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CHAPTER 1

Introduction

1.1. Motivation

The laws of nature are encoded in differential equations.

It is no coincidence that modern science and the calculus of derivatives and integrals
were invented at the same time and by the same people. Physics attempts to describe the
evolution of a system of physical objects. The objects are represented by certain quantities
(things which can be measured quantitatively) and these quantities are allowed to change
(evolve) over time thus bringing derivatives into the game. One of the first and most
important of these laws is Newton’s law of motion F = ma where a is the second derivative
of the position function of a particle of mass m and F is the force acting on the particle.
This force might involve the position or the velocity of the particle so that F = ma becomes
a differential equation.

The differential equations describing physical systems are very often of the second order.
In mechanical systems (and hence in quantum mechanical systems) this is, in fact, due to
Newton’s law. Maxwell’s equations which describe electric and magnetic phenomena are of
the first order but certain important second order equations may be deduced from them.
The equations of general relativity, geometric in nature, are also of the second order.

Sometimes the basic differential equations of physics are linear and sometimes they may
be approximated by linear equations if one is satisfied with describing only small effects.
In any case, as linear differential equations can already be very difficult, their thorough
understanding is the first and fundamental step in the study of mathematical physics.

Among the linear second order differential equations there are three prototypes, hyper-
bolic, parabolic and elliptic.1

• The wave equation
utt = ∆u

is the prototypical hyperbolic equation. It describes the propagation of electromag-
netic waves and can be easily deduced from Maxwell’s equations. It also describes
the propagation of sound and water waves (for small waves at least).

• The heat or diffusion equation

ut = ∆u

is the prototypical parabolic equation. It describes the diffusion of heat or particles
in an ambient medium.

• Laplace’s equation
∆u = 0

1These names are related to the ancient classification of the conic sections, but we won’t have to worry
about that.

1



2 1. INTRODUCTION

is the prototypical elliptic equation. It describes the strength of a conservative
field (e.g., electric or gravitational) in a space devoid of charges or masses.2

Here ∆ is the so called Laplace operator, an abbreviation for

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

when one uses cartesian coordinates.
One of the most important tools in studying partial differential equations is separation

of the variables. Let’s assume we want to solve the heat equation in one space variable, i.e.,
our PDE is ut = uxx. One assumes now that the solution of the equation is not just any
function of the two variables t and x but is a product of a function T of t and a function X
of x, i.e., u(x, t) = T (t)X(x). Then one obtains XT ′ = TX ′′, or after division by XT

T ′

T
=
X ′′

X
.

The left hand side of this equation is now a function of t only and independent of x. The
right hand side, however, is a function of x only and independent of t. For them to be equal
it is necessary that both sides are actually independent of both x and t, i.e., they are equal
to a constant, say λ. This implies that

T ′ = λT and X ′′ = λX.

Now we have obtained ODEs and that is a big step forward. Note that the ODEs are still
linear and second order (at most). However, they do involve the new parameter λ as a
multiplier of the dependent variable. For historical reasons such parameters are often called
spectral parameters.

Formally, the most general second order linear differential equation involving a spectral
parameter is the equation

(1) py′′ + ry′ + qy = λwy

where p, r, q and w are functions of the independent variable. By a change of variables this
may be transformed into the equation

(2) − (py′)′ + qy = λwy

and this equation is known as the Sturm-Liouville equation in honor of Charles-François
Sturm (1803–1855) and Joseph Liouville (1809–1882).

The next simplification, which will be discussed in the next section and is often numer-
ically motivated, is to look at discretized differential (i.e., difference) equations. Another
motivation for considering difference equations is the construction of so called toy models.
These are models which may capture an important facet of a (physical) system in order to
gain some basic understanding but are not designed to obtain quantitative information on
a real system. Discrete models like the ones we will study in this seminar can often serve
as such toy models.

Historically, the need for creating a mathematical theory of equations like (1) or (2) can
be considered as one of the most important reasons for the development of the mathematical
fields of Operator Theory and, serving as its foundation, Functional Analysis. It is one of
the main goals of this seminar to use linear differential and difference equations to give an
example driven introduction to these fields.

2In the presence of charges or masses of density ρ Laplace’s equation is replaced by Poisson’s equation
∆u = 4πρ.
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The starting point for this is to view the left hand sides of (1) or (2) as ”operators acting
on functions”. For example, we introduce the linear differential expression

L = p(x)
(
d

dx

)2

+ r(x)
d

dx
+ q(x).

We think of L as acting on twice differentiable functions u by differentiation, multiplication
and summing, and thus recover the left of (1) as Lu. It is easily seen that L defines a linear
mapping of the vector space of twice differentiable functions on R into the vector space of
all functions on R. After the domain of a linear mapping such as L is fixed (which of course
is always a required part of defining a mapping in mathematics) we refer to L as a linear
operator, here a linear differential operator. The term “linear differential expression” is used
in a more vague sense, when one doesn’t want to decide on a specific domain right away.

Let us now also assume that w = 1 in (1). If w has no roots, then this can be achieved
by dividing by w and redefining p, q, r. Then (1) takes the form

(3) Lu = λu.

This looks very similar to the eigenvalue equation Av = λv for square matrices A, or, in
linear algebra language, for linear mappings in finite dimensional vector spaces. The main
difference between this and (3) is that the function spaces on which (3) will have to be
studied are rarely finite dimensional. As a result it becomes necessary to develop a theory
of linear mappings on infinite dimensional vector spaces. This is exactly the content of
operator theory, while functional analysis is the theory of infinite dimensional vector spaces.

1.2. Discretization of Differential Expressions

Instead of directly starting the investigation of linear differential expressions and lin-
ear differential operators, in particular Sturm-Liouville operators, we will first study finite
difference expressions and the operators associated with them. This allows for a number
of simplifications and, in particular, can be done with more elementary operator theoretic
background than in the case of differential operators. At the same time many of the most
important concepts, questions and results from the theory of linear differential operators
can already be introduced and studied with finite difference operators.

Linear finite difference equations quite frequently appear in mathematics and, even more
so, in physical models for their own sake. But for now we will take the point of view that
they arise through discretization of linear differential equations. The most important use of
this idea is made in numerical mathematics. By its very nature a computer can not handle
the continuum processes which are described by differential equations (where, for example,
physical space is considered as a continuum). Thus almost every numerical algorithm for
solving differential equations starts with discretizing the equations and thereby reducing it
to a finite difference equation, which the computer can solve in finitely many steps.

Our approach here is not the one from numerical mathematics, in the sense that we
will not solve finite difference equations on the computer, but instead study them with
theoretical tools. But we can still think of them as motivated through discretization.

The most basic differential expression is

L =
d

dx
.

It acts on functions u ∈ C1(R), the complex-valued continuously differentiable functions on
the real line, by differentiation:

(4) Lu = u′ .
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We will discretize L and u separately: A function u is discretized by restricting it to a
discrete subset of R. A simple choice for this set are the integers Z. Thus we discretize u
by replacing it with its restriction to Z,

u : R→ C  u : Z→ C.

To discretize L we have to prescribe how its discrete counterpart acts on u : Z→ C, i.e.
we have to say how a function on Z is transformed into another function on Z. There are a
number of natural choices here. One of them is the so-called right difference operator Dr,
which is defined through

(5) (Dru)(n) = u(n+ 1)− u(n) for all n ∈ Z.

This means that we have replaced the “differential quotient” u′ = du/dx with the difference
quotient u(x+ 1)− u(x) and restricted it to the integers. Note that the difference quotient
doesn’t have a denominator as (x+1)−x = 1. We could also use the left difference operator
Dl defined by

(6) (Dlu)(n) = u(n)− u(n− 1) for all n ∈ Z,

or the central difference operator

(7) (Dcu)(n) =
u(n+ 1)− u(n− 1)

2
for all n ∈ Z.

One can write u : Z→ C as an infinite (column) vector,

(8) u =



...
u(−1)
u(0)
u(1)

...

 ,

and the difference operators as infinite matrices, for example

(9) Dr =



. . . . . .

. . . −1 1
0 −1 1

0 −1
. . .

. . . . . .


,

where all the (infinitely many) missing entries are filled in with zeros if not indicated oth-
erwise by dots. Using the rules of matrix multiplication, the infinitely many equations (5)
can then be thought of as the single equation

Dru =



...
u(0)− u(−1)
u(1)− u(0)
u(2)− u(1)

...

 .

In a similar way one can write Dl and Dc as infinite matrices and then think of (6) and (7)
as matrix equations.
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Let us now consider the second order differential expression

(10) ∆ =
(
d

dx

)2

,

which to twice differentiable functions assigns their second derivative: Lu = d
dx

(
d
dxu
)

= u′′.
∆ is called the (one-dimensional) Laplace operator. One way to discretize it would be to
displace both expressions d/dx with Dr. The resulting difference expression D2

r would act
on functions u : N→ C as

(D2
ru)(n) = (Dr(Dru))(n)

= (Dru)(n+ 1)− (Dru)(n)
= (u(n+ 2)− u(n+ 1))− (u(n+ 1)− u(n))
= u(n+ 2)− 2u(n+ 1) + u(n).

The result is not very satisfying as it approximates the second derivative at n by an
expression which only depends on values of u to the right of n. A more symmetric expression
is found if we replace one d/dx with Dr and the other one with Dl (check this):

(11) (Dl(Dru))(n) = u(n+ 1)− 2u(n) + u(n− 1).

The same expression is found for (Dr(Dlu))(n). The difference expression ∆d := DlDr =
DrDl is the most widely used discretization of the Laplacian and frequently denoted as the
discrete Laplacian. The matrix form of ∆d can be read off (11) or, alternatively, found
by multiplying the infinite matrices representing Dl and Dr (which is possible since the
formally appearing infinite sums have only finitely many non-zero terms). One gets

(12) ∆d =



. . . . . .

. . . −2 1
1 −2 1

1 −2
. . .

. . . . . .


.

It is now clear how to get discretizations of higher order differential expressions
(
d
dx

)n
,

or, more generally, arbitrary general linear differential expressions of n-th order with con-
stant coefficients:

(13) L = an

(
d

dx

)n
+ . . .+ a1

d

dx
+ a0, an, . . . , a0 ∈ C.

The resulting finite difference expression will have a matrix representation of the form

(14) C =



. . . . . . . . .

