zν

∣∣∣∣ = eσ−2Ry−2 log(nπ/R)

(
1 +

τ

2nπ

)−ν
� 1/4

which holds for sufficiently large n.

Case 2: −2Ry � ν log(nπ/R) − σ + 2.
Here the main contribution comes from the term c1e

2izR/zν . In fact,∣∣∣∣c1 e2izR

zν

∣∣∣∣ � 4

when n is sufficiently large.

Case 3: ν log(nπ/R) − σ − 2 � −2Ry � ν log(nπ/R) − σ + 2.
We obtain firstly that

|ψ(z, 0)| �

∣∣∣∣1 + c1
e2izR

zν

∣∣∣∣ − 1

3
− 1

6
�

1

2
+ �

(
c1

e2izR

zν

)

since |c1e2izR/zν | � 8 when n is sufficiently large.
Now let β= arg(c1e

2izR/zν) = 2Rx + κ − ν arg(z) and note that arg(z) = 3π/2 ±
π/2 + arctan(y/x) where one has to choose the positive sign for positive x and the
negative sign for negative x (recall that y is negative in any case). After a small
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calculation one finds that ±2Rx = 2nπ + τ + r(n) where r(n) = O((log n)2/n) as n
tends to infinity. This implies also that arctan(y/x) = O(log(n)/n) as n tends to
infinity. Hence

cos(β) = cos

(
κ+

3νπ

2
±

(
τ+

νπ

2
+ r(n)

)
− ν arctan(y/x)

)

� −|sin(±r(n) − ν arctan(y/x))| � − 1

48

provided that τ is chosen in such a way that cos(κ+ 3νπ/2 ± (τ+ νπ/2)) is non-
negative for either choice of the sign. This can be achieved by choosing τ such that
τ + νπ/2 equals zero or π depending on whether cos(κ + 3νπ/2) is nonnegative or
not. Therefore we arrive at the estimate

�
(
c1

e2izR

zν

)
� −8|sin(±r(n) − ν arctan(y/x))| � −1

6

which holds for sufficiently large n. �

We will now show that the hypotheses of Lemma 6 can indeed be satisfied for
certain classes of potentials.

Lemma 7. Suppose that q is supported and absolutely continuous on [0, R]. Then
for any positive K the hypothesis of Lemma 6 is satisfied in each of the following two
cases:

(i) q(R) 	= 0. In this case c1 = −q(R)/4 and ν = 2.
(ii) q(R) = 0 but q′ is absolutely continuous on [0, R] and q′(R) 	= 0. In this case

c1 = −iq′(R)/8 and ν = 3.

Proof. Suppose first that q(R) 	= 0. We know from Lemma 3 that t(·, 0) is
absolutely continuous on [0, R]. We prove next that this is also true for t(1,0)(·, 0).
We have t(1,0)

1 (α, 0) = −q(α) and

t
(1,0)
2 (α, 0) =

∫
0<x1<x2

q(x1)q(x2)(R1(0, x1, α) − R1(0, x1, α− (x2 − x1))) dx2 dx1

= t1(α, 0)(t1(α, 0) − t1(0, 0)) +

∫R
0

q(x1)t1(x1 + α, 0) dx1

are absolutely continuous since q is integrable. t(1,0)3 (·, 0) is absolutely continuous by
Lemma 2. Finally, since

∣∣t(2,0)
n (α, x)

∣∣ � 4‖q‖1
αn−3

(n− 3)!

‖q‖n−1
1

(n− 1)!

we find that
∑∞

n=4 tn(·, x) is twice continuously differentiable.
We are now allowed to integrate by parts twice to obtain

ϕ(z, 0) = − t(0, 0)

2iz
+
t′(0, 0)

(2iz)2
+

e2izR

(2iz)2

(
−t′(R, 0) +

∫R
0

t′′(R − u)e−2izu du

)

and we note that −t′(R, 0) = q(R) 	= 0.
The Riemann–Lebesgue lemma gives that

∫R
0
t′′(R − u)e−2i(x+iy)u du tends to zero

as x tends to infinity when y is fixed. A closer look at its proof reveals that this is
in fact true uniformly in y as long as y is bounded above. Hence there is a positive
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X such that ∣∣∣∣
∫R
0

t′′(R − u)e−2i(x+iy)u du

∣∣∣∣ �
|q(R)|

48

as long as �(z) � 0 and |�(z)| � X. This can be seen as follows. If t′′(R−u) = χ[a,b](u)
then ∣∣∣∣

∫R
0

t′′(R − u)e−2izu du

∣∣∣∣ =
1

|2iz| |e−2izb − e−2iza| �
1

|z| �
1

x
.

Similarly, if t′′(R − u) =
∑J

j=1 cjχ[aj ,bj ](u) then

∣∣∣∣
∫R
0

t′′(R − u)e−2izu du

∣∣∣∣ �
1

x

J∑
j=1

|cj |.