. . . c0
. . . ck

. . . . . . c0
. . . ck

c−m
. . . c0

. . . ck

c−m
. . . c0

. . . . . .

c−m
. . . c0

. . .
. . . . . . . . .


,
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with non-negative integers k and m and complex numbers c−m, . . . , ck.
We observe two properties of those matrices, which reflect the fact that they arise as

discretizations of a constant coefficient differential expression L as in (14): First, each of
the diagonals of the matrix C has constant entries. Second, if L is of order n, then for the
corresponding discretization we will typically have m + k = n. This is not always true, as
demonstrated by the central difference operator Dc, but to a given L of order n one can
always find a discretization C with m + k = n. For those reasons we will call a difference
expression of the form (14) a linear finite difference operator of order m + k with constant
coefficient. C is linear in the sense that it defines a linear mapping on the vector space of
functions on Z. Indeed, if a, b ∈ C and u, v are functions on Z written as infinite column
vectors, then

C(au+ bv) = aCu+ bCv.

We finally want to generalize the above concept to finite difference operators with non-
constant coefficients. For simplicity, let us do this only for the second order case. Thus we
start with a non-constant coefficient linear differential expression of second order:

(15) L = a2(x)
(
d

dx

)2

+ a1(x)
d

dx
+ a0(x),

where a2(x), a1(x) and a0(x) are functions on R. We can think of those functions as so-
called multiplication operators, i.e. to a function a : R → C we associate the multiplication
operator A, which maps any function u on R to a function Au on R given by

(Au)(x) = a(x)u(x).

The multiplication operator A can now be discretized to become the discrete multiplication
operator A(d), which acts on functions u : Z→ C as

(A(d)u)(n) = a(n)u(n) for all n ∈ Z.

A matrix expression for A(d) is

A(d) =



. . .
a(−1)

a(0)
a(1)

. . .

 .

We can now use multiplication operators together with the previously found constant
coefficient finite difference operators to discretize the differential expression L in (15). If
A

(d)
2 , A

(d)
1 and A(d)

0 are the discretized multiplication operators associated with the functions
a2, a1 and a0, then one possible discretization of L is given by

(16) J = A
(d)
2 ∆d +A

(d)
1 Dr +A

(d)
0 ,

where addition and multiplication can be understood either in the sense of mappings (of
functions on Z to function on Z) or in the sense of the associated matrices. Explicitly, the
difference expression J acts on a function u as

(Ju)(n) = a2(n)(∆du)(n) + a1(n)(Dru)(n) + a0(n)u(n)
= a2(n)(u(n− 1)− 2u(n) + u(n+ 1)) + a1(n)(u(n+ 1)− u(n)) + a0(n)u(n)
= (a2(n) + a1(n))u(n+ 1) + (a0(n)− a1(n)− 2a2(n))u(n) + a2(n)u(n− 1).
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With the abbreviations a = a2 + a1, b = a0 − a1 − 2a2 and c = a2, we get the matrix
representation

(17) J =



. . . . . .

. . . b(−1) a(−1)
c(0) b(0) a(0)

c(1) b(1)
. . .

. . . . . .


.

This is the prototype of a second order linear finite difference expression with non-constant
coefficients. Diagonals are not constant any longer, but we still have the feature that second
order expressions have three non-vanishing diagonals. In a similar way one can introduce
higher order finite difference expressions with non-constant coefficients. But we will restrict
most of the following discussions to the second order case, where one obtains the most
complete mathematical theory.





CHAPTER 2

Second Order Finite Difference Equations

2.1. Difference Equations and Initial Value Problems

2.1.1. Vector spaces of sequences. Suppose Z is a subset of Z. Let s(Z) denote the
set of all complex-valued functions on Z. We define an addition and a scalar multiplication
on s(Z) by letting

(u+ v)(n) = u(n) + v(n)

and
(αu)(n) = αu(n)

whenever n ∈ Z, u, v ∈ s(Z), and α ∈ C. One can then show immediately that s(Z) is a
complex vector space. We will mostly be interested in the cases where Z = Z (i.e., the set
of all doubly infinite sequences) or where Z = N (i.e., the set of all infinite sequences). If Z
is a set with m elements then s(Z) is isomorphic to Cm.

As usual for sequences, we will sometimes write un instead of u(n).

2.1.2. Second order finite difference expressions. For three given doubly infinite
sequences a, b and c such that an ∈ C\{0}, bn ∈ C and cn ∈ C\{0} for all n ∈ Z, we define
a second order finite difference expression J as the mapping J : s(Z)→ s(Z) given by

(18) (Ju)(n) = anu(n− 1) + bnu(n) + cn+1u(n+ 1)

for each n ∈ Z. It is easily checked that the mapping J : s(Z)→ s(Z) is linear.

2.1.3. Jacobi matrices. We will frequently write J in the form of an infinite matrix

(19) J =



. . . . . .

. . . b−1 c0
a0 b0 c1

a1 b1
. . .

. . . . . .


and refer to J as a (two-sided) Jacobi matrix. If u ∈ s(Z) is written as an infinite column
vector,

(20) u =



...
u(−1)
u(0)
u(1)

...

 ,

9



10 2. SECOND ORDER FINITE DIFFERENCE EQUATIONS

then Ju in (18) can be interpreted as the matrix product of J and u. Note that some care
is needed here in correctly identifying the “0-th” column of J with the 0-th component of
u.

2.1.4. Finite difference equations. Let J be a second order finite difference expres-
sion. The system of equations

(21) (Ju)(n) = 0, n ∈ Z,
or, in equivalent vector notation,

(22) Ju = 0,

is called the homogeneous second order finite difference equation associated with J .
For given f ∈ s(Z) the system of equations

(23) (Ju)(n) = f(n), n ∈ Z,
or

(24) Ju = f,

is called the inhomogeneous second order finite difference equation associated with J .
A sequence u ∈ s(Z) such that Ju = 0 (Ju = f) is called a solution of the homogeneous

(inhomogeneous) finite difference equation.

2.1.5. Initial value problems. For a given Jacobi matrix J , f ∈ s(Z), n0 ∈ Z and
a, b ∈ C, the system of equations

(25) Ju = f, u(n0) = a, u(n0 + 1) = b,

is referred to as the initial value problem for J and f at n0. A sequence u ∈ s(Z) which
satisfies all of (25) is a solution of the initial value problem.

2.1.6. Existence and uniqueness. The initial value problem (25) has a unique so-
lution.

Proof: For fixed n consider the equation (Ju)(n) = f(n), that is

anu(n− 1) + bnu(n) + cn+1u(n+ 1) = f(n) .

As cn+1 6= 0, u(n+ 1) is uniquely determined by u(n− 1) and u(n) through

u(n+ 1) =
1

cn+1
(f(n)− anu(n− 1)− bnu(n)) .

Similarly, as an 6= 0, u(n) and u(n + 1) uniquely determine u(n − 1). From this one gets
inductively that u(n0) = a and u(n0 + 1) = b uniquely determine a solution of Ju = f . �

2.1.7. Transfer matrices. Let J be a Jacobi matrix given by (18) or (19), respec-
tively. The transfer matrices associated with J are given by

(26) An :=
(

0 1
− an

cn+1
− bn

cn+1

)
.

The significance of transfer matrices (and reason for the term “transfer”) lies in the
following fact:

The sequence u ∈ s(Z) solves the homogeneous difference equation Ju = 0 if and only
if

(27)
(

u(n)
u(n+ 1)

)
= An

(
u(n− 1)
u(n)

)
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for all n ∈ Z.
Proof: This follows easily by using the expression (18) for the right hand side of Ju = 0. �

Note that detAn = an/cn+1 6= 0. Thus An is invertible,

A−1
n =

(
− bn

an
− cn+1

an

1 0

)
,

and we have (
u(n− 1)
u(n)

)
= A−1

n

(
u(n)

u(n+ 1)

)
,

which can also be seen directly from (18).
If one defines the matrices

(28) Tn :=


An . . . A1 for n > 0,
I2 for n = 0,
A−1
n+1 . . . A

−1
0 for n < 0,

where I2 denotes the 2× 2 identity matrix, then we see that Ju = 0 if and only if

(29)
(

u(n)
u(n+ 1)

)
= Tn

(
u(0)
u(1)

)
for all n ∈ Z.

2.1.8. Nullspace of J . The null space N0(J) := {u : Ju = 0} of the linear mapping
J is a two-dimensional subspace of s(Z).
Sketch of proof: Define the mapping L : C2 → s(Z) by L((a, b)) = u where u is the unique
solution of Ju = 0 with u(0) = a and u(1) = b. One can show that L is linear, one-to-one
and that ran(L) = N0(J). Thus N0(J) is a subspace of dimension 2. �

2.1.9. Eigenspaces of J . For λ ∈ C let Nλ(J) = {u : Ju = λu}.
In other words, Nλ(J) is the eigenspace to the eigenvalue λ for the linear mapping J .

Denoting by I the identity mapping in s(Z), we have Ju = λu if and only if (J − λI)u = 0.
As J − λI again is a Jacobi matrix, we see from Section 2.1.8 that dimNλ(J) = 2 for every
λ ∈ C. In particular, every complex number is an eigenvalue of J with geometric multiplicity
2.

By An(λ) and Tn(λ) we denote the transfer matrices for J − λI, defined as in (26) and
(28), respectively. In particular,

(30) An(λ) :=
(

0 1
− an

cn+1
− bn−λ
cn+1

)
.

2.1.10. Fundamental systems. A basis of Nλ(J) will be called a fundamental system
of Ju = λu.

2.2. The Free Jacobi Matrix

We now introduce a specific example of a Jacobi matrix J0, which, inspired by related
concepts from Quantum Mechanics, will be called the “free Jacobi matrix”. J0 provides
us with an “exactly solvable model”, where explicit formulas for fundamental systems of
J0u = λu can be found.
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2.2.1. The free Jacobi matrix. The free Jacobi matrix J0 is the Jacobi matrix such
that

(31) (J0u)(n) = u(n− 1) + u(n+ 1) for all n ∈ Z .

In matrix notation, J0 is given by

(32) J0 =



. . . . . .

. . . 0 1
1 0 1

1 0
. . .

. . . . . .


.

J0 is structurally simpler but closely related to the finite difference approximation ∆d for
d2/dx2 found in Section 1.2. In fact, J0 = ∆d + 2I and thus J0u = λu if and only if
∆du = (λ− 2)u. Thus finding all eigenvectors for J0 is equivalent to finding all eigenvectors
for ∆d (with eigenvalues shifted by 2).

The corresponding transfer matrices are

(33) An(λ) = A(λ) :=
(

0 1
−1 λ

)
and Tn(λ) = A(λ)n for all n ∈ Z (here we define A0 = I2 and A−n = (A−1)n for n ∈ N).

Below, we will find simple explicit fundamental systems for J0u = λu by diagonalizing
A(λ). If λ 6= ±2, then this is possible as we will see that A(λ) has two distinct eigenvalues.
The case λ = ±2 will be considered separately as the corresponding transfer matrices turn
out to have non-trivial Jordan form.

2.2.2. Square roots of complex numbers. We define the principal square root
√
z

of a complex number z through the polar representation of z as follows: If z = reiθ with
r ≥ 0 and −π < θ ≤ π, then

√
z =
√
reiθ/2. Note that every non-zero complex number has

exactly two square roots a± = ±
√
z with the property a2

± = z.

2.2.3. Eigenvalues for λ 6= ±2. We will prove the

Proposition. (a) If λ ∈ C \ {±2}, then A(λ) has two distinct eigenvalues z+(λ) and z−(λ)
such that z−(λ)z+(λ) = 1. The corresponding eigenvectors are

v+(λ) =
(

1
z+(λ)

)
and v−(λ) =

(
1

z−(λ)

)
.

(b) If λ ∈ C\ [−2, 2], then |z±(λ)| 6= 1 and, in particular, we can choose z±(λ) such that
|z+(λ)| < 1 and |z−(λ)| > 1.

(c) If λ is real and −2 < λ < 2, then |z±(λ)| = 1 and z−(λ) = z+(λ).

Proof: The characteristic equation for A(λ) is

(34) det(A(λ)− zI2) = z2 − λz + 1 = 0,

which is solved by

(35) z±(λ) =
1
2

(λ±
√
λ2 − 4) .

If λ 6= ±2 and thus
√
λ2 − 4 6= 0, then z+(λ) and z−(λ) are distinct eigenvalues of A(λ). One

checks that (1, z±(λ))t are corresponding eigenvectors. We have z+(λ)z−(λ) = detA(λ) = 1.
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This shows (a) and, in particular, that |z±(λ)| are either both 1 or both different from 1 (in
which case one of them is strictly larger and one strictly smaller than one).

To prove (b), assume that |z±(λ)| = 1. Then z−(λ) = 1/z+(λ) = z+(λ) and

λ = trA(λ) = z+(λ) + z−(λ) = 2 Re z+(λ) .

Thus λ is real and −2 ≤ λ ≤ 2. We conclude that if λ ∈ C \ [−2, 2], then |z±(λ)| 6= 1.
Thus we may label the eigenvalues of A(λ) such that |z+(λ)| < 1 and |z−(λ)| > 1 (which
may involve changing the choice made in (35)).

If, on the other hand, −2 < λ < 2, then (35) implies z±(λ) = 1
2 (λ ± i

√
4− λ2), which

yields (c). �

2.2.4. The case λ = ±2. If λ = ±2 then the characteristic equation (34) has only
one root ±1 and the corresponding (geometric) eigenspaces are one-dimensional. Thus we
construct a Jordan chain consisting of an eigenvector and a generalized eigenvector:

Proposition. (a) A(2) has a single eigenvalue 1 of geometric multiplicity 1 with eigenvector

v(2) =
(

1
1

)
.

A generalized eigenvector w(2) with (A(2)− I2)w(2) = v(2) is given by

w(2) =
(

0
1

)
.

(b) A(−2) has a single eigenvalue −1 of geometric multiplicity 1 with eigenvector

v(−2) =
(

1
−1

)
.

A generalized eigenvector w(−2) with (A(−2) + I2)w(−2) = v(−2) is given by

w(−2) =
(

0
1

)
.

Proof: All this follows from straightforward calculations. �

2.2.5. Fundamental systems for J0u = λu. Based on the previous two propositions
we now find fundamental systems for J0u = λu:

Theorem. (a) If λ ∈ C \ {±2}, then J0u = λu has a fundamental system of solutions
{u+, u−} given by u±(n) = z±(λ)n for all n ∈ Z.

If z ∈ C\[−2, 2], then |u±(n)| decays exponentially as n→ ±∞ and grows exponentially
as n→ ∓∞.

If λ is real with −2 < λ < 2, then all solutions of J0u = λu are bounded on Z.
(b) A fundamental system of solutions of J0u = 2u is given by {u1, u2}, where u1(n) = 1,

u2(n) = n for all n ∈ Z.
A fundamental system of solutions of J0u = −2u is given by {u1, u2}, where u1(n) =

(−1)n, u2(n) = (−1)nn for all n ∈ Z.
In each case no solution grows faster than linear in n.

Proof: If λ ∈ C \ {−2, 2}, then v±(λ) = (1, z±(λ))t are linearly independent. As the
mapping L from the proof the existence and uniqueness proof in Section 2.1.6 preserves
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linear independence, the solutions u± with (u±(0), u±(1)) = (1, z±(λ)) are a fundamental
system for J0u = λu. It follows from (29) that(

u±(n)
u±(n+ 1)

)
= A(λ)n

(
1

z±(λ)

)
= z±(λ)n

(
1

z±(λ)

)
and thus u±(n) = z±(λ)n. This and Lemma 2.2.3 show the claims about exponential growth
and decay made in (a). If −2 < λ < 2, then u± are bounded on Z by Lemma 2.2.3(c),
yielding boundedness of all solutions on Z.

Using the eigenvectors and generalized eigenvectors found in Lemma 2.2.4 as initial
conditions to solve J0u = ±2u via (29), one finds the solutions given in (b). The linear
growth follows from this. �

2.2.6. Remark. We could have determined fundamental systems for J0u = λu by a
simple “guess and verify” approach. This is based on the observation that for every solution
z of the characteristic equation (34) it holds that

λ = z +
1
z
.

If we let u(n) = zn for all n ∈ Z, then we can verify easily that u(n− 1) + u(n+ 1) = λu(n)
for all n, i.e. J0u = λu. If (34) has two different roots (as for λ 6= ±2), then one also sees
easily that the corresponding u’s are linearly independent and thus form a fundamental
system for J0u = λu. If λ = ±2, then we find only the solution u1 from part (b) of the
above Theorem in this way. That u2 is a second linearly independent solution has to be
checked separately, which also is done with little effort.

The reason for providing the more systematic constructions in Sections 2.2.3, 2.2.4 and
2.2.5 is that this method generalizes to finding fundamental systems of homogeneous finite
difference equations with constant coefficients of arbitrary order. Instead of J0 one works
with one of the constant coefficient finite difference expressions discussed in Section 1.2. One
can generalize most of the above theory to this case, including transfer matrices (which are
now of a bigger size). Using the Jordan form of the transfer matrix of a constant coefficient
expression one can construct a fundamental system. This procedure is the “discrete ver-
sion” of solving constant coefficient linear ordinary differential equations by the exponential
ansatz.

2.3. Solving Inhomogeneous Difference Equations

2.3.1. The general solution of (J − λI)u = f . Let J be a Jacobi matrix, λ ∈ C,
f ∈ s(Z) and u1, u2 a fundamental system for the homogeneous equation (J − λI)u = 0.
Also, let w ∈ s(Z) be a particular solution of (J − λI)w = f . Then u ∈ s(Z) is a solution
of (J − λI)u = f if and only if there exist a1 and a2 such that

(36) u = a1u1 + a2u2 + w .

Proof: If u has the form (36), then it easily follows from linearity that (J − λI)u = f .
If, on the other hand, (J − λI)u = f , then

(J − λI)(u− w) = (J − λI)u− (J − λu)w = f − f = 0 .

As u1, u2 is a fundamental system of the homogeneous equation there must be a1, a2 ∈ C
such that u− w = a1u1 + a2u2. �

In the rest of this section we will provide an explicit formula for a particular solution w
of the inhomogeneous equation, assuming that a fundamental system of the homogeneous
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equation is known. While we could do this for general Jacobi matrices, we will for simplicity
only consider discrete Schrödinger operators.

2.3.2. Discrete Schrödinger operators. A Jacobi matrix (18) in which an = cn = 1
for all n is called a discrete Schrödinger operator. In this case we will denote the diagonal
entries by qn ∈ C,

(37) J =



. . . . . .

. . . q−1 1
1 q0 1

1 q1
. . .

. . . . . .


= J0 +



. . . . . .

. . . q−1 0
0 q0 0

0 q1
. . .

. . . . . .


.

J0 is (up to a shift of the spectral parameter) a discrete model for −d2/dx2, the operator
describing the kinetic energy in Quantum Mechanics. The qn represent the potential energy
(a discretization of the physical potential q(x) which generates a force through F (x) =
−q′(x)). For this reason we will refer to the sequence q = (qn) as the potential.

2.3.3. Wronskian. Let J be a discrete Schrödinger operator, λ ∈ C and u and v be
two solutions of Ju = λu. The Wronskian of u and v is the number

(38) W (u, v) = det
(

u(n) v(n)
u(n+ 1) v(n+ 1)

)
= u(n)v(n+ 1)− v(n)u(n+ 1) .

In this definition we can use an arbitrary n ∈ Z, as the right of (38) does not depend on n.
To this end, note that the transfer matrices for a discrete Schrödinger operator are

(39) An(λ) =
(

0 1
−1 λ− qn

)
.

Thus detAn(λ) = 1. The Tn(λ) are products of the An(λ) and their inverses and thus also
detTn(λ) = 1. By equation (29) we see that(

u(n) v(n)
u(n+ 1) v(n+ 1)

)
= Tn(λ)

(
u(0) v(0)
u(1) v(1)

)
for all n ∈ Z. Taking determinants on both sides we get n-independence of the Wronskian. In
particular, we see that u, v are a fundamental system for Ju = λu if and only if W (u, v) 6= 0,
as this corresponds to linear independence of the initial vectors (u(0), u(1)) and (v(0), v(1)).

2.3.4. Summation notation. For any g ∈ s(Z) we introduce the following notation

(40)
∫ m

n

g :=


∑m−1
k=n g(k) if m > n,

0 if m = n,

−
∑n−1
k=m g(k) if m < n.