Finally, if t′′ is just integrable, then there are aj , bj , and cj such that g(u) =∑J
j=1 cjχ[aj ,bj ](u) and ‖t(R − ·) − g‖1 is arbitrarily small. The triangle inequality then

gives the desired result. It is also obvious that∣∣∣∣− t(0, 0)

2iz
+
t′(0, 0)

(2iz)2

∣∣∣∣ �
1

3

if |z| is sufficiently large.
When q′ is also absolutely continuous we can integrate by parts once more to

obtain

ϕ(z, 0) = − t(0, 0)

2iz
+
t′(0, 0)

(2iz)2
− t′′(0, 0)

(2iz)3
+

e2izR

(2iz)3

(
t′′(R, 0) −

∫R
0

t′′′(R − u)e−2izu du

)

and we note that t′′(R, 0) = −q′(R) 	= 0. �

The results of Lemmas 4–7 can be combined to provide an estimate on M(z) for
z on certain large circles.

Theorem 3. Suppose that q ∈L1([0,∞) is compactly supported and absolutely
continuous. Furthermore, assume that q satisfies one of the following two conditions:

(i) q has a jump discontinuity at the right endpoint of its support.
(ii) q is continuous on [0,∞) and q′ is absolutely continuous on its support with a

jump discontinuity at the right endpoint of the support.

Then q is uniquely determined once the zeros of the Jost function and their respective
multiplicities are given.

Recall that the zeros in the upper half plane are roots of eigenvalues and that the
zeros in the lower half plane are roots of resonances.

Proof of Theorem 3. Lemma 3 proves the existence of a function ψ satisfying
conditions (i), (iv), and (v) of Theorem 1 except for the statement on the growth
order of ψ(·, 0) and ψ′(·, 0). Note that ψ(·, x) has growth order one since t(·, x) is
compactly supported. Now recall that ψ′(z, 0) = iz +

∫
supp(q)

K ′(z, t, 0)q(t)ψ(z, t) dt

which shows that ψ′(·, x) also has growth order one.
Conditions (ii) and (iii) of Theorem 1 are trivially satisfied.
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We will now check condition (vi). Note that K ′(z, t, 0) = −eizt + izK(z, t, 0) and
hence

ψ′(z, 0) = izψ(z, 0) −
∫∞

0

eiztq(t)ψ(z, t) dt. (4.2)

Suppose first that �(z) � 0. From Lemma 4 we obtain

1
2

� 1 − |ϕ(z, t)| � |ψ(z, t)| � 1 + |ϕ(z, t)| � 3
2
.

This and equation (4.2) gives

|M(z) − iz| �

∫∞
0 |eiztq(t)ψ(z, t)| dt

|ψ(z, 0)| � 3‖q‖1

when z is sufficiently large.
To estimate M(z) for z in the lower half plane, note that the Wronskian of ψ(z, ·)

and ψ(−z, ·) satisfies

W (ψ(z, ·), ψ(−z, ·)) = −2iz.

Therefore

M(z) = M(−z) +
2iz

ψ(z, 0)ψ(−z, 0)

and since |ψ(−z, 0)| � 1/2 we need a lower bound on ψ(z, 0).
In the sector �(z) � −K|�(z)| this lower bound is provided by Lemma 5 which

applies either with ν = 1, c1 = q(R), and c2 = 2|q(R)| or with ν = 2, c1 = q′(R)/4,
and c2 = |q′(R)|/2. Hence

|M(z) + iz| � |M(−z) + iz| +
2|z|

|ψ(z, 0)ψ(−z, 0)| � 3‖q‖1 + C ′ |z|�(z)ν+1

e2R|�(z)| � C ′′

for appropriate constants C ′ and C ′′.
Finally, if −K�(z) � �(z) � 0 and z is on a circle of radius (2nπ + τ)/(2R) then

|ψ(z, 0)| is bounded below by 1/3 so that |M(z)| � 20|z|. �

Appendix A. Entire functions

For proofs of the statements, see any textbook on complex analysis, for example,
Conway [8].

An entire function f is of finite order if there are positive constants a and r such
that

|f(z)| < exp(|z|a)

whenever |z| > r. If f is not of finite order then f is said to be of infinite order. If f
is of finite order then the number

λ = inf{a : ∃ r : |z| > r ⇒ |f(z)| < exp(|z|a)}

is called the order of f.
Let p be a nonnegative integer. The functions Ep defined by

Ep(z) = (1 − z) exp

(
z +

z2

2
+ . . . +

zp

p

)
are called canonical factors.
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Lemma 8. Let an be a sequence of complex numbers which satisfies

0 < |a1| � |a2| � . . . and an → ∞.
Furthermore, let pn be a sequence of nonnegative integers and assume that, for all
r > 0,

∞∑
n=1

(
r

|an|

)pn+1

< ∞. (A.1)

Then the function P defined by

P (z) =

∞∏
n=1

Epn (z/an)

converges uniformly on compact subsets of the plane and hence defines an entire
function.

Note that equation (A.1) may always be satisfied by the choice pn = n− 1.