These modified sums have properties similar to ordinary integrals:

(41)
∫ m

n

g = −
∫ n

m

g for all n,m ∈ Z ,∫ k

n

g +
∫ m

k

g =
∫ m

n

g for all n,m, k ∈ Z .

These properties are most easily verified by noting that the above modified sums can
indeed be written as Riemann integrals of functions on R. For this, to a given g ∈ s(Z)
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define the step function G : R → C by G(x) = g(n) for arbitrary n ∈ Z and x ∈ [n, n+ 1).
One checks that

∫m
n
g =

∫m
n
G(x) dx. The above properties of sums are now an immediate

consequence of the corresponding properties of Riemann integrals.

2.3.5. Summation by parts.∫ s

m=r

(a(m+ 1)− a(m))b(m+ 1) = a(s)b(s)− a(r)b(r)−
∫ s

m=r

a(m)(b(m+ 1)− b(m))

Sketch of proof: The statement is true for s = r. If s > r one can prove it easily by
induction. For s < r it follows then from (41). �

2.3.6. Variation of parameters. The following Theorem provides a discrete version
of the variation of parameters formula for the solution of inhomogeneous linear differential
equations.

Theorem. Let J be a discrete Schrödinger operator, λ ∈ C, u1, u2 a fundamental system
for (J − λI)u = 0, f ∈ s(Z) and n0 ∈ Z. Then a particular solution w of (J − λI)w = f is
given by

(42) w(n) =
1

W (u1, u2)

(
u2(n)

∫ n

n0

u1f − u1(n)
∫ n

n0

u2f

)
.

Proof: That w is a solution of the inhomogeneous equation follows from a calculation,
which uses the definition of J , the definition of w, the properties of the modified Σ-notation
and that u1 and u2 solve (J − λI)u = 0:

((J − λI)w) (n) = w(n− 1) + (qn − λ)w(n) + w(n+ 1) = f(n) .

�
Based on (2.3.1) we therefore have that the most general solution of (J − λI)u = f is

of the form u = a1u1 + a2u2 + w. In particular, we can combine this with the results of
Section 2.2 to find explicit expressions for all solutions of (J0 − λI)u = f .

2.4. Floquet Theory for Periodic Jacobi Matrices

2.4.1. Periodic discrete Schrödinger operators. For L ∈ N a discrete Schrödinger
operator J is called L-periodic if the potential q is L-periodic, i.e., qn+L = qn for all n ∈ Z.

Given a solution u of Ju = λu define v by v(n) = u(n + L). The periodicity of q
implies immediately that v is also a solution of the difference equation, i.e., Jv = λv. The
operator M which assigns u to v is therefore a function from Nλ(J) to itself. It is called the
monodromy or Floquet operator.

2.4.2. Floquet multipliers and Floquet solutions. The eigenvalues of the mon-
odromy operator are called Floquet multipliers and its eigenfunction are called Floquet
solutions. We know from linear algebra that M has at least one eigenvalue z1 and eigen-
vector u1, i.e., a solution of Ju = λu such Mu1 = z1u1. Moreover, there is either a second
eigenvector u2 so that {u1, u2} is linearly independent or else there is a generalized eigenvec-
tor u2 satisfying Ju2 = λu2 and Mu2 = z1u2 +u1. In either case we have Mu2 = z2u2 +αu1

where α ∈ {0, 1} and z2 = z1 if α = 1. Now one computes

W (u1, u2)(n+ L) = (Mu1)(n)(Mu2)(n+ 1)− (Mu2)(n)(Mu1)(n+ 1)

= z1z2W (u1, u2)(n) + z1αW (u1, u1)(n).
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Since W (u1, u1)(n) = 0 and since, according to Section 2.3.3, W (u1, u2)(n) does not depend
on n we obtain that z1z2 = 1. In particular, if z1 = z2 then z1 = ±1. Note that detM = 1
since the determinant is, by definition, the product of its eigenvalues.

The monodromy operator can be represented by a 2 × 2-matrix by choosing a basis
in Nλ(J). The most convenient basis is {c, s} where c and s are the unique solutions of
Ju = λu satisfying c(0) = s(1) = 1 and c(1) = s(0) = 0. The matrix then obtained is(

c(L) s(L)
c(L+ 1) s(L+ 1)

)
which coincides with the transfer matrix TL. For this reason TL is called monodromy matrix.

Note that all quantities considered here actually depend on λ.

2.4.3. Discriminant and stability set. The function

(43) D(λ) := trTL(λ) = z(λ) +
1

z(λ)

is called the discriminant of J . The set

(44) S := {λ ∈ C : |z(λ)| = 1}

is called the stability set of J .

Proposition. λ ∈ S if and only if D(λ) ∈ [−2, 2].

Proof: If |z(λ)| = 1, then 1/z(λ) = z(λ) and thus D(λ) = z(λ) + z(λ) = 2Re z(λ) ∈ [−2, 2].
If, on the other hand, D(λ) ∈ [−2, 2], then there is a θ ∈ [0, π] such that (for z = z(λ))

z + 1/z = 2 cos θ. Therefore z2 − 2z cos θ + 1 = 0 and

z = cos θ ±
√
cos2θ − 1 = cos θ ± i sin θ.

Thus |z| = 1. �

2.4.4. Fundamental systems for periodic Jacobi matrices.

Theorem. (a) If D(λ) ∈ C\ [−2, 2], then there is a fundamental system u+, u− for Ju = λu
such that u± decays exponentially as n→ ±∞.

(b) Let either D(λ) ∈ (−2, 2) or let D(λ) = ±2 such that z(λ) has geometric multiplicity
2. Then all solutions of Ju = λu are bounded on Z.

(c) Suppose that D(λ) = ±2 and z(λ) has geometric multiplicity 1. Then there is a
fundamental system u1, u2 of Ju = λu such that u1 is bounded and u2 is unbounded with
|u2(n)| ≤ C(|n|+ 1) for some C and all n ∈ Z.

Sketch of Proof: Based on (2.4.2) and (2.4.3) the proof of these results is very similar to
the arguments provided for the case of the free Jacobi matrix J0 in Section 2.2.5. In case
(c), where z(λ) = ±1, there exists a Jordan chain {v, w} for TL(λ), i.e. TL(λ)v = ±v and
(TL(λ)∓ I)w = v. With v and w as initial conditions we get one bounded and one linearly
growing solution of Ju = λu. �

Note that if D(λ) = ±2, then the geometric multiplicity of z(λ) may be either one or
two. Examples with geometric multiplicity one are given by the numbers λ = ±2 for the
free Jacobi matrix, see Section 2.2.4. An example with geometric multiplicity two will be
found in Section 2.4.7 below.
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2.4.5. Real potentials.

Theorem. If q is real-valued, then S ⊂ R.

Proof: Let λ ∈ S and z the corresponding Floquet multiplier with |z| = 1. By Section 2.4.2
there is a non-zero solution of Ju = λu with u(n+ L) = zu(n) for all n ∈ Z. Using this for
n = 0 and n = 1 in u(n− 1) + qnu(n) + u(n+ 1) = λu(n) we see that

q(1)u(1) + u(2) +
1
z
u(L) = λu(1)

and
zu(1) + u(L− 1) + q(L)u(L) = λu(L).

This implies that

(45)



q1 1 1/z

1 q2
. . .

. . . . . . . . .
. . . . . . 1

z 1 qL




u(1)
u(2)

u(L)

 = λ


u(1)
u(2)

u(L)

 .

As 1/z = z, the matrix on the left of (45) is hermitean. Thus its eigenvalue λ is real. �

2.4.6. Example. Find the discriminant and stability set for the 3-periodic potential
q with q1 = 1, q2 = 0 and q3 = −1.

2.4.7. Example. Let a ∈ C and the 2-periodic potential q be given by

qn :=
{
a if n odd,
−a if n even.

}
Find the discriminant D(λ) = Da(λ) for every a ∈ C. Find the stability set S = Sa for (i)
all a ∈ R, (ii) a = i, and (iii) a = 3i.



CHAPTER 3

Functional Analysis

We have seen that Jacobi matrices can be thought of as linear operators acting in the
form of infinite-dimensional matrices on the vector space of sequences s(Z). In order to
do analysis with Jacobi matrices we will need to be able to measure the “size” of a Jacobi
matrix and also the “distance” between two of them. Recall that this is done for finite
matrices through the introduction of norms. A particularly useful way of defining a norm
on, say, the complex N×N -matrices is by first choosing a norm ‖·‖ on CN and then setting

(46) ‖A‖ = sup
‖Ax‖
‖x‖

,

where the supremum is taken over all non-zero vectors x in CN .
In the following we will try to do the same for linear operators on infinite dimensional

vector spaces such as s(Z). This will come with a number of substantial difficulties:
First of all we will have to find norms on spaces of sequences (which replace CN ). It

turns out that there are no useful norms on the space of all sequences s(Z). However, we
will find that some of the familiar ways of introducing norms on CN can be extended to
certain naturally chosen subspaces of s(Z). In at least one of these cases the norm will be
induced by an inner product, a fact which will have tremendous implications for the theory
of linear operators to be built up later.

Once we have norms on sequence spaces, we can try to use (46) to define a norm for linear
operators such as Jacobi matrices on these spaces. Here we run into two more difficulties:
Due to having been forced into working with subspaces of s(Z) in the definition of norms,
it will not be automatic that ‖Ax‖ is even defined. Also, even if ‖Ax‖/‖x‖ makes sense for
every x, the supremum in (46) may become infinite.

All these difficulties can be overcome, but their presence demonstrates that the theory
of infinite dimensional matrices (or, more generally, linear operators in infinite dimensional
vector spaces) is much richer than the finite dimensional counterpart. It is exactly at this
point where Linear Algebra turns into Functional Analysis and Operator Theory.

3.1. Vector Spaces of Sequences

3.1.1. Norms and inner products. Let V be a vector space. A function ‖·‖ : V → R
is called a norm on V if it satisfies the following conditions:
(a) ‖x‖ ≥ 0 for all x ∈ V ,
(b) ‖x‖ = 0 if and only if x = 0,
(c) ‖αx‖ = |α|‖x‖ for all α ∈ C and all x ∈ V ,
(d) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V . (This inequality is called the triangle inequality.)

A function (·, ·) : V × V → C is called an inner product or a scalar product if it satisfies
the following conditions:
(a) (x, x) ≥ 0 for all x ∈ V ,
(b) (x, x) = 0 if and only if x = 0,

19
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(c) (x, αy + βz) = α(x, y) + β(x, z), for all α, β ∈ C and all x, y, z ∈ V ,
(d) (x, y) = (y, x) for all x, y ∈ V .

A complete normed vector space is called a Banach space and a complete inner product
space is called a Hilbert space.

3.1.2. Schwarz’s inequality. An inner product satisfies Schwarz’s inequality1, i.e.,

|(x, y)| ≤ (x, x)1/2(y, y)1/2.

Sketch of proof: Note that (x, y) = 0 for all x ∈ V if and only if y = 0. Assume now
that (x, y) 6= 0 (otherwise there is nothing to prove). Let s = |(x, y)|/(x, y). Then, for any
real r,

0 ≤ (x− rsy, x− rsy) = (x, x)− 2r|(x, y)|+ r2(y, y).

Schwarz’s inequality follows now from choosing r = |(x, y)|/(y, y). �
Because of Schwarz’ inequality one sees immediately that every inner product space is

a normed vector space under the norm x 7→ ‖x‖ = (x, x)1/2.

3.1.3. Continuity of norm and inner product. Since, by the triangle inequality,
| ‖x‖ − ‖x0‖ | ≤ ‖x− x0‖ we have that the norm is a continuous function.

The inner product is jointly continuous in its arguments. More precisely, if x tends to
x0 and y tends to y0, i.e., if ‖x− x0‖ and ‖y − y0‖ tend to zero, then

lim
x→x0
y→y0

(x, y) = (x0, y0).

In particular,
lim
x→x0

(x, y0) = lim
y→y0

(x0, y) = (x0, y0).

For the proof show, using Schwarz’s inequality, that |(x, y)−(x0, y0)| ≤ c(‖x−x0‖+‖y−y0‖)
for some constant c.

3.1.4. The `p spaces. Let p ≥ 1 be a real number. Recall that one can uniquely
define the p-th power and the p-th root of a nonnegative real number. We define

`p(Z) = {f ∈ s(Z) :
∑
n∈Z
|f(n)|p <∞}.

We also define
`∞(Z) = {f ∈ s(Z) : sup{|f(n)| : n ∈ Z} <∞}.

For 1 ≤ p <∞ we also define

‖f‖p =

(∑
n∈Z
|f(n)|p

)1/p

if f ∈ `p(Z). If f 6∈ `p(Z) we set ‖f‖p = ∞. Similarly, ‖f‖∞ = sup{|f(n)| : n ∈ Z} if
f ∈ `∞(Z) and ‖f‖∞ = ∞ if f 6∈ `∞(Z). We will later show that the ‖ · ‖-notation is
justified.

1For finite sums the inequality was first discovered by Augustin-Louis Cauchy (1789-1857). Victor
Ya. Bunyakovskii (1804-1889) wrote it first down for integrals in 1859. Hermann A. Schwarz (1843-1921)

published it again 1885 and the inequality carries his name since Bunyakovskii’s paper was not widely known.
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3.1.5. Hölder’s inequality. If 1 < p <∞ then the number q satisfying 1/p+1/q = 1
is called the conjugate exponent for p. One defines also that ∞ is the conjugate exponent
to 1 and vice versa. (Note that the equation 1/p+ 1/q = 1 is still satisfied in a sense.)

Theorem. If p, q ∈ [1,∞] and 1/p+ 1/q = 1 then∑
n∈Z
|f(n)g(n)| ≤ ‖f‖p‖g‖q.

This fundamental inequality is called Hölder’s inequality.

Sketch of proof: The claim is evident if p = 1 and q = ∞ or if p = ∞ and q = 1.
Also there is nothing to show if ‖f‖p or ‖g‖q equals zero or infinity. Assume therefore that
p, q ∈ (1,∞) and that ‖f‖p and ‖g‖q are positive finite numbers. One sees from the graph
of the exponential function, due to its convexity, that

exp(
s

p
+
t

q
) ≤ exp(s)

p
+

exp(t)
q

for any real numbers s and t which implies that

ab ≤ ap

p
+
bq

q

whenever a and b are nonnegative real numbers. Hölder’s inequality follows now easily by
choosing a = |f(n)|/‖f‖p and b = |g(n)|/‖g‖q and then summing over n. �

3.1.6. Minkowski’s inequality. If p ∈ [1,∞] and f, g ∈ `p(Z) then

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

This is the triangle inequality which, in the present context, is often called Minkowski’s
inequality.

Sketch of proof: The cases p = 1 and p = ∞ are trivial. If ‖f + g‖p = ∞ one shows
that at least one of ‖f‖p and ‖g‖p is infinite (note that (a+ b)p ≤ (2a)p+(2b)p for a, b ≥ 0).
Assume therefore now that 1 < p < ∞ and ‖f + g‖p < ∞. From Hölder’s inequality we
obtain ∑

n∈Z
|f(n)||f(n) + g(n)|p−1 ≤ ‖f‖p ‖f + g‖p/qp

where q = p/(p− 1). Similarly∑
n∈Z
|g(n)||f(n) + g(n)|p−1 ≤ ‖g‖p ‖f + g‖p/qp

Adding these two inequalities and using the triangle inequality we get

‖f + g‖pp ≤ (‖f‖p + ‖g‖p) ‖f + g‖p−1
p .

which is the desired result since ‖f + g‖p <∞. �

3.1.7. `p(Z) is a Banach space. If p ∈ [1,∞] then `p(Z) is a vector space and ‖ · ‖p
is a norm on `p(Z). `p(Z) is complete.

Sketch of proof: The triangle inequality is just Minkowski’s inequality.
Let n 7→ fn be a Cauchy sequence in `p(Z). One can show quickly that, for any fixed

k ∈ Z the sequence n 7→ fn(k) is also Cauchy and hence convergent (we know that C
is complete). Denote the limit by f(k). Thus, given ε > 0 there is an m(k) such that
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|fn(k)− f(k)| < ε for all n ≥ m(k). Since n 7→ fn is Cauchy the sequence n 7→ ‖fn‖p is also
Cauchy and hence bounded by some constant C. Introduce the sequence f (N)

n by letting

f (N)
n (k) =

{
fn(k) if |k| ≤ N
0 otherwise

and similarly the sequence f (N). Then we have

‖f (N)
n ‖p ≤ ‖fn‖p ≤ C

and

‖f (N)‖p − ‖f (N)
n ‖p ≤ ‖f (N) − f (N)

n ‖p ≤ (2N + 1)1/pε

for all n ≥ max{m(k) : |k| ≤ N}. This implies that ‖f (N)‖p ≤ C regardless of N and hence
‖f‖p ≤ C. �

3.1.8. `2(Z) is a Hilbert space. If f, g ∈ `2(Z) we let

(f, g) =
∑
n∈Z

f(n)g(n).

This defines an inner product on `2(Z).
Sketch of proof: The main task is to show that (f, g) is finite, but this follows immedi-

ately from Hölder’s inequality. �
`2(Z) is a Hilbert space since we proved before that it is complete.

3.1.9. A basis of `p(Z). By ek, k ∈ Z, we denote the vectors for which ek(k) = 1 but
ek(n) = 0 when n 6= k. All of these vectors are in `p(Z) for any p ∈ [1,∞]. It is clear that,
unless Z is a finite set, the collection B = {ek : k ∈ Z} does not form an algebraic basis
of `p(Z) since the span 〈B〉 of B contains only sequences which are zero for all but finitely
many arguments.

However, defining

fN =
∑
k∈Z
|k|≤N

f(k)ek ∈ 〈B〉

we see that

‖f − fN‖pp =
∑
`∈Z
|`|>N

|f(`)|p

tends to zero as N tends to infinity provided that p < ∞. Hence `p(Z), for p < ∞ is the
closure of the span of B.

We will therefore henceforth use a different definition of basis than is commonly used
in algebra. A subset of a normed vector space V is called a basis of V if it is linearly
independent and if its span is dense in V .

In this sense B is a basis of `p(Z) when p <∞. It is called the canonical basis.
When p = 2 then the vectors in B are normalized (i.e., have norm one) and any two

different ones are orthogonal (i.e., their inner product is zero). The canonical basis is
therefore an orthonormal basis.
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3.2. The Geometry of Hilbert Space

3.2.1. Orthogonality. Two elements x and y of an inner product space are called
orthogonal if (x, y) = 0. In this case we write x ⊥ y. If (x, y) = 0 for all y ∈M , some subset
of the inner product space, we write x ⊥M .

If x and y are orthogonal, then the Pythagorean identity

‖x+ y‖2 = ‖x‖2 + ‖y‖2

is satisfied.

3.2.2. The parallelogram identity. For arbitrary elements x, y of an inner product
space one has the parallelogram identity

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

3.2.3. Convex sets. A subset C of a vector space is called convex if with every pair
x, y of points in C the line segment [x, y] = {tx+ (1− t)y : t ∈ [0, 1]} joining x and y is also
contained in C.

Theorem. Let C be a closed convex set in the Hilbert space H and x0 ∈ H. Then there
exists a unique xC ∈ C such that

‖x0 − xC‖ = inf{‖x0 − y‖ : y ∈ C}.

For a proof see, for instance, W. Rudin, Real and Complex Analysis, Theorem 4.10.
Note that subspaces of vector spaces are convex.

3.2.4. Orthogonal complements. Let M be a subset of the Hilbert space H. Then

M⊥ := {x ∈ H : x ⊥M},

called the orthogonal complement of M in H, is a closed subspace of H.

Theorem. If M is a closed subspace of the Hilbert space H, then

H = M ⊕M⊥.

Sketch of proof: Assume x ∈M ∩M⊥. Then (x, x) = 0, i.e., x = 0. Now choose x ∈ H
and let a be the unique element of M closest to x (as found in (3.2.3)). Then b = x−a ⊥M
(and thus x = b + a ∈ M + M⊥). To see that b ∈ M⊥ note that ‖b‖2 ≤ ‖b − ty‖2 for any
y ∈M of norm one and any complex number t. Choosing t = (y, b) gives then 0 ≤ −|(y, b)|2.
Thus x− a = b ⊥ y. �

Corollary. If M is a closed subspace of a Hilbert space H, then M = M⊥⊥. M⊥ = {0} if
and only if M = H.