Theorem 4 (Weierstrass factorization theorem). Suppose that f is an entire
function, that z= 0 is a zero of f of multiplicity m, and that the nonzero zeros of
f are given by the sequence an (This sequence can be finite or infinite. In our notation
we assume that it is infinite. Otherwise the statements remain true when the notation
is suitably adapted.) which takes into account possible repetitions and which satisfies
0 < |a1| � |a2| � . . . . Then there is an entire function g and a sequence pn of
nonnegative integers such that

f(z) = zm exp(g(z))

∞∏
n=1

Epn (z/an).

An entire function f whose nonzero zeros are given by the sequence an which
takes into account possible repetitions and which satisfies 0 < |a1| � |a2| � . . . is
said to have finite rank if there exists an integer p such that

∞∑
n=1

|an|−p−1 < ∞.

The smallest such integer is called the rank of f. Note that any entire function
with finitely many zeros has rank zero. According to Weierstrass’s theorem an entire
function f of finite rank p can be written as

f(z) = zm exp(g(z))

∞∏
n=1

Ep(z/an)

where g is entire. The function

P (z) =

∞∏
n=1

Ep(z/an)

is then called the canonical product associated with f.
An entire function f of finite rank p is said to have finite genus if the function g

in the Weierstrass factorization is a polynomial. The number

µ = max{p, deg(g)}
is then called the genus of f.
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Theorem 5 (Hadamard factorization theorem). If f is an entire function of finite
order λ then f has finite genus µ and µ does not exceed λ.

Appendix B. Asymptotics of the m-function

The asymptotics of the m-function for a real potential on [0,∞) has been
investigated by Everitt [9], Atkinson [1], Harris [10], Kaper and Kwong [11],
and Bennewitz [3] amongst others. At least, Bennewitz’s proof extends to complex
potentials with hardly any change. We repeat it here for easy reference.

Suppose that q ∈ L1([0,∞)) is compactly supported so that it is of Class I (that
is, −y′′ + qy = λy never has two square integrable solutions). For �(z) � 0 and
x ∈ [0,∞) define

q1(z, x) =

∫∞

x

e2iz(t−x)q(t) dt

and

a(z, x) = sup{|q1(z, t)| : t � x}.

Furthermore, for j ∈ �, let

qj+1(z, x) =

∫∞

x

e2iz(t−x)−2fj (z,t,x)qj(z, t)
2 dt

where

fj(z, t, x) =

j∑
n=1

∫ t
x

qn(z, y) dy.

The Riemann–Lebesgue lemma shows that q1(z, x) and a(z, x) tend to zero
uniformly in x as z tends to infinity in the closed upper half plane. Also, the
support of a(z, ·) is contained in the support of q.

Next one proves by induction that

|qj(z, x)| � �(z)

(
a(z, x)

�(z)

)2j−1

(B.1)

provided that a(z, x)/�(z) � 1/3, a condition which is satisfied whenever �(z) � ε > 0
and |z| is bigger than a certain constant (depending on ε). This induction proof uses
the fact that

|fn−1(z, t, x)| � (t− x)�(z)

n−1∑
k=1

3−2k−1

� 1
2
�(z)(t− x).

Note that equation (B.1) implies that∣∣∣∣∣∣
∞∑
j=1

qj(z, x)

∣∣∣∣∣∣ �
a(z, x)

1 − a(z, x)/�(z)
�

3

2
a(z, x).

Now define µ(z, x) = iz −
∑∞

j=1 qj(z, x). One shows that this series can be
differentiated with respect to x term by term and that µ(z, ·) satisfies the Riccati
equation

µ′(z, x) + µ(z, x)2 = q(x) − z2.
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Therefore ψ(z, x) = exp(
∫x

0
µ(z, t) dt) satisfies the differential equation −y′′ + qy =

z2y. Also ψ(z, ·) is square integrable since µ(z, t) = iz when t is outside the support
of q. Hence m(z2) = ψ′(z, 0)/ψ(z, 0) = µ(z, 0).

Now suppose that q ∈ QΣ is only locally integrable but still of Class I. Let Λ
be a half plane establishing that fact. Fix a positive number a and define q̃ by
q̃(x) = q(x)χ[0,a](x). A moments thought reveals that q̃ is also in QΣ since Λ̃ may be
chosen as a subset of Λ which does not intersect [0,∞). The following statement on
the associated m-functions m and m̃ was shown in [7]. There is a constant C such
that

|m(λ) − m̃(λ)| � C exp(−a�(
√
λ))

whenever λ tends to infinity along a ray which eventually lies in Λ but is not parallel
to the boundary of Λ and where the branch of the root is chosen so that �(

√
λ) is

positive.
Combining this with the previous result, we finally arrive at the following theorem.

Theorem 6. Suppose that q ∈ QΣ is of Class I and R is a ray which eventually
lies in Λ but is not parallel to the boundary of Λ. Then

m(z2) = iz + o(1), �(z) > 0

as z2 tends to infinity along R.
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