3.3. Bounded Linear Operators

3.3.1. Linear operators. Let X and Y be vector space. A function (or operator) A
from X to Y is called linear if A(rx+ sx′) = rAx+ sAx′ whenever r, s ∈ C and x, x′ ∈ X.
The set of all linear operators from X to Y is denoted by L(X,Y ). It is itself a complex
vector space.
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3.3.2. Bounded linear operators. Let A be a linear transformation from a normed
vector space X to a normed vector space Y . Define

‖A‖ = sup{‖Ax‖
‖x‖

: 0 6= x ∈ X}.

Note that the symbol ‖ · ‖ is used here for two different functions. However, a confusion can
not arise.

The linear operator A is called bounded if ‖A‖ <∞. Other wise it is called unbounded.
The set of all bounded linear operators from X to Y is denoted by B(X,Y ). It is a subspace
of L(X,Y ).

The function A 7→ ‖A‖ is a norm on B(X,Y ).
One may show that

‖A‖ = sup{‖Ax‖ : x ∈ X, ‖x‖ ≤ 1} = sup{‖Ax‖ : x ∈ X, ‖x‖ = 1}

and
‖A‖ = inf{C : ∀x ∈ X : ‖Ax‖ ≤ C‖x‖}.

Moreover,
‖AB‖ ≤ ‖A‖ ‖B‖.

When Y is an inner product space, one also has

‖A‖ = sup{|(Ax, y)| : x ∈ X, y ∈ Y, ‖x‖ = 1, ‖y‖ = 1}.

This is due to the fact that ‖y‖ = sup{|(z, y)| : z ∈ Y, ‖z‖ = 1} in the inner product space
Y .

3.3.3. Bounded operators are continuous. Let A be a bounded linear transforma-
tion from a normed vector space X to a normed vector space Y and suppose that n 7→ xn
is a convergent sequence in X. Then

‖Axn −Ax‖ = ‖A(xn − x)‖ ≤ ‖A‖ ‖xn − x‖

tends to zero and hence the sequence n 7→ Axn tends to Ax. This shows (by definition)
that A is a continuous function at x. Since x was arbitrary we have that A is continuous.

The converse of this statement is also true.

3.3.4. The Neumann series for an operator of small norm. Suppose A be a
bounded linear transformation from a Hilbert space H to itself such that ‖A‖ < 1. Choose
any x ∈ H. Then ‖Akx‖ ≤ ‖A‖k‖x‖ so that the sequence n 7→

∑n
k=0A

kx is Cauchy
and hence convergent. Therefore one may define the transformation B : H → H : x 7→∑∞
k=0A

kx. The transformation B is linear and bounded. Moreover, (I−A)B = B(I−A) =
I so that

(I −A)−1 =
∞∑
k=0

Ak.

3.3.5. Matrix representation of bounded operators. Just as in the case of linear
transformations between finite-dimensional vector spaces one may associate a matrix with a
bounded linear operator A from `p(Z) to `p̃(Z̃) when p and p̃ are finite. Not surprisingly the
matrix will in general be infinite in size. When j ∈ Z consider Aej as an (infinite) column.
One collects these columns in a matrix M so that Mk,j = (Aej)(k) for j ∈ Z and k ∈ Z̃.



3.3. BOUNDED LINEAR OPERATORS 25

One now wants to interpret the application of the map A to the sequence f as a matrix
multiplication of the matrix M and the column f , i.e., one wants that, for each fixed k,

(Af)(k) =
∑
j∈Z

Mk,jfj .

But this, including the convergence of the series on the right follows from the continuity
and linearity of A. In particular,

∑
j∈Z |Mk,j |q <∞ when q is exponent conjugate to p.

Conversely, given a matrix M , matrix multiplication defines a bounded linear transfor-
mation A at least from `p(Z) to `∞(Z̃) when supk∈Z̃

∑
j∈Z |Mk,j |q <∞. In this case

‖A‖ ≤ sup
k∈Z̃
‖Mk,·‖q.

A sufficient (but not necessary) condition for M to provide a linear transformation from
`p(Z) to `p̃(Z̃) is that ∑

k∈Z̃

‖Mk,·‖p̃q <∞.

3.3.6. Shift operators. We now define so called shift operators S+ and S− from
`p(Z) to `p(Z) for Z = Z and for Z = N. In the first case we let (S+f)(n) = f(n− 1) and
(S−f)(n) = f(n + 1). In the second case we let (S+f)(1) = 0 while all other assignments
remain unchanged. Obviously S+ is a shift to the right while S− is a shift to the left. The
entries in the matrices associated with shift operators are all zeros except for ones in the
superdiagonal (for S−) or the subdiagonal (for S+).

When defined on Z we have S± = S−1
∓ , while on N we have S−S+ = I and S+S− 6= I.

Thus, in this case, S+ is the right-inverse but not the left-inverse of S−.
Note that both S+ and S− are linear operators of norm one.
The operator J0 = S++S− : `p(Z)→ `p(Z) is the free Jacobi matrix introduced in (31).

It is also a bounded linear operator. Its norm is less than two by the triangle inequality. By
choosing an appropriate sequence of vectors in `p(Z) one can show that, in fact, ‖J0‖ = 2
regardless of p ∈ [1,∞].

3.3.7. Multiplication operators. Let Z ⊂ Z and 1 ≤ p ≤ ∞. Let a : Z 7→ C be
a bounded function, that is, ‖a‖∞ = sup{|a(n)| : n ∈ Z} < ∞. Then A : `p(Z) 7→ `p(Z)
defined through

(47) (Af)(n) = a(n)f(n), n ∈ Z,
is a bounded linear operator with ‖A‖ = ‖a‖∞.

If a is unbounded, then one does not get a bounded operator on `p(Z) in this way. In
fact, in this case the operator A : V 7→ `p(Z) defined through (47), where

V = {f ∈ `p(Z) : f(n) = 0 for all but finitely many n ∈ Z},
is an unbounded linear operator.

3.3.8. Bounded Jacobi matrices. Let J be a Jacobi matrix as given by (19) with
bounded sequences a, b and c. Then J defines a bounded linear operator on `p(Z) through
(18) for every 1 ≤ p ≤ ∞. One has ‖J‖ ≤ ‖a‖∞ + ‖b‖∞ + ‖c‖∞.

Sketch of proof: If A, B and C are the multiplication operators defined by the sequences
a, b and c, then J = AS+ +B + S−C.

Note that a similar result holds for more general matrices of the form (14). Is it possible
to find conditions under which this result can be generalized to hold for matrices with
infinitely many non-zero diagonals?
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3.4. Dual Spaces and Adjoint Operators

While much of the theory of dual spaces and adjoint operators can be carried out in
the more general setting of normed spaces (and, particularly nicely, for the Banach spaces
`p(Z), 1 < p <∞), we will for simplicity mostly consider the case of Hilbert spaces.

3.4.1. Dual spaces. A linear operator from a normed linear space X to the field
of complex numbers is called a linear functional. The set B(X,C) of all bounded linear
functionals on X is a vector space. This space is called the dual space of X and is denoted
by X∗. Note that X∗ is a normed vector space (in fact a Banach space) under the operator
norm.

3.4.2. The Riesz representation theorem.

Theorem. Let H be a Hilbert space and φ ∈ H∗. Then there exists a unique xφ ∈ H such
that

(48) φx = (xφ, x)

for all x ∈ H. One has ‖φ‖ = ‖xφ‖.

For a proof see, for instance, W. Rudin, Real and Complex Analysis, Theorem 4.12.
A bijective linear map is called an isomorphism. A map Φ for which ‖Φx‖ = ‖x‖ for

all x is called an isometry. Hence the map φ 7→ xφ described in the theorem is an isometric
isomorphism from H∗ to H (“onto” is seen easily, the rest follows from the theorem). In
this sense Hilbert spaces are “self-dual”, a property not shared by general Banach spaces.

3.4.3. Adjoint operators.

Theorem. Let H1 and H2 be Hilbert spaces with inner products (·, ·)1 and (·, ·)2. To
A ∈ B(H1,H2) there exists a unique A∗ ∈ B(H2,H1) such that

(49) (A∗y, x)1 = (y,Ax)2

for all x ∈ H1 and y ∈ H2. A∗ is called the adjoint of A. One has ‖A∗‖ = ‖A‖.

Sketch of proof: Let y ∈ H2 and define φyx := (y,Ax)2. Thus φy ∈ H∗1 and by Riesz
there is a unique y∗ ∈ H1 such that (y∗, x)1 = φyx = (y,Ax)2. One defines A∗y := y∗ and
checks that A∗ ∈ B(H2,H1) with ‖A∗‖ = ‖A‖. �

Note that (A∗)∗ = A, (A+B)∗ = A∗ +B∗ and (AB)∗ = B∗A∗ whenever A and B are
bounded linear operators between appropriate Hilbert spaces.

3.4.4. Matrix of the adjoint operators. If H1 = `2(Z) and H2 = `2(Z̃) and if M
is the matrix associated with A, then the conjugate transpose M∗ of M (defined through
M∗(j, k) = M(k, j) is the matrix associated with A∗. This follows by applying (49) to the
basis vectors ej and ek.

3.4.5. Adjoints of shift operators. With the aid of (49) one computes immediately
that S∗+ = S− and that S∗− = S+.

It is now obvious that the free Jacobi matrix J0 = S+ + S− is its own adjoint.

3.4.6. Selfadjoint linear operators. An operator T ∈ B(H,H) is called selfadjoint
if T = T ∗.
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3.4.7. Adjoints of Jacobi matrices. Let J be a bounded Jacobi matrix defined
through (19). Then J∗ is the bounded Jacobi matrix defined through (19) with the sequences
a, b, c replaced by c̄, b̄, ā, that is

(50) J∗ =



. . . . . .

. . . b̄−1 ā0

c̄0 b̄0 ā1

c̄1 b̄1
. . .

. . . . . .


.

J is selfadjoint if and only if bn ∈ R and cn = ān for all n ∈ Z. In particular, a bounded
discrete Schrödinger operator (37) is selfadjoint if and only if the potential is real.

3.5. Spectral Theory

3.5.1. Resolvent set and spectrum. Let X be a Banach space and T a bounded
linear operator from X to itself. The resolvent set of T is the set of all complex numbers
λ such that T − λ is bijective and (T − λ)−1 is a bounded operator on X. We will denote
the resolvent set of T by ρ(T ). If λ is in ρ(T ) then the equation Tx = λx+ y has a unique
solution x for any choice of y ∈ X.

The complement of ρ(T ) is called the spectrum of T and is denoted by σ(T ). If λ is in
σ(T ) then either T − λ is not bijective or else the inverse is not a bounded operator.

3.5.2. Resolvent. If λ is in the resolvent set ρ(T ) of T then (T −λ)−1 is well defined.
The map λ 7→ (T − λ)−1 is called the resolvent of T .

3.5.3. Spectral radius. The number r(T ) = sup{|λ| : λ ∈ σ(T )} is called the spectral
radius of T . If |λ| > ‖T‖ one finds, using the Neumann series, that T − λ is bijective and
that ‖(T − λ)−1‖ ≤ 1/(|λ| − ‖T‖). Hence r(T ) ≤ ‖T‖, i.e., σ(T ) is a bounded set.

3.5.4. Compactness of the spectrum. One may show that σ(T ) is closed and
nonempty (see Rudin, Real and Complex Analysis, Theorem 18.6). Hence the spectrum
of a bounded operator is compact.

3.5.5. Types of spectra. If T − λ is a bijection then its inverse is automatically
bounded (cf. the corollary in A.3.1). Therefore, if the number λ is in the spectrum of a
linear operator T then this may have one of several reasons:

(1) T − λ fails to be injective. In this case λ is called an eigenvalue of T and any
nonzero element in ker(T −λ) is called an eigenvector of T . The set of eigenvalues
is called the point spectrum of T .

(2) T − λ is injective but fails to be surjective. One then distinguishes two subcases:
(a) The image of T −λ is dense in X. In this case one says (for historical reasons)

that λ is in the continuous spectrum of T .
(b) The image of T − λ is not dense in X. In this case one says that λ is in the

residual spectrum of T .

3.5.6. The spectra of shift operators. Compute the spectra of S± as operators
from `2(Z) to itself when Z = Z and when Z = N.
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3.5.7. The spectrum of a selfadjoint linear operator.

Theorem. If T is a bounded self-adjoint operator from a Hilbert space H to itself then its
spectrum is a subset of the real line. Moreover, the residual spectrum of T is empty.

Sketch of proof: Let λ = s+ it where s, t ∈ R. Then

‖(T − λ)x‖2 = ‖(T − s)x‖2 + t2‖x‖2.

If t is different from zero, then T − λ is injective as a proof by contradiction shows.
Hence the point spectrum of T is real.

Now assume that the sequence yn = (T − λ)xn in the image of T − λ converges to a
point y ∈ H. If t 6= 0 then

‖xn − xm‖2 ≤
1
t2
‖(T − λ)(xn − xm)‖2 =

‖yn − ym‖2

t2
.

Hence xn is a Cauchy sequence which converges since H is complete. Denote its limit by x.
Then

‖y − (T − λ)x‖ = lim
n→∞

‖(T − λ)(xn − x)‖ ≤ ‖T − λ‖ lim
n→∞

‖xn − x‖ = 0,

i.e., the image of T − λ is closed. This proves that the continuous spectrum of T is real.
Finally assume that T − λ is injective and that the image of T − λ is a proper subset

of H. Then there is a nonzero vector x′ ∈ H which is orthogonal to the image of T − λ (cf.
Theorem 3.2.4). Hence 0 = (x′, (T − s − it)x) = ((T − s + it)x′, x) for all x ∈ H, which
implies that λ = s− it is an eigenvalue of T . But this is impossible. �

3.5.8. Spectrum and resolvent of J0.

Theorem. The spectrum of the free Jacobi matrix J0 is purely continuous and consists of
the interval [−2, 2]. The resolvent of J0 is the “integral” operator G defined by

(Gf)(n) =
∞∑

m=−∞

z1+|m−n|

z2 − 1
f(m)

where z is the root of the equation λ = z + 1/z which is located inside the unit disk.

Sketch of proof: Suppose |z| < 1. First note that
∞∑

m=−∞
|z||m−n| =

∞∑
n=−∞

|z||m−n| =
2

1− |z|
.

By Schwarz’s inequality, assuming that f ∈ `2(Z), one obtains( ∞∑
m=−∞

|z||m−n||f(m)|

)2

≤ 2
1− |z|

∞∑
m=−∞

|z||m−n||f(m)|2.

Therefore

‖Gf‖2 =
∞∑

n=−∞
|(Gf)(n)|2 ≤ |z|2

(1− |z|2)2

∞∑
n=−∞

( ∞∑
m=−∞

|z||m−n||f(m)|

)2

≤ |z|2

(1− |z|2)2
2

1− |z|

∞∑
n=−∞

∞∑
m=−∞

|z||m−n||f(m)|2.
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Interchanging the summations2 over n and m yields

‖Gf‖2 ≤ |z|2

(1− |z|2)2
4

(1− |z|)2
‖f‖22.

Hence Gf is in `2(Z) and G is a bounded operator with norm at most 2/(1− |z|)2.
Since J0−λ is continuous and linear one finds next that ((J0−λ)◦G)f = f . Also, after

shifting summation indices, one shows that (G ◦ (J0 − λ))f = f . Therefore G = (J0 − λ)−1.
We have now proved that J0 − λ is a bijection from `2(Z) to itself when |z| < 1, i.e.,

when λ 6∈ [−2, 2]. This shows that the spectrum of J0 is contained in [−2, 2].
Next we prove that we actually have equality here. Assume first that λ ∈ (−2, 2). Then

the general solution of J0f = λf is f = αzn + βz−n where |z| = 1 (cf. 2.2.5). From this
one sees quickly that λ can not be an eigenvalue. Hence both the point spectrum and, by
3.5.7, the residual spectrum of J0 are empty. To show that λ is in the continuous spectrum
we only have to show that J0−λ is not onto. We will now show that the sequence e0 is not
in the image of J0 − λ. According to the variation of constants formula (42) (or by direct
computation) a particular solution of (J0 − λ)f = e0 is given by

f(n) =
z

z2 − 1

{
0 if n ≥ 0
zn − z−n if n ≤ 0

.

This implies that no solution of (J0 − λ)f = e0 can be square summable. Hence (−2, 2)
is in the continuous spectrum of J0. A similar argument can be made to prove that both
−2 and 2 are also in the continuous spectrum. This fact also follows since the spectrum is
closed but point and residual spectrum are empty. �

This proof can be adapted in a straightforward manner to show that the spectrum of a
periodic Jacobi matrix is purely continuous and coincides with its stability set.

2This does not come for free as interchanging limit processes is generally not allowed. In the present
case where the summands are all positive, however, this is justifiable.





CHAPTER 4

Inverse Problems

4.1. Finite Jacobi Matrices

4.1.1. Boundary conditions. Let Ž = {0, 1, ..., N + 1} and Z = {1, ..., N} and as-
sume that numbers a0, ..., aN−1, b1, ..., bN , and c1, ..., cN are given. Let L be a map from
s(Ž) to s(Z) defined by

(Ly̌)(n) = an−1y̌(n− 1) + bny̌(n) + cny̌(n+ 1), n = 1, ..., N.

One can think of s(Z), the range of L, as being embedded in s(Ž), the domain of L, so
that the domain is larger than the range. This is bad from the spectral theory point of view
where domain and range are the same or, as in the case of unbounded operators, where
the domain is a subspace of the range. For physical systems represented by Sturm-Liouville
equations physical considerations require the introduction of so called boundary conditions.
For instance, in the case of a guitar string, one requires that its endpoints are kept fixed. In
general these boundary conditions are linear relationships between the value of a function
and the value of its derivative at an endpoint. Therefore we will impose boundary conditions
of that type also in the current situation.

Specifically, we require
y̌(0)− h`y̌(1) = 0

and
y̌(N + 1)− hry̌(N) = 0

where h` and hr denote complex numbers. These are homogeneous boundary conditions.
Sometimes one might be interested in nonhomogeneous boundary conditions where the right
hand sides are given numbers rather than zero.

The conditions y̌(0) = 0 and y̌(N + 1) = 0 are called Dirichlet boundary conditions,
while the conditions y̌(1)− y̌(0) = 0 and y̌(N+1)− y̌(N) = 0 are called Neumann boundary
conditions.

Given a difference expression L and two boundary conditions characterized by h` and
hr in C define the set

D = {y̌ ∈ s(Ž) : y̌(0)− h`y̌(1) = y̌(N + 1)− hry̌(N) = 0}.
Note that

ψ : D → s(Z) : (y̌(0), ..., y̌(N + 1))> 7→ (y̌(1), ..., y̌(N))>

is an isomorphism. Therefore J = L ◦ ψ−1 is a mapping of s(Z) to itself. The matrix
associated with J , using the canonical basis, is

h`a0 + b1 c1
a1 b2 c2

. . . . . . . . .
aN−2 bN−1 cN−1

aN−1 bN + hrcN

 .

31
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In particular for Dirichlet boundary conditions on both sides the matrix is obtained by
suitably truncating an infinite Jacobi matrix.

The system of equations (Ly̌)(n) = λy̌(n), n = 1, ..., N is represented by Jy = f where
y = ψ−1(y̌) ∈ s(Z) and y(k) = y̌(k) , k = 1, ...N . In the future we will make no more
notational distinctions between y and y̌ since their meaning will be clear from the context.

J is called the Jacobi matrix associated with L and the boundary conditions y(0) −
h`y(1) = 0 and y(N + 1)− hry(N) = 0.

One can also make sense of the cases where h` and/or hr becomes infinite.

4.1.2. First results in inverse problems for Jacobi matrices. The characteristic
polynomial of a matrix A is det(λ−A). The trace of A, written as tr(A) is the negative of
the next to leading coefficient of the characteristic polynomial. Given an n × n-matrix A
we denote by

Pk(λ) = λk + akλ
k−1 + bkλ

k−2 + ...

the characteristic polynomial of the upper left k × k block of A.

Theorem. Let A be an n × n-matrix such that Aj,k = 0 if |j − k| ≥ 2 and Aj,k 6= 0 if
|j − k| = 1. Let B be the (n − 1) × (n − 1)-matrix obtained from A by deleting the last
row and column. If all eigenvalues of A and B (including their algebraic multiplicities) are
known then so are the 2n− 1 quantities A1,1, ..., An,n, A2,1A1,2, ..., An,n−1An−1,n.

Proof. The proof is by induction on n. The statement is true for n = 1. Assume
therefore that the statement holds for n− 1.

Since knowing the eigenvalues of a matrix, including their algebraic multiplicities, is
equivalent to knowing its characteristic polynomial we may assume that the polynomials
Pn and Pn−1 and hence the numbers an, an−1, bn, and bn−1 are given. Compute Pn by
expansion with respect to the last column. This gives

(51) Pn(λ) = (λ−An,n)Pn−1(λ)−An−1,nAn,n−1Pn−2(λ)

Comparing here the coefficients of λn−1 gives that An,n = an−1 − an is known. Next,
comparing the coefficients of λn−2 yields

An−1,nAn,n−1 = bn−1 − bn +An,nan−1.

Since An−1,nAn,n−1 6= 0 we may solve equation (51) for Pn−2, which therefore is uniquely
determined. Induction completes now the proof. �

It is not possible to retrieve the quantities Ak,k−1 and Ak−1,k themselves. This is shown
by the following proposition.

Proposition. Let A be an n × n-matrix such that Aj,k = 0 if |j − k| ≥ 2. Then the
coefficients of the characteristic polynomial of A are polynomials in the 2n − 1 variables
A1,1, ..., An,n, A2,1A1,2, ..., An,n−1An−1,n.

Proof. The proof is again by induction on n. The statement is true for n = 1. Assume
it is true for k× k-matrices of the type described when k < n. Equation (51) and induction
complete the proof. �

If one assumes additionally that Ak,k−1 and Ak−1,k are equal then they are, of course,
determined up to a sign.

While it might appear intriguing that the 2n+ 1 eigenvalues of A and B determine the
2n + 1 quantities A1,1, ..., An,n, A2,1A1,2, ..., An,n−1An−1,n it should be remarked that in
general such a count is too naive. To see this, consider the inverse problem for a matrix A
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where Aj,k = 0 if |j− k| ≥ 2 and Aj,k = 1 if |j− k| = 1. In this case one has n quantities to
determine, namely the diagonal elements. One might therefore think that the n eigenvalues
of A determine the matrix. However, the matrices(

b1 1
1 b2

)
and

(
b2 1
1 b1

)
have the same eigenvalues even when they are different.

4.1.3. Borg’s theorem for finite Jacobi matrices. The following theorem was first
proved by G. Borg in the context of one-dimensional Schrödinger equations.

Theorem. Consider a Jacobi expression L on {0, ..., N + 1}. Suppose the following data
are given:

(1) Two distinct numbers h1 and h2.
(2) The eigenvalues associated with the boundary conditions

y(0) = y(N + 1)− h1y(N) = 0.

(3) The eigenvalues associated with the boundary conditions

y(0) = y(N + 1)− h2y(N) = 0.

Then the quantities b1, ..., bN and the quantities a1c1, ..., aN−1cN−1 as well as cN are
uniquely determined.

Proof. Let Jk, k = 1, 2, be given by
b1 c1
a1 b2 c2

. . . . . . . . .
aN−2 bN−1 cN−1

aN−1 bN + hkcN

 .

Our assumptions mean that the characteristic polynomials of J1 and J2 are given. First
note that cN = tr(J1 − J2)/(h1 − h2).

Next let Pk denote the characteristic polynomial of the upper left k× k block of J1 and
let Q be the characteristic polynomial of J2. Then

PN (λ) = (bN + h1cN − λ)PN−1(λ)− cN−1aN−1PN−2(λ)

and
Q(λ) = (bN + h2cN − λ)PN−1(λ)− cN−1aN−1PN−2(λ)

so that

PN−1(λ) =
PN (λ)−Q(λ)
(h1 − h2)cN

.

Now apply Theorem 4.1.2. �

4.1.4. The Titchmarsh-Weyl m-function. We denote by C(λ, ·) and S(λ, ·) the
solutions of Ly = λy satisfying initial conditions

C(λ, 0) = 1, C(λ, 1) = 1, S(λ, 0) = 0, S(λ, 1) = 1.

Note that S(·, n) and C(·, n) are polynomials of degree n−1 each with leading coefficient
c1...cn−1 when 2 ≤ n ≤ N + 1.
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For every boundary condition on the right, characterized by the parameter h, we define
the so called Weyl-Titchmarsh m-function by λ 7→ mh(λ) where mh(λ) is chosen so that
the function

C(λ, ·) +mh(λ)S(λ, ·)
satisfies the given boundary condition. (Why is mh well defined?) One computes immedi-
ately that

mh(λ) = −C(λ,N + 1)− hC(λ,N)
S(λ,N + 1)− hS(λ,N)

.

Hence mh is a rational function which tends to −1 as its argument tends to infinity. Its poles
are the eigenvalues of the problem defined by the boundary conditions y(0) = y(N + 1) −
hy(N) = 0. Its zeros are the eigenvalues of the problem defined by the boundary conditions
y(0)− y(1) = y(N + 1)− hy(N) = 0.

Denote the unique solution of the initial value problem Ly = λy, y(N+1) = h, y(N) = 1
by ψh(λ, ·). This solution (or its constant multiples) is called the Weyl solution associated
with h. Any solution which satisfies the boundary condition on the right is a multiple of
ψh(λ, ·). In particular, this is the case for C(λ, ·) +mh(λ)S(λ, ·). Therefore

mh(λ) =
ψh(λ, 1)− ψh(λ, 0)

ψh(λ, 0)
.

4.1.5. The m-function determines uniquely its Jacobi matrix. Let L be a dif-
ference expression defined on {0, ..., N + 1} and h a fixed complex number. Let mh be the
associated Titchmarsh-Weyl m-function. Given mh we know that its zeros and poles are
two sets of eigenvalues (see 4.1.4), which, by Borg’s theorem determine the quantities ajcj
and bj for j = 1, ...N − 1 as well as the numbers a0 and bN + hcN .

It should be noted that, conversely, mh can be immediately computed from the spectra
associated with two sets of appropriate boundary conditions. More precisely, if λ1, ..., λN
are the eigenvalues for the boundary conditions y(0) = y(N + 1) − hy(N) = 0 and µ1, ...,
µN are the eigenvalues for the boundary conditions y(0) − y(1) = y(N + 1) − hy(N) = 0,
then

mh(λ) = −
∏N
k=1(λ− µk)∏N
k=1(λ− λk)

.



APPENDIX A

Mathematical Background

A.1. Linear Algebra

A.1.1. Vector spaces. Let V be a set and suppose there is an associative and com-
mutative binary operation (called an addition and denoted by +) on V . If V has an identity
and every element of V has an inverse then V is called a commutative group. Suppose there
is also a function from C× V to V (called a scalar multiplication and denoted by juxtapo-
sition) such that, for all r, s ∈ C and all x, y ∈ V , the following properties are satisfied
(a) (rs)x = r(sx),
(b) (r + s)x = rx+ sx,
(c) r(x+ y) = rx+ ry, and
(d) 1x = x.
Then V is called a complex vector space.

A.1.2. Linear independence and span. If x1, ..., xn are elements of a vector space
V and if α1, ..., αn are scalars then the vector

α1x1 + ...+ αnxn

is called a linear combination of x1, ..., xn.
The vectors x1, ..., xn ∈ V are called linearly independent if α1x1 + ...+αnxn = 0 implies

that α1 = ... = αn = 0. Otherwise they are called linearly dependent. A set M ⊂ V is called
linearly independent if any finite number of distinct elements of M are linearly independent.
Otherwise M is called linearly dependent.

If A is a subset of V then the set of all linear combinations of elements of A is called
the span of A. We denote it by 〈A〉.

A.2. Topology

A.2.1. Metric spaces. Let M be a set. A function d : M×M → R is called a distance
or metric on M if it satisfies the following conditions:
(a) d(x, y) ≥ 0 for all x, y ∈M ,
(b) d(x, y) = 0 if and only if x = y,
(c) d(x, y) = d(y, x) for all x, y, z ∈M .,
(d) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ M . (This inequality is called the triangle
inequality.)

If there is a metric on M then (M,d) is called a metric space.
We say that a sequence n 7→ xn ∈M converges to a ∈M if d(a, xn) tends to zero as n

tends to infinity. The sequence is then called convergent and the point a is called the limit
of the sequence.

The important example of a metric space is the real line where the distance function is
d(x, y) = |x− y|.
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It was only in 1906 that Maurice Frechet (1878-1973) realized that the above properties
are the essential features of |x− y| which allow to do analysis.

A.2.2. Open and closed sets. Let (M,d) be a metric space. The set Br(x0) = {x ∈
M : d(x, x0) < r} is called the ball of radius r centered at x0.

A subset U of M is called open if for every x0 ∈ U there is a positive number r such
that Br(x0) ⊂ U .

A subset F of M is called closed if for every convergent sequence n 7→ xn ∈ F the limit
is an element of F .

The complement of a closed set is open and vice versa.
The closure U of a subset U of M is the set of all limit points of sequence in U . Note

that U ⊂ U .
A subset S of a metric space M is called dense in M if its closure equals M .

A.2.3. Cauchy sequences and completeness. Let (M,d) be a metric space. A
sequence n 7→ xn ∈M is called a Cauchy sequence if for every positive ε there is a natural
number N such that d(xn, xm) < ε whenever n and M are at least as large as N .

A metric space is called complete if every Cauchy sequence converges to a limit in the
space.

The set of real numbers and the set of complex numbers are complete metric spaces
with the distance function d(x, y) = |x− y|.

A.3. Functional Analysis

There are two fundamental theorems in Functional Analysis which we use but which we
do not want to prove, the open mapping theorem and a theorem on the geometry of Hilbert
space.

A.3.1. The open mapping theorem. Let X and Y be Banach spaces and suppose
T : X → Y is a bounded linear surjection. Then the image of every open set in X is an
open set in Y . In particular, there is δ > 0 unit ball in Y

This theorem has the following corollary.

Corollary. Let X and Y be Banach spaces and suppose T : X → Y is a bounded linear
bijection. Then T−1 is bounded.

Sketch of proof: Since the image of the unit ball U in X is open and since the zero
vector of Y is in T (U) we know that there is a positive δ such that the ball of radius δ
centered at zero is contained in T (U). Since T is one-to-one we have that ‖Tx‖ < δ implies
‖x‖ < 1 or, equivalently, ‖Tx‖ < 1 implies ‖x‖ < 1/δ. Since x = T−1y this means that
‖T−1‖ ≤ 1/δ. �
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